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Trypanosoma brucei is a uni-cellular protist that causes African sleeping sickness. These parasites have a
flagellum that is attached to the cell body and is indispensible for its motility. The flagellum consists of a
canonical 9 + 2 axoneme and a paraflagellar rod (PFR), an intricate tripartite, fibrous structure that is con-
nected to the axoneme. In this paper we describe results from cryo-electron tomography of unperturbed
flagella. This method revealed novel structures that are likely involved in attaching the flagellum to the
cell. We also show the first cryo-electron tomographic images of a basal body in situ, revealing electron
dense structures inside its triplet microtubules. Sub-tomogram averaging of the PFR revealed that its dis-
tal region is organized as an orthorhombic crystal.

� 2012 Elsevier Inc. Open access under CC BY license.
1. Introduction

Trypanosoma brucei (T. brucei) is a single cell parasite that
causes the African sleeping sickness (human African trypanosomi-
asis), endemic in sub-Saharan Africa. T. brucei is transmitted by the
tsetse fly (Glossina spp.). Throughout 2009, an estimated 30.000
humans were infected (WHO, 2010). Currently, available treat-
ments have severe side effects, and resistance against these drugs
is increasing (Pyana et al., 2011; Wilkinson and Kelly, 2009). De-
tailed structural and cell biological studies of these parasites might
reveal important novel drug targets. Furthermore, T. brucei belongs
to the kinetoplastids, a group of protozoa that is evolutionary dis-
tant from humans, which renders it an excellent organism to study
cellular evolution in eukaryotes.

T. brucei cells maintain their characteristic slender shape due to
the sub-pellicular microtubule array, an arrangement of mostly
parallel microtubules located directly under the cell membrane
(Gull, 2003; Robinson et al., 1995). The cells are motile due to a sin-
gle flagellum that grows from a basal body situated below a secre-
tory organelle called the flagellar pocket, which is located near the
cell’s posterior (Fig. 1A) (Lacomble et al., 2009; Webster, 1989). The
flagellum is attached to the cell body over its entire length, except
for a short segment that protrudes beyond the cell’s anterior end.
This attachment is important because silencing of the fla1 gene
by RNAi, which detaches the flagellum, decreases cellular viability
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and causes failure in cytokinesis (LaCount et al., 2002; Nozaki et al.,
1996). Attachment is accomplished by a ‘‘flagellum attachment
zone’’ (FAZ), a specialization of the cell’s cortex positioned on the
inside of the plasma membrane just opposite the flagellum. This
zone includes a gap in the sub-pellicular microtubule array that
contains the so-called ‘‘microtubule quartet’’ (MTQ), a sub-set of
the subpellicular MTs that are nucleated at the base of the flagellar
pocket, and are anti-parallel to the other MTs (Fig. 1B) (Sherwin
and Gull, 1989; Webster, 1989). This gap also contains the ‘‘FAZ fil-
ament’’, an electron dense fiber that runs parallel to the MTQ, and
the macula adherens, junctional complexes between cell body and
the flagellum (Vickerman, 1969). Nonetheless, the ways in which
these cytoplasmic specializations might bind the flagellum to the
cell surface have remained obscure. The images obtained in this
study reveal novel structures that may be important for flagellar
attachment.

The flagellum in T. brucei comprises two major structures, the
conserved 9 + 2 axoneme (9 doublet microtubules and two central
pair microtubules) and the more kinetoplastid specific paraflagel-
lar rod (PFR; (Vaughan, 2010) Fig. 1C). The PFR is a paracrystalline
fiber that is arranged parallel to the axoneme along the extra-
cellular part of the flagellum (de Souza and Souto-Padron, 1980;
Portman and Gull, 2010; Vickerman, 1962). The PFR constitutes a
platform for metabolic enzymes and signaling factors (Oberholzer
et al., 2007; Pullen et al., 2004; Ridgley et al., 2000). It is essential
for motility (Bastin et al., 1998; Santrich et al., 1997) and thus, cell
viability in the bloodstream form that causes the human infection
(Broadhead et al., 2006; Griffiths et al., 2007).

