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Abstract

Background: Although microarray studies have greatly contributed to recent genetic advances, lack of replication
has been a continuing concern in this area. Complex study designs have the potential to address this concern,
though they remain undervalued by investigators due to the lack of proper analysis methods. The primary
challenge in the analysis of complex microarray study data is handling the correlation structure within data while
also dealing with the combination of large number of genetic measurements and small number of subjects that
are ubiquitous even in standard microarray studies. Motivated by the lack of available methods for analysis of
repeatedly measured phenotypic or transcriptomic data, herein we develop a longitudinal linear combination test
(LLCT).

Results: LLCT is a two-step method to analyze multiple longitudinal phenotypes when there is high dimensionality
in response and/or explanatory variables. Alternating between calculating within-subjects and between-subjects
variations in two steps, LLCT examines if the maximum possible correlation between a linear combination of the
time trends and a linear combination of the predictors given by the gene expressions is statistically significant. A
generalization of this method can handle family-based study designs when the subjects are not independent. This
method is also applicable to time-course microarray, with the ability to identify gene sets that exhibit significantly
different expression patterns over time. Based on the results from a simulation study, LLCT outperformed its
alternative: pathway analysis via regression. LLCT was shown to be very powerful in the analysis of large gene sets
even when the sample size is small.

Conclusions: This self-contained pathway analysis method is applicable to a wide range of longitudinal genomics,
proteomics, metabolomics (OMICS) data, allows adjusting for potentially time-dependent covariates and works well
with unbalanced and incomplete data. An important potential application of this method could be time-course
linkage of OMICS, an attractive possibility for future genetic researchers.
Availability: R package of LLCT is available at: https://github.com/its-likeli-jeff/LLCT

Introduction
Longitudinal designs are fast becoming a key instrument
in genetics studies, as they advance our understanding of
disease progression and underlying biological mechan-
ism. Longitudinal studies can provide information re-
garding age of onset along with time-varying covariates
that may aid in our understanding of a complex disease.
A primary concern of these study designs is to find a
proper analysis method which deals best with the correl-
ation structure imposed by longitudinal data. Within-
subject correlation in the context of high dimensional

data cannot be addressed by traditional statistical ana-
lysis methods.
In the past two decades, there has been an increasing

interest in microarray studies which has triggered rapid
advances in microarray data analysis methods. From
2001, a considerable amount of literature has been pub-
lished on methods of Individual Gene Analysis (IGA) [1]
and Gene Set Analysis (GSA) [2–5]. Majority of these
studies have proposed enrichment methods for binary
and categorical phenotypes. Little attention has been
paid to developing the methods for other phenotypes,
especially longitudinal ones. The current paper contrib-
utes to filling this gap by proposing a longitudinal linear
combination test (LLCT).
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A frequent practice to deal with longitudinal pheno-
types in genetics studies is to simply average across the
multiple measurements. With this approach, the tem-
poral variation of the phenotype is discarded and part of
the information is lost [6]. To the best of our knowledge,
the only GSA method developed to analyze longitudinal
phenotype is the Pathway Analysis via Regression
(PAVR) method proposed by Adewale et al. [7]. This
method utilizes regression modelling to analyze binary,
multi-class, continuous, count, rate, survival and longitu-
dinal data and adjusts the results for potential covariates.
In this method, the measure of association of a specific
gene set with the phenotype is a sum of squares of Wald
statistics from regression models fitted on the phenotype
against the individual genes in the pathway of interest.
We will compare this method with LLCT and discuss its
limitations, later in this manuscript.
Our goal is to develop a statistical method which not

only tackles the limitations of available methods, but ad-
dresses challenges of complex designs in recent micro-
array studies. The main function of this method is to
recognize differentially expressed gene sets associated
with a phenotype trajectory over time. It is also applic-
able to family-based study designs when the subjects are
not independent. A generalization of this method can
handle time-course microarray studies and identify gene
sets with significantly different expression patterns over
time.
Longitudinal microarray studies may wish to consider

the trajectories of both phenotypes and gene expres-
sions. In time-course microarray studies, arrays are col-
lected repeatedly over time, allowing one to examine the
dynamic behavior of gene expressions. GSA methods for
time-course gene expressions have received more atten-
tion than GSA methods for repeated measurements of
phenotypes. These methods are exploratory in nature,
clustering genes to co-expressed groups [8]. Unfortu-
nately, this development is not sufficient to address biol-
ogists’ concerns about the association of gene
expressions trajectories with one or more specific covari-
ate(s). Many procedures have been proposed for time-
course microarray experiments to test if specific genes
exhibit different expression profiles significantly associ-
ated with covariates. ANOVA-based methods [9, 10]
and regression-based approaches are very popular in this
field. Linear Mixed Models (LMM) or Generalized Esti-
mating Equations (GEE) are more mature statistical
models accommodating the correlations between re-
peated measurements. However, they are not directly ap-
plicable, as the time-course expression data is often
collected for a large number of genes, but only for few
subjects. To deal with the high dimensionality problem,
Turner et al. [11] modeled the genes separately and then
rescaled the data using Variance Inflation Factor (VIF)

estimates to accommodate the correlation between the
genes within gene sets. LMMs were also used in the
methods developed by Hejblum et al. [12], Zhang et al.
[13], and Conesa et al. (maSigPro method) [8], but they
only work with categorical predictor variables. Our pro-
posed method, LLCT can handle both categorical and
continuous predictors.
Family-based data is another type of complex design

in microarray studies. Family-based study designs are ad-
vantageous compared to studies of unrelated subjects in
terms of lower genomic or phenotypic heterogeneity.
Also, we are more likely to detect any significant effect
when we observe multiple copies of the significant ef-
fects in a family [14]. Over the past few decades, study
designs incorporating information from related subjects
have resulted in better scientific interpretations [15].
LLCT is a GSA method. Incorporating information

about the group of genes which are linked via biological
pathways, LLCT aims to discover gene sets associated
with the phenotype trajectories. These biological path-
ways, or a-priori defined gene sets, are archived in online
databases: The Cancer Genome Atlas (TCGA) [16],
Gene Expression Omnibus (GEO) [17], Keyoto
Encyclopedia of Genes and Genomes (KEGG) [18], Bio-
Carta [18], Molecular Signature Database of the Broad
Institute [19] . Although imposing additional complexity
into the analysis, this feature of LLCT is biologically very
appealing. In contrast to IGA, GSA works based on a
biologically realistic assumption that the genes are not
independent and a cell’s function can be accomplished
by differential expression of a group of genes, even if all
of them show only weak to moderate changes [20].
LLCT is a self-contained method. Methodological re-

views on GSA emphasize the distinction between self-
contained and competitive GSA. A competitive method
employs gene permutation to test whether the associ-
ation between a gene set and the outcome is equal to
those of the other gene sets (so-called “Q1 hypothesis”
[21]). A self-contained method employs subject permu-
tation to test the equality of the two mean vectors of
gene set expressions corresponding to the two groups
(so-called “Q2 hypothesis” [21]). Since competitive
methods have been widely criticized for their inability to
take care of the correlation within gene sets, we focus
here on developing a self-contained method testing the
Q2 hypothesis.

Results
Simulation study
We present here results of our simulation study on
LLCT performance. Figure 1 shows the power of LLCT
analyzing diverse sets of data, simulated by considering
different within-gene-set and within-subject correlations,
sample and gene set sizes, and the number of repeated
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measurements. For each plot, the type I error was con-
stant at 0.05 and the simulated data were similar for all
characteristics except the one mentioned at the top of
the plot. The power was calculated at the presence of
different Β3 values, determining the effect of each gene
within specific gene set over time. The power of LLCT
increased by higher within-gene-set correlation, sample
size and gene set size (Fig. 1a-c). However, it remains
unaffected by within-subject correlation and number of
repeated measurements (Fig. 1d-e).The power of LLCT

and PAVR were compared in Fig. 2, where we let
within-gene-set correlation, sample size, gene set size,
and number of repeated measurements change. PAVR
does not distinguish between the gene effect and the
gene effect over time. Therefore, two parameters of Β1

and Β3 were set at different values (other than zero for
both) to define alternative hypotheses for this method.
However, the power of LLCT was consistent over differ-
ent values of Β1 and altered by Β3 only. For small
within-gene-set correlation values (ρ < 0.5), LLCT

Fig. 1 Calculation of the power of LLCT using simulated data generated with different within-geneest correlation (a), sample size (b), geneset size
(c), number of repeated measurements (d) and within-subject correlation (e). Type I error is set at 5%. For each plot, the simulation variables
except the one mentioned on the title varies but remains comparable among the curves
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Fig. 2 (See legend on next page.)
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significantly outperformed PAVR. However, as the
within-gene-set correlation increased, the power values
of PAVR and LLCT became closer (Fig. 2a, b, c). Com-
paring with LLCT, PAVR performed poorly when the
sample was small (Fig. 2d, e). Furthermore, different
gene set sizes did not make a considerable difference be-
tween the methods’ powers (Fig. 2f, g). LLCT exhibited a
better ability in dealing with large number of repeated
measurements over time (Fig. 2h, i).

Application 1: blood pressure
Hypertension affects more than a quarter of the world’s
adult population [22] annually and adds a significant
burden on healthcare systems. Long-term hypertension
damages heart, kidney, brain, large blood vessels and ret-
inal vessels [23] and explains about half of stroke and is-
chaemic heart diseases worldwide. Despite this high
health risk, hypertension is unknown for more than 30%
of patients, untreated for 50% of them, and uncontrolled
for 75% [24].
Blood pressure is known as a highly-heritable complex

trait [25] regulated by multiple environmental and gen-
etic factors. The importance of understanding the genet-
ics mechanism of blood pressure on identification of
therapeutic and prevention targets has been emphasized
in studies examining the variation of effectiveness of an-
tihypertensive medications on different ancestral groups
[26].
Hypertension is developed by small contributions of a

large number of genes, whose effects may be hard to de-
tect. Facing this challenge, most studies on hypertension
genetics failed to reach replication. Traditional statistical
approaches suffer from inferential limitations in genetic
studies, largely due to small sample sizes. Novel method-
ologies are being developed to address this issue.
Genetic Analysis Workshops (GAWs) are designed to

evaluate the performance of different statistical methods
applied on high density genotype. Among them,
GAW13 [27], GAW16 [28], GAW18 [29] and GAW19
[30] have focused on analysis of longitudinal datasets.
GAW19 [30], the focus of our work, is based on data
from San Antonio Family Heart Study (SAFHS), con-
ducted to investigate the genetics of cardiovascular dis-
ease in Mexican-Americans. GAW19 researchers were
divided into different teams to work on heterogeneous
statistical methods dealing with longitudinal datasets.
For analysis of gene expressions, these teams independ-
ently worked on different areas of individual or pathway
gene analysis, unrelated or family-based analysis and

joint or separated analysis of phenotypes. However, util-
izing heterogeneous statistical methods prevented them
from replicating their findings.
The subjects of SAFHS were born in a large, multi-

generational family and their stated pedigree relation-
ships were verified. The transcriptional profile data of
647 people was recorded, including 16,383 gene expres-
sion measurements, for each individual. For each subject,
systolic blood pressure (SBP), diastolic blood pressure
(DBP), hypertension status (HTN), use of antihyperten-
sive medications, and smoking status were measured at
four time points and the subjects’ sex and age were re-
corded. By applying the proposed method to this family-
based data, we detected differentially expressed gene sets
significantly associated with blood pressure trajectories
over time. We analyzed this real data set and considered
DBP, SBP, pulse pressure (PP) (defined as PP = SBP −
DBP), and hypertension (defined as blood pressure ≥
140/90 mmHg) as the outcome variables.
We first analyzed the unrelated subjects by selecting

subjects with no shared parents. In this part of analysis,
the repeatedly measured expressions of 10,072 genes for
64 subjects, belonging to 5898 gene sets were examined
by LLCT for unrelated subjects. The gene sets are de-
fined by Gene Ontology database. The size of gene sets
varied from 2 to 1417 with median of 22.
In the second part of analysis, 647 related subjects in

17 family clusters were analyzed. The size of families
varied from 21 to 62 with the median of 31. The total
number of 10,072 genes contributing in 5907 pathways
was tested by LLCT for related subjects. Table 1 shows
the characteristics of the related and unrelated subjects.
The test of association was conducted after adjustment

for either smoking status or antihypertensive medica-
tions intake. As some subjects were measured for two
times only, the method was unable to adjust for both
time-dependent covariates at the same time, unless we
restricted our subjects to those with more than 2
measurements.
LLCT was used to find the gene sets whose expres-

sions are significantly associated with the outcome(s)
and calculated 5989 p-values for testing the gene sets in
unrelated study and 5907 p-values for analysis of family-
based dataset. Table 2 shows the number of significant
gene sets in testing each outcome and each dataset sep-
arately. The pathways that were significantly associated
with both pulse pressure and linear combination of SBP
and DBP, after adjusting for antihypertensive medication
consumption, were selected and shown in Additional file

(See figure on previous page.)
Fig. 2 Comparison of the powers of LLCT method and the method of pathway analysis via regression (PAVR) proposed by Adewale et a1. using
simulated data generated with different within-geneset correlation (a, b and c); different sample size (d and e); different geneset size (f and g and h)
and different number of repeated measurements (h and i). Β1 denotes the gene effect and Β3 denotes the gene effect over time referring to eq. 7
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Table 2 The number of significant gene sets found by LLCT at different levels of confidence, testing a variety of outcomes and
datasets