Previous structural studies on the PFR have revealed three
structurally distinct regions: the proximal, intermediate and distal
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Fig.1. Vitreous sections of the flagellum in Trypanosoma brucei. (A) A scanning electron micrograph shows T. brucei’s elongated cell shape and attached flagellum that grows
out of the flagella pocket (FP) (with permission from Lacomble et al. (2009)). (B) A cross-sectional cartoon of the cell’s posterior end, with the FP around which the
microtubule quartet (MTQ) wraps. At the proximal end of the flagellum, the basal bodies (BB) with the associated kinetoplast-containing mitochondrion. At the base of the
flagellum inside the FP is the filamentous collarette structure. (C) The flagellum consists of the axoneme and the paraflagellar rod (PFR). (D–F) Slices from cryo-tomograms of
frozen hydrated sections, showing the axoneme, PFR and sub-pellicular MTs (arrowheads; SP). Note the distance between flagellar and cellular membranes. (F) The PFR in this
slice is thinner than in others, suggesting that this section was cut where the flagellum emerged from the flagellar pocket, the site of the PFR proximal end. This interpretation
is supported both by the large gap in the sub-pellicular microtubules (arrows) underlying the membrane and the presence of the Golgi apparatus, which are also found in this
region. (F0) zoomed in image of the flagellum of panel F. Thickness of slice in Z: (C) 50 nm (D) 1 nm and (E) 30 nm.
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domains (Farina et al., 1986). They also showed that the PFR has
links to axonemal doublet microtubules numbered 4–7 and to
the flagellar attachment zone (de Souza and Souto-Padron, 1980;
Koyfman et al., 2011; Sherwin and Gull, 1989). The PFR distal re-
gion consists of periodically arranged crossing filaments (de Souza
and Souto-Padron, 1980; Rocha et al., 2010; Sant’Anna et al., 2005),
that change their angles relative to one another, depending on the
extent of flagellar bending in that region (Koyfman et al., 2011;
Rocha et al., 2010).

Here we present the first structural 3D analysis of the intact T.
brucei flagellum by cryo-electron tomography (cryo-ET). We have
investigated both vitreous sections and whole, plunge-frozen cells,
each of which provides structural preservation that is the best
currently possible (Al-Amoudi et al., 2004; Hoenger and Bouchet-
Marquis, 2011; Leis et al., 2009). Studying cells in this near-to-
native state has provided insight at the macromolecular level into
the flagellum attachment and the structure of the PFR. The 3D vol-
umes obtained from cryo-ET were further analyzed by averaging
sub-tomogram volumes from repetitive and structurally identical
areas. The resulting increase in signal-to-noise ratio has helped
to identify repeating structures in the distal region of the PFR.

2. Material and methods

2.1. Cell culture and sample preparation

T. brucei brucei, procyclic form (Lister 429), were maintained in
logarithmic growth, using SDM79 medium with 20% FCS at 28 �C,
as in (Höög et al., 2010). To prepare cells for whole cell cryo-ET,
4 ll of cells at a density of �3 � 106 cells/ml were pipetted onto
a glow-discharged holy carbon grid (4 � 4 lm holes; Quantifoil,
Jena, Germany) and mixed with 1 ll of concentrated 10 nm colloi-
dal gold particles (Ted Pella, Redding, CA, USA), blotted and
plunged into liquid ethane.

For the preparation of vitreous sections, cells were concentrated
by centrifugation for 2 min at 600g, and then resuspended in 20%
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dextran and 0.1% sucrose in medium. After 30 min in this mixture,
a majority of cells were still swimming. We cryo-immobilized the
cells by high pressure freezing (BalTec HPM-010) within 2–3 min
after resuspending the pellets, thus we can assume that the cells
were healthy at the time of freezing.