Datasets Type I Error SBP DBP SBP& DBPa SBP-DBPb HTN

Adjusted for smoking status

Related Subjects 1% 30 23 20 73 65

5% 170 135 141 360 321

10% 255 278 310 434 392

Unrelated Subjects 1% 12 3 5 27 5

5% 136 39 60 389 82

10% 408 78 245 735 162

Adjusted for antihypertensive medications

Related Subjects 1% 98 13 63 127 12

5% 402 127 271 541 99

10% 413 242 390 614 159

Unrelated Subjects 1% 17 3 11 17 2

5% 142 60 86 116 22

10% 465 75 186 382 88

No Adjustment

Related Subjects 1% 18 17 14 43 54

5% 158 141 122 259 327

10% 263 273 277 386 417

Unrelated Subjects 1% 9 2 3 17 2

5% 234 37 70 273 71

10% 537 68 231 682 168
aThe multiple analysis of systolic and diastolic blood pressure. In this analysis, the outcome is a linear combination of SBP and DBP with the highest association
with the linear combinations of gene expressions
bPulse pressure which is the difference between systolic and diastolic blood pressures

Table 1 Summary information (mean (standard deviation)) of covariates and outcomes at different time points: GAW19 application,
studies of related and unrelated subjects

Age Antihypertensive
Medication

Smoking
Status

Systolic Blood Pressure
(SBP)

Diastolic Blood Pressure
(DBP)

Hypertension Status
(HTN)

Related Subjects

First visit 39.58
(16.88)

0.1 (0.3) 0.23 (0.42) 121.73 (18.98) 71.48 (9.99) 0.18 (0.39)

Second
visit

42.76
(15.93)

0.19 (0.39) 0.18 (0.39) 124.96 (19.34) 71.94 (10.01) 0.28 (0.45)

Third visit 46.34
(15.10)

0.29 (0.45) 0.2 (0.4) 125.21 (18.04) 70.73 (10.02) 0.36 (0.48)

Forth visit 50.88
(12.76)

0.43 (0.5) 0.11 (0.32) 128.24 (17.63) 77.76 (11.06) 0.52 (0.5)

Unrelated Subjects

First visit 53.84
(14.77)

0.22 (0.42) 0.25 (0.43) 130.3 (23.36) 72.96 (9.48) 0.37 (0.48)

Second
visit

58.26
(12.30)

0.36 (0.48) 0.11 (0.32) 135.01 (20.17) 72.34 (10.09) 0.59 (0.49)

Third visit 59.52
(10.85)

0.53 (0.50) 0.17 (0.38) 130.46 (19.24) 69.14 (9.74) 0.59 (0.49)

Forth visit 62.16
(9.26)

0.63 (0.49) 0.06 (0.25) 135.5 (23.44) 77.06 (15.4) 0.71 (0.46)
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2 and Additional file 3. Exposure to blood pressure
medication, compared to smoking, showed more consid-
erable effect in changing SBP and DBP trajectories and
the best model is the one adjusting for this effect.
In Additional file 2 and Additional file 3, the gene sets

were classified based on their shared ancestral categor-
ies, derived from Gene Ontology Tree. A few descendent
pathways of immune system process, cellular response
to stimulus, cell communication, cellular metabolic
process, multi-organism cellular process, multi-cellular
organism process and metabolic process has been found
to be significant in the analyses of related and unrelated
subjects. Cell differentiation, cell activation, cell cycle,
cellular component organization or biogenesis, biological
regulation, system development, localization, metabolic
process and response to stimulus are other parental clas-
ses of biological processes with significant descending
pathways in the analysis of the related dataset only. In
addition to these biological processes, few significant
pathways in major classes of molecular function and cell
components were found significant. The family-based
analysis is expected to result in more accurate findings,
as it works on the larger database.
Blood pressure is a complex phenotype that is con-

trolled by multiple biological processes, multiple molecu-
lar functions and multiple cell components. Comparing
the results of the analysis of multiple phenotypes, pulse
pressure displayed higher level of robustness and was less
affected by covariates. Also, HTN failed to reflect the
changes of SBP and DBP and mostly failed to agree with
the analysis results of other phenotypes. From a statistical
perspective, the result of HTN analysis is limited because
the information is lost by dichotomizing the continuous
variables. Also, many biological studies doubted the reli-
ability of this one-size-fits-all stratification scheme [31].
The other noteworthy finding of this study was the differ-
ence between SBP and DBP trajectories in their associ-
ation with gene expressions. There were larger number of
pathways associated with SBP compared to DBP. This un-
derlines the sensitivity of SBP, as a blood pressure meas-
urement, to gene expression alterations.
By discussing the list of significant pathways in Add-

itional file 2 and Additional file 3, insights can be gained
into the genetics of hypertension. However, we admit
that an in-depth biological interpretation of the findings
is beyond the scope of this manuscript. Below, we will
discuss some processes underlying hypertension, whose
presence was supported by more than one significant
pathway in LLCT analysis. We also provided the
prioritization score, indicating the proportion of gene
sets with smaller p-values [32], for each significant path-
way. These scores were calculated using the p-value
ranks based on LLCT analysis of bivariate SBP and DBP
after adjustment for medications.

Regulation of smooth muscle contraction by signal
transduction
Recent developments in blood pressure studies have
highlighted the importance of the regulation of vascular
smooth muscle contraction and vascular tone on the
regulation of blood pressure. Young blood vessels are
contractible and plastic, but as people age they become
synthetic and less contractible in response to proinflam-
matory stimuli, diet, or other factors [33–35].
The significant pathways of negative and positive regu-

lation of ERK1 and ERK2 cascade (PS = 0.3 and 4.3%),
negative and positive regulation of dephosphorylation
(PS = 5.3 and 5.6%), protein dephosphorylation (PS =
1.2%), actin binding (PS = 5.6%), response to camp (PS =
1.2%) may reveal some biological processes behind the
regulation of vascular smooth cell and its subsequent ef-
fect on blood pressure regulation. Previous studies have
detected significant roles of these pathways and other re-
lated pathways in regulation of vascular smooth muscle
contraction [36, 37]. Brozovich et al. [38] provided a
thorough description of these roles.

Regulation of smooth muscle contraction by epigenetic
mechanism
Epigenetic mechanism refers to heritable changes of
gene expression which are not related to the genome se-
quence [39]. These mechanisms may contribute in chan-
ging plasticity of vascular smooth muscle by either
altering the accessibility of transcription factors at DNA
regulatory regions or changing the genetic translations
[40]. Our study identified histone methylation (PS =
4.1%) as a significant pathway to alter accessibility of
transcription factors by changing chromatin packaging
of the cells. Also, significant pathways of messenger
RNA transcription (PS = 0.8%), basal transcription ma-
chinery binding (PS = 3.0%), transcription cofactor bind-
ing (PS = 1.7%) and damaged DNA binding (PS = 3.6%)
may reveal more epigenetic mechanisms causing differ-
ential transcription of smooth muscle cell.