2.1.1. Cryo-imaging of plunge-frozen whole cells
The physical forces encountered during blotting of excess liquid

from the grids immediately before freezing destroyed the vast
majority of cells. Therefore, a selective search for T. brucei cells of
normal cell shape was performed. Cryo-micrographs and –tomo-
grams were recorded on intact cells that were situated so that
the thin, anterior end and flagellum lay within one of the 4 lm
holes in the carbon film. Cryo-electron microscopy (cryo-EM)
was performed on a Tecnai F30 electron microscope (FEI Company
Ltd., Eindhoven, The Netherlands) operated at 300 kV. Tomo-
graphic tilt series were collected between ±60� in 1.5� increments,
at a defocus of �4 or �6 lm, using the data acquisition software
SerialEM (Mastronarde, 2005). Tilt-series were recorded at a mag-
nification of 27,500� using a GATAN UltraCam, lens-coupled, 4 K
CCD camera attached to a Tridiem Gatan Image Filter (GIF: oper-
ated at zero-loss mode with an energy window of 20 eV; Gatan
Inc., Pleasanton, CA, USA). The original images were binned by 2,
resulting in micrographs of 2048 � 2048 pixels with a pixel size
corresponding to 0.76 nm on the specimen. The maximum total
dose used for a tilt-series was 90 e/Å2, corresponding to about 1–
2 e/Å2 for each micrograph. Tilt-series were corrected for con-
trast-transfer function (CTF) modulations (Xiong et al., 2009) and
tomograms were reconstructed using IMOD (Kremer et al., 1996).

2.1.2. Cryo-sectioning and imaging of cryo-sections
Dome-shaped carriers containing vitrified T. brucei obtained by

high pressure freezing were mounted in an FCS cryo-chamber of an
ultracut UCT microtome (Leica, Vienna, Austria) using a chuck of
our own construction. This chuck holds the carrier so that the pro-
truding domeshape of vitreous material can be trimmed and sec-
tioned, and avoids removing the specimen from its carrier to
mount it on a pin using cryo-glue (Richter, 1994). The specimens
were trimmed into a pyramid shape in order to obtain a square
surface (100 lm side) using a 45� cryo-trimming knife (Diatome,
Bienne, Switzerland). Then, 50 nm (nominal feed) thin sections
were produced using a 45� cryo-diamond knife (Diatome) with a
clearance angle of 6�. The cutting was performed at �155 �C with
a cutting speed of 0.6 mm/s (Bouchet-Marquis and Hoenger,
2011). During cutting, an anti-static device (Diatome) was used
to enhance the sliding of the sections on the surface of the knife.
The sections were collected on 200-mesh carbon-coated grids
and squeezed between two cooled polished metal surfaces in order
to attach them to the carbon film. When possible, the grids were
observed in the electron microscope directly after sectioning to
limit ice crystal contamination during storage.

The vitrified sections were transferred at liquid nitrogen tem-
perature into a Gatan-626 or 914 cryo-holder (Gatan Inc., Warren-
dale, PA, USA), which maintains a temperature of approx. �180 �C
to preserve the vitrified state. The proper vitrification of the spec-
imen was tested by electron diffraction. Cryo-EM and cryo-ET on
vitrified sections was performed on a Tecnai F20 electron micro-
scope (FEI Company Ltd., Eindhoven, The Netherlands) operated
at 200 kV. Data were recorded with an UltraScan 4000, 4Kx4K Ga-
tan CCD camera (Gatan Inc., Pleasanton, CA, USA) using SerialEM
acquisition software (Mastronarde, 2005). Tilt-series were re-
corded (at a nominal magnification of 29,000�) as described above
for work with the F30. Tilt-series were aligned by a fiducial-less,
patch-tracking alignment method available in the IMOD software
package and built into tomograms. The tomograms shown here
were processed using a Nonlinear Anisotropic Diffusion filter
(Frangakis and Hegerl, 2001) to reduce image noise. To compensate
for compression arising during sectioning, some images were
stretched. The images were rotated in Adobe Photoshop (Adobe
Systems Inc., San Jose, CA, USA) to orientate the knife marks paral-
lel to the Y-axis. A distortion stretching the images along the cut-
ting direction assuming an average 50% compression factor (Al-
Amoudi et al., 2005; Pierson et al., 2011) was applied.

2.1.3. Averaging of tomographic sub-volumes with PEET
To select sub-tomograms of the PFR for averaging, an open con-

tour of 49 points, 56 nm apart was drawn through the region of inter-
est. The tomogram subvolumes surrounding those 49 points were
then aligned using PEET (Particle Estimation for Electron Tomogra-
phy; http://bio3d.colorado.edu/PEET/): a software package that
aligns similar structures by cross-correlation and averages sub-vol-
umes of repetitive structural elements (Cope et al., 2010; Nicastro
et al., 2006). An initial alignment was obtained using normalized
cross-correlation on a 1683 pixel volume. For this, Euler search angles
were initially set to 24� and refined during the search down to 1.5�
after 4 iterations. The procedure was then reiterated on the resulting
average, by selecting 26 new subvolumes along an axis perpendicu-
lar to those original 49 subvolumes, to produce a final average with
improved signal to noise ratio (Supplementary Fig. 1). For parts of
Fig. 5, a low-pass filter was applied to remove further noise.
3. Results