Cell-cell Signalling: WNT signaling
Non-canonical and canonical WNT pathways (PS = 5.4
and 5.5%) were found to be associated with trajectories
of pulse pressure and multiple outcome of SBP and
DBP. Massive literature has supported the association
between WNT pathway and hypertension [41–43]. The
study of these pathways has been motivated by hetero-
geneity of hypertensive patient population in response to
antihypertensive medications. Patients with type 2 dia-
betes mellitus responded poorly to the treatment com-
pared to others.
Many Genome Wide Association Studies (GWAS)

suggest the association between hypertension and
WNT3 that encodes a canonical WNT ligand and SOX
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proteins which interact with b-catenin and modulate the
transcription of WNT-target genes [44–47]. In experi-
ments, mice infused with angiotensin II have been diag-
nosed with activated b-catenin and proliferated vascular
smooth muscle contraction. The other line of evidence
supporting this relationship is the association of neuro-
local regulation of blood pressure with interaction of in-
sulin and WNT signaling [42].

DNA damage and genomic instability
The associations between age, development of cardiovas-
cular diseases, and hypertension can be explained by
pathways related to DNA damage and repair. This result
is in agreement with our earlier observation that bio-
logical processes of intrinsic apoptotic signaling pathway
in response to DNA damage (PS = 3.2%), nucleotide ex-
cision repair (PS = 4.2%), positive regulation of DNA re-
pair (PS = 2.2%), and regulation of response to reactive
oxygen species (ROS) (PS = 4.1%)are significantly associ-
ated with blood pressure trajectory over time. Below,
there is a description of how these pathways collaborate
to develop hypertension.
DNA is damaged by exposure to exogenous and en-

dogenous agents, such as smoking and diabetes mellitus.
Aging leads to prolonged exposure, accumulation of
DNA damages, and elevated production of ROS at the
molecular level. In order to preserve genomic stability
under ROS-induced stress, multiple pathways to repair
or respond to the presence of DNA damage are
employed by the cell and their functions may overlap,
compromise or exceed the capability to repair DNA. A
defective DNA repair system leads to genomic instability
and can accelerate development of vascular problems,
such as increased blood pressure, increased vascular
stiffness, and decreased vascular relaxation [48]. Also,
multiple lines of evidence have suggested the direct or
indirect effect of increased ROS on hypertension inci-
dence, affecting blood vessels (contraction, relaxation
and growth), heart, kidney [49] and nervous system
functions [50]. This path of investigation can promote
antioxidant therapies and production of drugs enhancing
genomic integrity.

Nervous system development: pituitary development and
ventral spinal cord development
Blood pressure changes can be related to nervous system
development. In our study, we found pituitary develop-
ment (PS = 0.4%) as a significant pathway affecting the
pulse pressure and SBP&DBP trajectories. Endocrine
hypertension, a special type of hypertension, is caused by
the pituitary or adrenal gland producing too much or
not enough of the hormones [51, 52]. Secretion of Anti-
diuretic hormone (vasopressin) by pituitary gland plays
an important role in water retention in kidneys and

controlling blood pressure. Furthermore, the imbalanced
influence of the posterior and interior parts of pituitary
gland is known to increase blood pressure [53].
The other significant nervous-system-related pathway

in this study is spinal cord development (PS = 4.4%).
Higher prevalence of hypertension among patients with
spinal cord injury as a result of the interruption in the
autonomic nervous pathways supports our finding. Re-
duction in autonomic cardiovascular control of hyper-
tension explains this result [54].

Heart and blood vessel development
Our results are consistent with the significant influence
of cardiac chamber development, coronary vasculature
development (PS = 5.1%), embryonic heart tube develop-
ment (PS = 4.3%), embryonic heart tube morphogenesis
(PS = 2.8%), and blood vessel morphogenesis pathways
(PS = 1.5%) on blood pressure trajectories.
The extra load on the thin wall chamber or tube

caused by increased blood pressure is normalized by an
increase in wall thickness and/or by a reduction in
chamber/lumen diameter. More specifically, the left ven-
tricle adopts its structure in response to imposed stress
through remodelling or hypertrophy [55]. At the cellular
level, cardiac gene expressions are altered in response to
stress stimulus [56].
Overall, this study illustrated the application of LLCT

on gene expression data measured on related and unre-
lated subjects. This was the first attempt to analyze gene
sets when the blood pressure is repeatedly measured,
and the data set is clustered by families. Analysis at the
gene set level improves interpretability of findings. In-
corporating repeated measurements of outcome over
time enables us to investigate the temporal progression
of phenotype over time. These studies provide the op-
portunity to investigate genomics under an important
assumption: the effects of the genes contributing to the
underlying phenotype are persistent over time. Also, the
potential genetic and environmental covariates are better
controlled via longitudinal study design. The family-
based structure of data decreases heterogeneity leading
to more precise investigations. The previous works in
GAW19 never had these three features together. Al-
though this study is unique in its kind, our findings have
been shown to be mostly consistent with those of ex-
perimental or GWAS studies. However, we recognize
that our study may not present the best set of pathways
involved in blood pressure development because of the
following limitations. The first limitation, albeit common
among genomic studies, is that a single significant gene
may lead to the significance of the whole pathway. Sec-
ond, although we adjusted for anti-hypertensive intake
and smoking status, there are many other uncontrolled
covariates, such as diet, stress, and physical activity [57].
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Lack of availability of informative covariates, such as be-
havioral recommendations that accompany medical pre-
scriptions, has also been mentioned as a general
limitation of GAW19 studies in the summary provided
by Chiu et al. [58].

Application 2: wound healing
A mouth wound may heal up to 3 times faster than a
skin wound [59]. Researchers are interested to learn
from the differential gene activations during skin and
mouth wound healing to discover the genetic reasons
underlying the speedy oral repairs. Understanding the
genetic mechanisms involved in wound healing is critical
for promoting a fast recovery through which many infec-
tions are prevented, many lives are saved, and many
costs are decreased [60].
Several previous studies examined human and mice

samples to find the genes or gene pathways which are
differentially expressed in a mucosal cell compared to a
skin cell after wounding. They mostly agreed that the
transcriptome regulatory system leading the fast recov-
ery of mucosal wounds are activated at unwounded state
[59]. Consequently, as a mucosal cell needs to undergo a
simpler molecular recovery process compared to a skin
cell, a shorter healing time is expected.
Although previous findings contributed in better un-

derstanding of the speedy healing of mucosal tissue, we
believe that there is still much more to investigate. Aside
from the genes which are differentially expressed at the
unwounded state, the genes with the similar expression
levels before injury may exhibit differential expression
pattern over time. In this application, we took advantage
of LLCT to examine if the fast repair after oral injury is
caused by the differential trajectories of gene expression,
rather than their differential levels. We believe this ana-
lysis revealed more aspects of the undergoing transcrip-
tome regulatory system.
This application study used the mice gene expression