3.1. Structure of the flagellum in frozen hydrated sections

To investigate the T. brucei flagellar structure by cryo-EM and
cryo-ET we subjected procyclic cells to high-pressure freezing
and vitreous sectioning. In these sections, cross-sections of the fla-
gellum appear round or elliptical (Fig. 1D–F). The PFR proximal and
distal region shows repetitive slanted electron dense lines
(Fig. 1D). Furthermore, the flagellar membrane is separated from
the cellular membrane by a �20 nm extracellular space (numbers
are not exact due to compression during sectioning). The rest of the
area looks similar to what has been previously been described in
chemically fixed sections (Sherwin and Gull, 1989). In the section
shown in Fig. 1F the PFR appeared thinner than elsewhere along
the flagellum length. Judging from the close proximity of the Golgi
apparatus that is clearly visible right below, and the large distance
between the sub-pellicular MTs in the FAZ region the section
shown in panel 1F is probably close to the flagellar pocket where
the PFR originates. This is further supported by the large distance
between the sub-pellicular MTs in the FAZ region, this larger gap
has been seen previously by plastic section tomography just out-
side the flagellar pocket (our unpublished data).

3.2. Extracellular ‘staples’ appear to attach the flagellum to the cell
membrane

Cryo-EM of plunge frozen whole cells enables detailed investi-
gations of the molecular structures that attach the flagellum to
the cell body, without the compression seen in frozen hydrated
sections. In the areas where the flagellum was the closest to the
cell body (membrane spacing = 26 ± 2 nm), we found electron
dense extracellular structures situated along the flagellar axis at
regular intervals (71 ± 20 nm center–center; n = 42; Fig. 2A and
Supplementary Fig. 2). These structures appear to bridge the cellu-
lar and flagellar membranes and their width and spacing does not
vary significantly between cells (Supplementary Fig. 2). On both
sides of these structures, a diffuse, electron-dense trapezoid-
shaped area extends into the cytoplasm as well as into the flagellar
lumen (Fig. 2A–C; Supplementary Movie 1).

http://bio3d.colorado.edu/PEET/
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The ‘‘staples’’ define a distinct mid-plate parallel to the flagellar
axis with fibrous densities on either side linking the cellular and
flagellar membranes (Fig. 2B). Connecting fibrous material also ap-
pears to continue into the flagellum as well as the cytoplasm on
either side of the staple. Views along the flagellar axis, obtained
by cryo-sectioning, reveal a single row of these extracellular con-
nections between the cell and the flagellum (Fig. 2C). This view
also shows that the ‘staple’ is as deep as it is wide. Indeed, subto-
mogram averaging of 30 staple structures reveals its plate-like
structure, where most of the fibrous connections to the
Fig.2. The flagellum is connected to the cell body with multi-domain protein assembli
where the flagellar and cellular membranes show electron dense structures (arrows) spa
into the cytoplasm and flagellum on the sides of each electron dense extracellular struct
imaged in A). The insert A00 is a cartoon of the image shown in A, with the membranes an
shown in gray. (B) Higher magnification images showing the extra cellular structures,
extending to both sides and into the cytoplasm/flagellum (white arrows). (C) An extra-ce
acquired from a frozen hydrated section. Note that there is only one density visible in thi
and F) 7 nm thick tomographic slice of a sub-tomogram average of 30 staple structures. (
subtomogram average. (H) The anterior end of the cell, with the staples (arrowheads) b
membranes were lost, indicating their great structural flexibility
(Fig. 2D–G). The staples themselves vary in width between 16–
52 nm (average 27 ± 7 nm; Fig. 2H) and were found all the way
to the anterior end of the cell with the same size and shape (Fig. 2I).

3.3. Vitrified sections of the flagellum transition zone and basal bodies

The flagellum originates beneath and passes through a large
membrane invagination called the flagellar pocket (Fig. 3A). This
intra-cellular region is found at the widest part of the cell, and thus
es that span both membranes. (A) A �30 nm thick tomographic slice of the region
nning the space between them. Note the electron dense trapezoid shapes extending
ure, giving the connection a bowtie-like appearance. (A0 shows the region of the cell
d extracellular electron densities shown in black and the electron dense trapezoids

which consists of an electron dense midplate (arrow), with filamentous structures
llular electron density (arrow) is also shown in this 20 nm thick slice of a tomogram
s cross-sectional view, indicating that only one row of these structures is present. (D
E and G) The 3D isosurface of the membranes (purple) and the staple (white) of the
etween flagellar and cell membranes.
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can only be imaged by cryo-ET on vitrified sections; whole cells are
too thick.

The flagellar pocket consists of smooth membranes, and along
its edge the MTQ was clearly visible (Fig. 3B). Around the flagellum,
the collarette structure (Lacomble et al., 2009; Vickerman, 1973)
was partially visible (arrow in Fig. 3B) and the axonemal doublet
microtubules in the proximal part of the transition zone of the fla-
gellum were visible in cross-section. Remarkably, there are distinct
electron densities in the center of most of these microtubules.

Below the flagellar pocket, the basal bodies can be found next to
a mitochondrion (Fig. 3C). The basal body reveals the typical
microtubule triplet structure commonly found in centrioles and
basal bodies in a wide range of species (Allen, 1969; Gould,
1975; McKean et al., 2003; O’Toole et al., 2003; Pearson and Winey,
2009; Wolfe, 1970). Interestingly the triplet microtubules found
here show distinct densities within their lumen (Fig. 3D–E); com-
pare with (Garvalov et al., 2006; Nicastro et al., 2006; Sui and
Downing, 2006).

Most remarkably, we discovered a previously undescribed
microtubule located between the mitochondrion and the basal
body (arrow and insert). This represents the first microtubule that
has been found to float free in the cytoplasm of T. brucei, however,
this could be the beginning of a new MTQ.
Fig.3. Structure of the intracellular part of the flagellum. (A) A cartoon showing the flag
transition zone shows the approximate location of the image shown in (B), the red line s
flagellar pocket, as seen in a 30 nm thick section of a vitreous section tomogram. Note the
forms a lobed line on the outside of the flagellum. The microtubule quartet (MTQ) wraps
The basal bodies in a 50 nm thick slice of a vitreous section tomogram. A previously unid
Triplet microtubules from a second vitreous section tomogram containing basal bodies.
(arrowhead).
3.4. Detailed structural analysis of the PFR

The PFR is a paracrystalline structure; its repeats become partic-
ularly well visible in detergent-extracted plunge frozen cells at 52�
tilt (Fig. 4A). The removal of membranes provided extra contrast
that revealed the repetitive units in the regions both proximal
and distal to the axoneme. In this tilted view, these repetitive units
were 40 ± 1 nm long (n = 12) and at a 16 ± 2 nm (n = 10) offset to
each other, corresponding to a 51 ± 1 nm repeat with a 20 ± 3 nm
offset at 0�. To improve the signal to noise ratio in our images,
we averaged sub-tomograms using PEET (Cope et al., 2010; Nicas-
tro et al., 2006). These volumes were extracted from a tomogram of
a slightly bent flagellum on a whole-mount plunge frozen cell
(with unperturbed membranes; Fig. 4B; Supplementary Movie 2).
3D rendering of the averaged volume by density thresholding
yielded a model that resembles previous images of the PFR
(Fig. 4C; Supplementary Movie 3) (Gadelha et al., 2006; Portman
et al., 2009; Vickerman, 1962), confirming the successful
averaging.

The 3D map obtained from averaged volumes revealed many
novel features of the PFR. Fig. 4D illustrates the different regions
of the PFR in longitudinal view. For an optimal viewing of the
repetitive elements we projected 10 nm thick tomographic slices
ellum inside the flagellar pocket in longitudinal view. The purple dashed line in the
hows the location of C–E. (B) The transition zone of the flagellum, found inside the
electron densities in the doublet microtubules (arrowheads). The collarette (arrow)

around the pocket, to join the sub-pellicular (SP) microtubules at the cell surface. (C)
entified microtubule (arrow) is found close to the mitochondrial membrane. (D–E)

The slices are 50 nm thick and displays electron densities inside A, B, and C tubules
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(Fig. 4E–I; Supplementary Movie 4), but at different z-heights (as
represented in by the yellow line in the cross-section cartoon).