data collected from tongue and skin wounds of six- to
eight-week-old female Balb/c mice at 6 h, 12 h, 1 day, 3
days, 5 days, 7 days and 10 days after the injury. Chen
et al. [61] designed this experiment to explore the differ-
ences in gene expression in skin and tongue wound
healing at different states of unwounded (referred as
time 0), hemostasis (6 to 12 h), inflammation (24 h to 3
days), proliferation (5 days to 7 days) and remodeling
(10 days). In this case study, we focused exploring the
time 0 to 7 days as the remodeling state may take up to
several months and an exact length time determination
may not be possible [62]. At each time point, the total
RNA from 3 skin samples and 3 tongue samples was hy-
bridized to Affymetrix GeneChip Mouse Genome 430 v
2.0 chip. The closure time for tongue and skin wounds
were 3 and 5 days, respectively. An interested reader

may refer to Chen et al. [61] for more information re-
garding the experimental procedure.
We applied LLCT to analyze the association between

the time trajectories of gene expression and the wound
position in 247 KEGG pathways. The LLCT examined
the changing patterns of gene expressions at different
stages of hemostatic, inflammation and proliferation sep-
arately and in combination. LCT also was utilized to de-
tect the pathways with non-differential gene-set
expression level between tongue and skin wounds before
the injury.
Among 247 KEGG pathways selected, there were 95

pathways with differential expression pattern at
hemostasis stage, 125 pathways with differential expres-
sion pattern at inflammation stage and 150 pathways
with differential expression pattern at proliferation stage
(Additional file 4). Table 3 lists the 38 gene pathways
that are differentially expressed in all three stages of
hemostatis, inflammation and proliferation for different
organs of tongue and skin. The Additional file 4 provides
the analysis results for all pathways. The eight pathways
with the similar expression level at unwounded state can
be identified using the last column of Table 3 and are
plotted in Fig. 3.
Chen et al. [61] found KEGG pathways of Toll-like re-

ceptor signaling pathway and Jak-STAT signaling path-
way to be early upregulated in skin wounds while the
KEGG pathway of Cytokine-cytokine receptor inter-
action was observed to be upregulated in both organs
with larger number of genes activating in skin cell. Con-
sistently, we observed these three pathways underwent
significantly distinct expression patterns in all three
stages in association with the wound organ with a
sharper increasing trend within the first 24 h after the
skin injury. In agreement with Chen et al. [61], who re-
ported a more refined gene responses after oral wound-
ing, most of the pathways whose expression trajectories
varied significantly by the related organ have shown rela-
tively lower variation among oral samples.
There is extensive literature supporting the differential

expression patterns of the 38 pathways we listed in
Table 3, however this is beyond the scope and the length
of this manuscript. Therefore, we are mainly discussing
the pathways which were not differentially expressed at
the initial state, but they underwent distinctive expres-
sion patterns after injury.
The prioritization scores indicated in the last column

of Table 3 helps the reader evaluate the strength of
LLCT in prioritizing biologically most relevant gene
pathways.

Inflammations and immune systems
It is commonly reported that pathways related to inflam-
matory mediators, such as cytokine-cytokine receptor
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interaction and chemokine signaling pathways, and the
immune system pathways were significantly over-
expressed for skin cells [59]. The lower activation of
immune processes during mucosal wound recovery pre-
vents the chronic inflammation and decreases fibrosis
and scarring [59, 63]. Our analysis showed that the skin
and mucosal cells took differential expression patterns of
inflammatory and immune factors in different states
with a higher peak expression at 12 or 24 h after injury
for skin wound and a subsequent steeper decline by Day
7. Although all the immune system pathways were up-
regulated before wounding, the basal pathway of Fc ε RI
signaling expressed at the same level for different wound
organs (Fig. 3a). According to a study conducted on
skin-drived mast cells, the mast cells responses to Fc ε
RI - mediated simulation through secretion of mediators
like cytokines [64]. We consistently observed pattern
similarities between cytokine-cytokine receptor inter-
action and Fc ε RI signaling pathway over time in differ-
ent samples of skin and tongue. Therefore, the low level
of cytokine expression in tongue wound could be regu-
lated by the low expression of Fc ε RI signaling pathway.

Cellular death processes
Programmed cell death is required to maintain tissue
hemostasis. Apoptosis and autophagy are known as a
“programmed cell death”, which when inhibited, a

new type of cell death, necroptosis, occurs [65]. In
our study, the apoptosis, necroptosis and autophagy
were differentially regulated over different types of
skin and tongue samples. The higher upregulation of
apoptosis in skin samples during the time course of
wound healing compared to mucosal samples were
also reported by Johnson et al. [66]. This study dis-
cussed that while apoptosis occurs predominantly
through the intrinsic pathway in the healing mucosa,
it occurs predominantly through the extrinsic pathway
in skin samples [66]. In contrast to apoptosis path-
way, the necroptosis and autophagy expressions at
basal were statistically identical for both wound
organs (Fig. 3b-c). As necroptosis expression is
regulated by secretion of cytokines/chemokines, its
post-injury fluctuations resemble that of cytoki-
nes/chemokines [67]. However, Autophagy regulates
and is regulated by the inflammatory cytokine and
chemokines, and therefore, its expression values did
not reflect well the trajectories of cytokine and che-
mokine expressions [68].

Signal transduction
Having the same level of oral MAPK expression at un-
wounded state, skin cells responded immediately to the
injury through overexpression of MAPK signaling path-
way in the first day followed by a consistent decline

Fig. 3 Time-course expression patterns of gene pathways. These gene sets were expressed non-differentially at unwounded state (time 0) but
they are expressed differentially over all three stages of hemostasis (before 12 h after wounding), inflammatory (12–72 h after wounding) and
proliferation (3–7 days after wounding)
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afterwards. In contrast, the expression of this pathway in
tongue cells remained approximately unchanged after
wounding and started increasing in proliferation state
(Fig. 3d). The level of MAPK signaling pathway expression
for skin wound stayed lower than that of tongue wound in
proliferation state. This pattern also resembles the ob-
served pattern of RAS in this study (Fig. 3e). The RAS and
MAPK pathways play a critical role in regulation of cell
proliferation through a series of protein kinase cascades
and their upregulation at proliferation phase in tongue
wounds can help the wound rebuild [69].
Several evidences suggested the induction of tenascin-

C, a fibroblast marker whose expression is necessary for
accelerated wound healing [70], by several growth fac-
tors [71]. This association is regulated by neuroactive
ligand-receptor interaction [72]. Therefore, the increas-
ing expression pattern of neuroactive ligand-receptor
interaction in the tongue cells, in contrast to the plateau
and slightly decreasing pattern of that in the skin cells,
could explain the rapid oral healing (Fig. 3f).