Within one repeat, the proximal region features a three-lay-
ered structure of arches interrupted by cloverleaf-like electron
densities (red outline; Fig. 4E). The assembly shown in Fig. 4E
comes from 14 nm further down along the z-axis. There, the ar-
ches are replaced by A-shaped densities (Fig. 4F), which change
into a pattern that appears like columns of stacked diamonds an-
other 6 nm further down (Fig. 4G). Yet another 6 nm further
down, we found electron dense features resembling stacked ar-
ches (Fig. 4H). Another 14 nm deeper, the electron densities show
sharper edges (Fig. 4I). Throughout, the densities in the proximal
region appeared connected into a line at the side closest to the
axoneme (red arrow).
Fig.4. Structure of the para-flagellar rod (PFR). (A) A cryo-electron micrograph of a deterg
the proximal region (white arrows) and in the distal region (black arrows). The offset be
thick tomographic slice of the intact flagellum, which was used for sub-tomogram avera
reveals a characteristic PFR structure. (D) Cartoon shows a trypanosome flagellum in long
(gray) lie parallel to the PFR, which is divided into axoneme-proximal (red), inter-med
averaged reconstruction, showing features within one repeat of the pattern formed by
cartoon: (E) 0 nm, (F) 14 nm, (G) 6 nm, (H) 6 nm and (I) 14 nm distance in z from the prev
and intermediate region, respectively, and the cartoon in the bottom left corner shows
The intermediate region (green bar; Fig. 4E) displayed less pro-
nounced features, but it showed a fine mesh of lines that overlaid
each other at a �90-degree angle (green outline; Fig. 4E–I).

The distal region (blue bar; Fig. 4E) appears to be the most struc-
tured region of the PFR. Note that in Fig. 4F the electron density has a
less dense side towards the left (blue arrow), but in 4H this less elec-
tron dense side is found to the right (blue arrow), making the elec-
tron densities appear like mirror images of each other.

3.5. The proximal and intermediate region is repetitive along the axis
of the flagellum

After a low-pass filtering, clear connections between the prox-
imal region and the closest microtubule doublet are revealed
ent extracted and plunge frozen cell, at 52� tilt, showing the PFR’s repetitive units in
tween the proximal and distal repeats are 16 nm (black double arrow). (B) A 30 nm
ging of the PFR structure shown in E–I. (C) Isosurface of the sub-tomogram average
itudinal orientation, sectioned parallel to its axis. The microtubules in the axoneme
iate (green) and distal regions (blue). (E–I) 10 nm thick slices of a sub-tomogram

the electron densities. Their distribution in z as indicated by the yellow line in the
ious slice. The red and green outlines highlight the electron densities in the proximal
the present image’s locations (yellow line) to the previous images (gray lines).
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(arrows; Fig. 5A). An isosurface of the unfiltered volume is noisy,
yet reveals important structural details of the proximal and inter-
mediate region (Fig. 5B). In this cross-sectional view, the proximal
region has one thicker side (left) and one thinner side (right). In
the thick area, parallel electron densities appear anchored at
three of the seven stalks found in the intermediate region (the
stalks connect the proximal with the distal region). Above the
central stalk, there is a void, causing a clear break in the symme-
try along this axis. On the thinner side of the proximal region, the
electron densities do not form clear parallel lines. The interface
between the proximal and intermediate region is slightly ‘V’
shaped with the bottom of the ‘V’ off centered towards the thick-
er side.

In Fig. 4, we showed the ultra-structure inside one of the re-
peated units. Here, we show the structure of the proximal and
intermediate regions at selected spots throughout the PFR
(Fig. 5C–J). Inside the PFR, the proximal and intermediate regions
show clear repeated structure along the length of the flagellum
(Fig. 5C–J). The cross-patterned electron densities in Fig. 5E are
Fig.5. The proximal and intermediate regions of the PFR. (A) Low-pass filtering of the ave
doublet the closest to the PFR. (B) An isosurface of the unfiltered volume reveals struct
Dotted lines show where in the PFR the tomographic slices of C–J were extracted. (C–J) S
to reveal the repeat (highlighted in a dotted red line). Yellow lines show the orientation
what form the stalks that connect the proximal and distal PFR
region.