Metabolism
Glycosaminoglycan is a major component of connective
tissue and play an important regulatory role in extracel-
lular matrix production [73]. Our observation of distinct
expression patterns of glycosaminoglycan in dermal and
mucosal wounds over different wound healing stages ac-
cords the previous finding that suggested their distinct-
ive features and quantities of glycosaminoglycan [73].
While expressed at the same level at unwounded state,
the pathway of glycosaminoglycan degradation was over-
expressed in the late hemostasis state and early inflam-
matory stage in tongue wound which helps coagulation,
inhibits enzymes and cytotoxic mediators released from
proinflammatory cells, and improves recruitment of in-
flammatory cells (Fig. 3g). The pathway of glycosamino-
glycan degradation was greatly overregulated in late
inflammatory state and over proliferation state of healing
the skin wound. The excess expression of Heparin, a
highly sulfated glycosaminoglycan, inhibits the activity of
the FGF-7, which regulates keratinocytes migration and
proliferation and therefore impedes the tissue develop-
ment process [74].

Nervous system
Distinct response of Cholinergic Synapse pathway was
observed in different wound organs. While Cholinergic
Synapse pathway of skin wound reaches its highest ex-
pression level at day 1, the expression of this pathway in
tongue tissue peaks at day 5 (Fig. 3h). In agreement, An-
derson et al. [75] observed Acetylcholinesterase, an en-
zyme located at neuromuscular and central cholinergic
synapse, to be highly expressed at day 1. They found the
important role of Acetylcholinesterase in cell migration

and fibroblast wound healing. Therefore, the increasing
trend of theexpression of Cholinergic Synapse pathway
in tongue sample by day 5 accounts for the speedy mu-
cosal repair.
Our results suggested that tissue repair is a complex

process involving multiple gene pathways. Our pattern
analysis also suggested that the mucosal wounds re-
quired a less demanding procedure to repair, character-
ized by many invariant time-course expressions patterns,
in comparison with the dermal wounds. We identified
the important role of Fc ε RI signaling pathway in regu-
lating the inflammatory mediators and the critical roles
of neuroactive ligand-receptor interaction, cholinergic
synapse and MAPK and RAS pathways in promoting the
different healing phases. We also recognized the destruc-
tive effect of excess expression of glycosaminoglycan
degradation in proliferation phase. All these findings im-
prove our understanding of the molecular pathways and
may contribute in devising new strategies for successful
wounds treatment. We believe that a study of the time-
course correlations between different gene pathways
would also help advancing the grasp of the underlying
transcriptome system.

Discussion
The interest in temporal patterns of change in the pa-
tients’ conditions is becoming increasingly popular, as it
aids in the explanation of complex biological systems.
Longitudinal studies provide the possibility to study in-
dividual development of an outcome over time, and in
doing so advance our understanding of disease progres-
sion or phenotype trajectory. Through longitudinal stud-
ies, the development of other variables can also be
examined as determinants of the outcome trajectories.
Therefore, incorporating longitudinal designs in genetic
studies enable examination of genetic variants that affect
phenotypes over time [58, 76]. Moreover, longitudinal
studies are more reliable as the subjects are closely
followed up with and the onset of the events is precisely
observed [58]. Obviously, there is higher certainty be-
hind the existence of an effect that is detected to be con-
tinuously significant over time in the presence of many
uncontrolled or unmeasured time-dependent covariates
than an effect that is observed only once. In other words,
multiple measurements and significant trajectory over
time provide more reliable evidence than what a single
time point measurement and a cross-sectional effect can
provide. Adding family structure to the study design can
improve this reliability by detecting a significant genetic
effect in a family rather than simply an individual.
The main purpose of the current study was to develop

a statistical method for high-dimensional data able to
analyze repeatedly-measured outcomes and covariates.
This method offers many interesting flexibilities to the
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analysis. It allows adjusting for potentially time-
dependent covariates. Since genetics and environment
always interact to shape the phenotype, the result of
genetics studies alone may be biased when environmen-
tal factors are not taken into account. A very common
drawback of many available GSA methods is the lack of
ability to accommodate between-gene correlation, which
our proposed LLCT addresses. In addition, LLCT is a
self-contained method proven to be powerful and com-
putationally efficient compared to existing methods. Be-
ing a self-contained method, LLCT is also expected to
result in high reproducibility, high power and high ro-
bustness to the sample heterogeneity, as applied on
RNA-seq data [77]. This method can be applied to dif-
ferent classes of phenotypes, such as continuous, binary
or categorical phenotype if an appropriate model is de-
fined in the first stage. Furthermore, it is applicable to
both unbalanced and incomplete data, which is import-
ant in longitudinal studies as some subjects are often
lost to follow up. The evidence from the simulation
study suggests higher power of LLCT in comparison to
existing method, PAVR [7]. Aside from higher power of
LLCT, there are two critical features that discriminate
these two methods. First, LLCT is computationally far
more efficient. Compared to LLCT, the run time is
about 70 times longer for PAVR. For the same reason,
we could not design a large simulation for evaluation of
PAVR. Second, PAVR is unable to test the interaction of
time and covariate over time and it only tests the covari-
ate effect. The interaction of time and covariate indicates
if the covariate’s effect varies over time; which is known
to be the most critical parameter of longitudinal analysis.
Without considering this parameter, the longitudinal
study resembles a cross-sectional study that takes advan-
tage of multiple measurements for gaining higher accur-
acy of measurements. Our simulation study also showed
that the power, and therefore the required sample size,
is dependent on the gene set size and the within-gene-
set correlation and it is independent on the number of
repeated measurements and within-subjects correlation.
Moreover, Significance of a set exhibiting lower
between-genes correlations can be achieved with a
smaller sample size..
Despite the strengths mentioned above, there are a

few limitations for this method that need to be consid-
ered. Our method for dealing with longitudinal pheno-
type is unable to adjust for time-independent covariates.
Including time-independent covariates in the second
step of the method may result in misleading findings. As
a self-contained method, LLCT would identify a set as
significant even if a small number of genes, or even if
one single gene is associated with the phenotype. One
way to address this limitation is to consider reducing the
significant sets to their core members. In time-course

microarray data analysis, this method can identify the
gene sets which are differentially expressed over time in
association with a set of covariates. However, our
method is unable to distinguish the individual covariates
responsible for this difference, unless we include one co-
variate at a time. Resembling the mixed effect models,
LLCT assumes the expressions of the genes within a
geneset can be characterized by the same type of model.
If the study includes the genes with differential patterns
of expression which could not be characterized by a sin-
gle type of model, spline models should be used. The re-
searcher may also consider analysis of the expression
trajectory in the time subperiods.
LLCT was applied to GAW19 data. As noted earlier,