We conclude that the proximal and intermediate regions are
not symmetrical in flagellar cross-section, but highly structured
and repetitive along the length of the flagellum, and therefore
quite different to the distal region that is repetitive in 3D.
3.6. The distal PFR region consists of highly ordered arrangement with
orthorhombic crystal packing

We pursued a more detailed map of the repetitive unit in the
distal region of the PFR by creating a final average of the averaged
volume. The final averaged 3D map (Fig. 6A) shows the structure of
the PFR distal region with improved signal to noise ratio (compare
with Fig. 4F and H). We used electron density thresholding to ren-
der a 3D surface view of the averaged 3D map. This model reveals
two sets of parallel lines that meet at an angle of 110� (Fig. 6B),
suggesting an orthorhombic unit cell. A minimal repetitive unit
raged volume reveals clear connections from the proximal region to the microtubule
ural features of the proximal region and its connection to the intermediate region.
hows 10 nm thick slices of the averaged tomogram. (G–J) has been low-pass filtered

of the slice shown.
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can be identified in this 3D model (Fig. 6B; white outline); these
units are aligned head-to tail in the x–y planes of the tomogram.

To understand how this minimal unit forms the repetitive pat-
tern that makes up the PFR’s distal region along the z-axis, we
identified easily recognizable features in the final average (blue
and green rings; Fig. 6A).These have been marked with a sphere
that shows up in the 3D model (Fig. 6C–D). The distribution of
the spheres shows that the minimal units are stacked in z-direction
with one unit on top of its mirror image (Fig. 6D). Thus, the PFR dis-
tal region is built as an orthorhombic crystalline arrangement.

4. Discussion

The study presented here constitutes the first cryo-ET structural
investigation into the unperturbed eukaryotic flagellum of T. bru-
cei, still attached to the cell body and with all membrane systems
intact. Except for some work on sea-urchin sperm flagella (Nicastro
et al., 2005, 2006), previous cryo-EM studies of flagella have been
performed on isolated flagella where the membranes have been re-
moved by detergent extraction (Bui et al., 2008, 2009; Heuser et al.,
2009; Koyfman et al., 2011; Movassagh et al., 2010; Nicastro et al.,
2006; Pigino et al., 2011; Sui and Downing, 2006; Takazaki et al.,
2010), The same is true for a more recent study on the T. brucei
Fig.6. The repetitive unit in the distal region of the PFR is packed as an orthorhombic cry
put a green or blue sphere (shown here as rings) at a recognizable location on two 10 nm
objects similar to those marked with blue rings. (B) Isosurface generated by density th
arrows) that intersect at an angle of 110�, generating a cross pattern. By closer examinatio
in the density map. These repetitive units appeared to be oriented in a feet-to-feet and he
were located central in the repetitive unit, and clearly revealed that in the z-axis the layer
90� around the Y-axis to show the same orientation as in B). (F) A cartoon showing how
circle represents the location of the blue sphere in (D) and the dotted green ring the gr
PFR (Koyfman et al., 2011). Although frozen-hydrated specimens
and vitrified sections thereof are still not free of artifacts (e.g. com-
pression, distortions (Bouchet-Marquis and Hoenger, 2011)) vitrifi-
cation and vitrified sectioning is currently accepted as the best
possible preservation method for molecular studies of cell organ-
elles and supramolecular assemblies (down to 2–3 nm resolution)
in relatively large biological systems (Leis et al., 2009; McIntosh
et al., 2005).

Our preparations with intact membranes revealed a novel
extracellular component in the flagellar attachment zone, the sta-
ple-like structures described in Fig. 2. We suggest these structures
attach the flagellum to the cell body, since they are located exactly
where such a connection must reside: where a constant distance
between the two membranes is found. In this region, maculae
adherens have been shown in bloodstream form of T. brucei (Vick-
erman, 1969) and procyclic cells (Sherwin and Gull, 1989). How-
ever, in bloodstream cells, these structures were found 95 nm
apart (Vickerman, 1969), which differs from the distance measured
between ‘staples’ in this paper. This could be due to differences in
organization of this region between life cycle stages, so we mea-
sured the distance center–center between maculae that are easily
recognized in high pressure frozen and freeze substituted procyclic
cells (122 ± 25 nm; n = 39; Supplementary Fig. 2). Therefore, we
stal. (A) To learn how the repetitive units were oriented relative to one another we
thick slices of the final-average. Green rings were placed 12 nm above in z, marking
resholding of the PEET average reveals two sets of parallel lines (white and black
n, a repetitive unit shaped like a man holding a racket (outlined in white) was found