GAW19 has been analyzed before. However, significant
differences across various methods used prevented a
meaningful comparison of the results. There are four
pedigree-based GAW19 studies exploring the association
between phenotype and gene expressions via different
methods: linear mixed models, nonparametric weighted
U statistics, structural equation modeling, Bayesian uni-
fied frameworks, and multiple regression. However, their
results cannot be compared with ours because of the fol-
lowing differences in the analytical approaches: (1) They
incorporated the information of rare variants into their
analysis while this study examined the transcriptome
variations only; (2) In contrast to our GSA approach,
they did not include the priori information of gene path-
ways; (3) They did not take the longitudinal pattern of
the phenotype into the account. There are seven
GAW19 pathway-based analysis, three of which explored
gene expression data [78]. There are three GAW19 stud-
ies with longitudinal analytical approaches, all of them
examining genetic variants [58]. The longitudinal studies
used GEE, latent class growth modeling (LCGM), LMM,
and variance components (VC) in their analysis. Among
all these studies, the study of Ziyatdinov et al., which is a
gene ontology pathway and family-based enrichment
analysis of gene-expression data using the mixed effect
models, came closest to the current study, but it is un-
published at the time of submission of this work.
GAW19 studies acknowledged higher power of longitu-
dinal methods in detecting genetic effects, decreased
trait heterogeneity and smaller standard error of effect
estimates [58]. Also, they identified unique genetic-
related trajectories of disease progression missed by the
previous studies.
We demonstrated the applicability of LLCT on ana-

lysis of time-course microarray data in the second appli-
cation. Contrary to the first application, LLCT dealt with
a binary phenotype collected from mice samples in this
application. The data was previously analyzed using
ANOVA for comparing the expression level at each
post-wounding time with that of unwounded state. In
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order to gain some understanding of the underlying ex-
pression dynamics, the temporal trajectories of the genes
which were differentially expressed were K-means clus-
tered [61]. The inherent assumptions of this clustering
method limit the ability to describe the differential dy-
namic behaviour of the genes and, also, do not provide a
test of time-course diversities.
Although we found many phenotype-relevant gene

sets in our application, that are supported by previous
studies, a future study comparing the sensitivity and spe-
cificity of the LLCT applied to a large number of longi-
tudinal studies is needed.

Conclusion
The proposed LLCT method can be used for analysis of
complex genetic studies and may result in better repro-
ducibility across studies. LLCT can be applied to a wide
range of longitudinal genomics, transcriptomics, proteo-
mics, metabolomics and microbiota data. A very import-
ant application of LLCT is to link omics over time - an
approach that has been emphasized by recent studies for
gaining better understanding of complex biological
process. Linkage of omics over time requires a method
that can handle large scale outcomes and predictors
datasets, simultaneously, which cannot be accommo-
dated by most methods. Our method has strong poten-
tial to contribute to the progression of genetic science.

Methods
Longitudinal linear combination test (LLCT)
We propose a two-step method to analyze multiple lon-
gitudinal phenotypes when there is high dimensionality
in either the response or explanatory variables. In the
first step, within-subject variation is analyzed. The chan-
ging trend of outcomes over time is estimated using an
appropriate model for the structure and type of the data.
In the second step, LCT [79] is applied to analyze the
between-subject variation. In this step, LCT is employed
to examine if the maximum possible correlation between
a linear combination of the time trends and a linear
combination of the predictors given by the gene expres-
sions is statistically significant. We generalized our
method to accommodate data generated by two complex
study designs: time-course microarray studies and
family-based studies. A time-course study measures gene
expression repeatedly over time and is designed to find
the correlation between time trajectory of gene-
expressions and covariates. A family-based design
collects the information from family members and ex-
amines the association between longitudinal phenotypes
and gene expressions, while taking care of the correl-
ation between subjects within each family.
We borrowed the main idea of this method from

mixed effect modelling wherein the variation in the

longitudinal phenotype is modelled taking two steps:
first step, the within-subject variation is modelled; in the
second step, the between-subject variation is modeled
using the coefficients estimated in the first step [80].
Roughly the same strategy is also practiced by Conesa
et al. [8] in their microarray significant profiles (maSig-
Pro) method.
The proposed method is designed to model continu-

ous outcome variables. However, this method can be
generalized to work with other type of data, such as bin-
ary or categorical response variable, using an appropriate
link function in the first step. This method is self-
contained, designed to accommodate the correlations
between genes in the gene sets, works well in the pres-
ence of missing data at random and is efficient to work
with high dimensional data. It can also adjust for time-
variant covariates. Next, we describe the two steps of the
method, followed by two generalizations.

Analysis of Within-Subject Variation (Step 1)
Consider a microarray study on I subjects where longitu-
dinal phenotypes of size M is measured for ni times for
the i th subject, i = 1, …, I. Let Ymij be the j th measure-
ment (j = 1, …, ni) of the m th phenotype (m = 1,…,M)

of the i th subject that happened at time tij and let Ymi

¼ ðYmi1;…;YminiÞT be the vector of ni measurements of

the m th phenotype for the i th subject (
PI

i¼1 ni ¼ n:Þ
and Yi = (Y1i,…, YMi) be the matrix of phenotype mea-
surements of the i th subject. We also consider that the
study measured the expressions of a predefined set of P
genes for the i th subject, Gi = (Gi1,…,GiP)

T, i = 1, …, I;
and we define the vector of the expressions of gene p for
I subjects as Gp = (G1p,…,GIp)

T, p = 1, …, P. We are in-
terested to test if there is a significant linear relationship
between the gene set G and the longitudinal pheno-
type Y. The null hypothesis is that the changes in Y over
time are not dependent on the expressions of the genes
in the predefined gene set G.
In order to analyze within-subject correlation, we de-

fine the regression equation in matrix notation as below:

Ymi ¼ Ziβmi þWiγmi þ εmi ð1Þ

In this equation, Zi is (ni ×Q) matrix of Q potential
time variables and it usually includes ti ¼ ðti1;…:; tiniÞ
and different polynomial functions of ti (e.g. t2i ; t

3
i ) if

required. Wi is (ni ×Q ′ ) matrix of Q′ potential time-
variant covariates, and γmi(Q ′ × 1) represents their
corresponding coefficients. Also, βmi denotes a (Q × 1)
vector of coefficients for each specific phenotype (m)
with elements of βmqi. We define βi a (Q ×M) matrix of
regression coefficients generated by column-wise bind-
ing of βmi s: βi = [β1i|β2i|…| βMi].
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Analysis of Between-Subject Variation (Step 2)
In our method, we used Linear Combination Test (LCT)
[79] to detect significant gene sets associated with differ-
ent trajectories of longitudinal phenotypes. We reason
that a lack of gene set related variability in the subject-
specific regression coefficient estimated in the first step,
leads to no relationship between the gene set expres-
sions and the changing trend of M longitudinal pheno-
types. In other words, there is no linear combination of

the columns of β ¼ ½βT1 j…jβTI �
T

associated to any linear
combination of gene set expression measurements. The
null hypothesis is that there is no association between
any of the linear combination of G1, …, GP with any lin-
ear combination of columns of β.
Let G be a ((I ×Q) × (P)) matrix obtained by vertically

merging the vectors of the gene expressions, Gp s, dupli-
cating the rows for Q times. Then, let