ad-to-head fashion. (C) When seen inside the iso-surface, the green and blue spheres
s of repetitive unit are lying head to foot. (D) The iso-surface model has been rotated
the repetitive unit creates the pattern seen in the distal region of the PFR. The blue

een sphere on the layer behind.
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conclude that the staples are a new feature of the FAZ, and unlikely
a component of the previously described maculae adherens as they
are found more frequently along the flagellar axis.

Even though these membrane spanning protein complexes with
extracellular domains are smaller than other cell-to-cell adheres
complexes such as desmosomes and tight junctions, the electron
dense center in the extracellular domain of the staple is similar
to the electron dense region where the cadherins are found in des-
mosomes (Al-Amoudi et al., 2011). However, there are no cadher-
ins, or indeed other intermediate filaments, found in the T. brucei
genome (Berriman et al., 2005), indicating that even if some struc-
tural similarities are seen, the components are different. Although
the apparent complexity of the staple structure and its size sug-
gests that this may well be a multi-protein complex, RNAi of a sin-
gle protein, Fla1 (LaCount et al., 2002), will release the flagellum
from the cell body in T. brucei, interfering with cytokinesis and
decreasing viability. Likewise, RNAi of a FAZ-filament component,
FAZ1, decreases cellular viability (Vaughan et al., 2008), revealing
the importance of this entire region.

The general shape of a frozen hydrated flagellum differs sub-
stantially from the ones prepared by chemical fixation. After chem-
ical fixation, the flagellar and cellular membranes are wrinkled,
and there is often a waist-like indentation that forms below the
axoneme and above the PFR (Gadelha et al., 2006; Portman et al.,
2009; Rocha et al., 2010). Frozen hydrated samples reveal mem-
branes that are smooth, and in cross-section the flagellum appears
perfectly oval or circular. The vitrified sample reveals an additional
volume in the flagellum. This space is near doublets 3–4 and 7–8
where intraflagellar transport occurs (Absalon et al., 2008).

Finally, our cryo-ET approach has revealed detailed 3D architec-
ture of the PFR, a structure whose contribution to kinetoplastid
motility is not fully understood. Previously, it has been suggested
that the role of the PFR is to act as an internal elastics bending
resistance, based on the impaired swimming capabilities found in
RNAi mutants of the PFR2 protein in Leishmania mexicana (Santrich
et al., 1997). In T. cruzi, (the causative agent of Chagas disease)
atomic force microscopy and transmission electron microscopy of
chemically fixed, quick frozen, freeze fractured replicas revealed
that the periodicity of the crossing filaments in the PFR changes
depending on whether the flagellum is bent or straight (Rocha
et al., 2010) indicating intrinsic flexibility in that system. Recently,
this was also found to be the case in T. brucei where different fla-
gellar bending states were examined by cryo-ET. There the authors
suggested that the PFR may act as a biological jackscrew, a force
amplifying tool (Koyfman et al., 2011). Our data (presented in
Figs. 4 and 6) originate from a bent flagellum, with angles that
coordinate well with the angles revealed in that paper attributed
to an outward bent flagellum. However, as there is no electron den-
sity forming a bridge between the two sides of the ‘jackscrew’, such
as the screw used in a car jack, we do not see how this structure
could amplify force. Therefore, it is still unclear whether a specific,
merely structural role of the PFR in flagellum motility can be added
to the role already established in compartmentalization of bio-
chemical processes within the flagellum. In this paper, we have
further revealed the extreme complexity of the PFR structure,
which provides a map into which biochemical compartments can
be identified to further understand the role of the PFR in the
kinetoplastids.

5. Conclusions

Using cryo-ET we revealed a novel structure that we assume is
involved in the attachment of the flagellum to the cell in T. brucei.
Furthermore, we have identified the macromolecular organization
of the paraflagellar rod, whose distal region consists of an ortho-
rhombic crystal.
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