Z G;Αð Þ ¼

G11 … G1P

⋮ ⋱ ⋮
G11 … G1P
G21 … G2P

⋮ ⋱ ⋮
G21 … G2P
⋮ ⋮ ⋮

GI1 … GIP

GI1 … GIP

2
666666666664

3
777777777775

I:Qð Þ� Pð Þ

�
α1
α2
⋮
αP

2
64

3
75

Pð Þ�1

ð2Þ

be a linear combination of the columns of matrix G,
and,

Z Β; Γð Þ ¼ β I:Qð Þ�M �
γ1
γ2
⋮
γM

2
64

3
75

Mð Þ�1

ð3Þ

a linear combination of columns of β. The null hy-
pothesis can be written as an optimization problem,
more precisely, identifying A and B to maximize the cor-
relation of Z(G,Α) and (Β, Γ), and then test if this max-
imum correlation is significant or not.
Let ΣG, G = cov (G, G) be the covariance matrix of G;

and similarly, let ΣΒ, Β = cov (Β, Β) be the covariance
matrix of Β and ΣG, Β = cov (G, Β) be the covariance
matrix between G and Β. This leads to the proposed test
statistic:

T2 ¼ maxA;B ρ Z G;Αð Þ;Z Β; Γð Þð Þj j2

¼ maxA;B
ΑTΣΒ;GΓ
� �2

ΑTΣG;GΑ:ΓTΣΒ;ΒΓ
ð4Þ

The problem of singularity of ΣΒ, Β and ΣG, G emerges
when the dimensions of Β or G are large. This is very
likely to happen as we usually measure the expressions
of a large number of gene sets. A possible remedy for
this problem is to utilize the shrinkage method [81].
Therefore, we need to replace the covariance matrices

with their shrinkage versions, Σ�
Β;Β and Σ�

G;G . T2∗, the
shrinkage version of T2, is defined as below:

T2� ¼ maxA;B
ΑTΣΒ;GΓ
� �2

ΑT Σ�
G;GΑ:Γ

TΣ�
Β;ΒΓ

ð5Þ

We use the permutation method to calculate the p-
value corresponding to this statistic. When the permuta-
tion method is employed, it would be computationally
inefficient to maximize the right-hand side of the equa-
tion above. The remedy could be using two groups of
normalized orthogonal bases, instead of using the ori-
ginal observation vectors G and Β. We decomposed the
two shrinkage covariance matrices using eigenvalues (
Σ�
G;G ¼ ΨDGΨT and Σ�

Β;Β ¼ ΩDΒΩT ) to obtain two

groups of orthogonal basis vectors ~G and ~Β . Thus, the
test statistic becomes:

T2� ¼ max
η;θ

ηTΣ~G;~Βθ
� �2

ηk k22: θk k22
ð6Þ

where η ¼ D1=2
G ΨTΑ and θ ¼ D1=2

Β ΩTΓ. Optimizing this
expression will be straightforward if we first optimize η
given θ and then optimizing θ at the next step. The
value of T2∗ is equal to the largest eigenvalue of ΣT

~G; ~Β
Σ~G; ~Β (or ΣT

~Β; ~G
Σ~Β; ~G).

The sample permutation method is employed to calcu-
late p-values. The sample permutation changes neither
the correlation structure within gene sets nor the correl-
ation structure within phenotype. This feature brings a
considerable computational advantage to the analysis be-
cause there is no need to repeat eigenvalue decompos-
ition for each permuted version of the dataset.
The LLCT method can also be generalized to analyze

(1) family-based data in which the subjects are nested
within families and expected to share many similarities;
and, (2) time-course microarray data in which the gene
expressions are repeatedly measured over time. These
two generalizations are expanded in Additional file 1.

Simulation study design
A simulation study was designed to evaluate the per-
formance of LLCT method and compare its performance
with PAVR proposed by Adewale et al. [7]. Several simu-
lations were generated with varying number of subjects,
gene set sizes, number of repeated measurements,
within-gene set correlation, within-subject correlation
and gene set effect sizes. The number of subjects and
gene set size changed from 30,50 to 100.
For each gene set, gene expressions are simulated from

MVN(ΜG,ΣG) where ΜG is the mean vector of gene ex-
pressions, taken from a truncated exponential distribution
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with λ = 0.7. ΣG is the variance-covariance matrix of genes
within a gene set. The variances of the genes were set at
σ2G ¼ 0:5 and the correlations between genes were set at
ρG=.0.1, 0.5 or 0.7. The effect of within-gene set correl-
ation on the performance of the method was evaluated.
For each gene set, the longitudinal data was simulated

based on the following model:

yij ¼ Β1 � GSi þ Β2 � ti þ Β3 � GSi � ti þ b0i þ b1i � ti þ εij

ð7Þ

Where yij denotes the j th observation of the i th sub-
ject; GSi is the vector of gene expression measurements
for i th subject; Β1 is the vector of fixed effects of the
genes on the longitudinal phenotype, with values of 0.05,
0.1 and 0.2 for all the subjects; ti is the measurement
time vector of the i th subject varying from one subject
to another. The length of ti is set at 3,4 and 5 in different
simulations, but the time points of measurement were
uniformly distributed between 1 and 10. Β2 is the vector
of fixed effect of time on phenotype, set at 0.3 for all the
subjects. Β3 is the vector of fixed effects of interactions
of gene expressions at time and was set at 0.25,0.05 and
0.1 for all subjects in different simulations. b0i~N(0, 1)
and b1i~N(0, 2) are the random constant and the ran-
dom effect of subject i, respectively and are assumed to
be independent among subjects. εij is the error term de-
fining the variation of the j th observation of subject i. εij
is assumed to be correlated within subjects. In this simu-
lation, the correlation structure of εij is autoregressive
and we assumed: corðεk ; εlÞ ¼ ρk−lε where ρε = 0.2,
0.5 or 0.7.
For LLCT simulation, we simulated 1000 gene sets in

each run and each p-value was calculated based on 1000
permutations. In simulations of PAVR, the results are
based on 50 permutations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3221-7.

Additional file 1. The methodology descriptions of the generalizations
of LLCT methods for analysis of: (1) Family-based data (2) Time-course
microarray data.

Additional file 2. Results of LLCT examining the differential expressions
of different gene sets in association with various measures of blood
pressure for UNRELATED subjects in GAW19 dataset.

Additional file 3. Results of LLCT examining the differential expressions
of different gene sets in association with various measures of blood
pressure for RELATED subjects in GAW19 dataset.

Additional file 4. Results of LLCT analysis examining the differential
time-course expressions of different gene sets in association with the
position of the wound (skin or tongue).
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