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Abstract

Motivation: Over the past years, significant resources have been invested into formalizing biomedical ontologies.
Formal axioms in ontologies have been developed and used to detect and ensure ontology consistency, find unsatis-
fiable classes, improve interoperability, guide ontology extension through the application of axiom-based design
patterns and encode domain background knowledge. The domain knowledge of biomedical ontologies may have
also the potential to provide background knowledge for machine learning and predictive modelling.

Results: We use ontology-based machine learning methods to evaluate the contribution of formal axioms and ontol-
ogy meta-data to the prediction of protein–protein interactions and gene–disease associations. We find that the
background knowledge provided by the Gene Ontology and other ontologies significantly improves the perform-
ance of ontology-based prediction models through provision of domain-specific background knowledge.
Furthermore, we find that the labels, synonyms and definitions in ontologies can also provide background know-
ledge that may be exploited for prediction. The axioms and meta-data of different ontologies contribute to improv-
ing data analysis in a context-specific manner. Our results have implications on the further development of formal
knowledge bases and ontologies in the life sciences, in particular as machine learning methods are more frequently
being applied. Our findings motivate the need for further development, and the systematic, application-driven evalu-
ation and improvement, of formal axioms in ontologies.
Availability and implementation: https://github.com/bio-ontology-research-group/tsoe.
Contact: xin.gao@kaust.edu.sa or robert.hoehndorf@kaust.edu.sa
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical ontologies are widely used to formally represent the
classes and relations within a domain and to provide a structured,
controlled vocabulary for the annotations of biological entities
(Smith et al., 2007). Over the past years, significant efforts have
been made to enrich ontologies by incorporating formalized back-
ground knowledge as well as meta-data that improve accessibility
and utility of the ontologies (Mungall et al., 2011; Smith et al.,
2007). Incorporation of formal axioms contributes to detecting
whether ontologies are consistent (Smith and Brochhausen, 2010;
Smith et al., 2003; Stevens et al., 2003), enables automated reason-
ing and expressive queries (da Silva et al., 2017; Hoehndorf et al.,
2015a; Jupp et al., 2012), facilitates connecting and integrating
ontologies of different domains through the application of ontology
design patterns (Hoehndorf et al., 2010; Osumi-Sutherland et al.,
2017) and can be used to guide ontology development (Alghamdi
et al., 2019; Köhler et al., 2013).

While axioms are mainly exploited through automated tools and
methods, ontologies also contain labels, synonyms and definitions
(Hoehndorf et al., 2015b); improving the human-accessible compo-
nents of ontologies has also been a major focus of ontology develop-
ment (Köhler et al., 2006); for example, including ‘good’ natural
language definitions and adequate labels is a requirement for bio-
medical ontologies in the Open Biomedical Ontologies Foundry
(Smith et al., 2007), an initiative to collaboratively develop a set of
reference ontologies in the biomedical domains.

The amount of information contained in ontologies, and the rig-
our with which this information has been created, verified and rep-
resented, may also improve domain-specific data analysis through
the provision of background knowledge (Garcez and Lamb, 2004).
Domain-specific background knowledge can limit the solution space
in optimization and search problems (Besold et al., 2017; Garcez
and Lamb, 2004; Garcez et al., 2015) and therefore allow finding
solutions faster or finding better, more generalized solutions.
Ontologies and formalized biological knowledge could therefore
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crucially improve machine learning and applications of Artificial
Intelligence in biology.

The Gene Ontology (GO) (Ashburner et al., 2000) is a biomed-
ical ontology that formally represents several aspects of biological
systems, in particular the molecular functions that gene products
may have, the biological processes they may be involved in, and the
cellular components in which they are located (Huntley et al.,
2014b). The GO has been extensively used to provide annotations
to gene products through a combination of manual curation of lit-
erature and electronic assignments created using algorithms based
on sequence similarity, keywords, domain information and others
(Huntley et al., 2014a). Databases such as the GO annotation
(GOA) database (Huntley et al., 2015) use GO to annotate more
than 50 million proteins.

Due to its central role and importance in molecular biology, sig-
nificant resources have been invested in the development of GO.
Over the years, substantial efforts have been made to improve the
coverage of GO through the addition of new classes (Consortium,
2014, 2016). In addition to new classes, GO has also been extended
through axioms that characterize the intended meaning of a class
formally (Mungall et al., 2011). Specifically, GO now includes links
between GO classes and classes in other biomedical ontologies
(Bada and Hunter, 2008) in an extended version of GO (which we
refer to as ‘GO-Plus’) (Consortium, 2014, 2016). These axioms are
particularly useful in keeping GO complete and logically consistent
with other ontologies as well as in guiding ontology development
(Bodenreider and Burgun, 2005; Consortium, 2016; Johnson et al.,
2006; Mungall et al., 2011). There are now more than 90 000 inter-
ontology axioms in GO-Plus that weave GO together with several
other ontologies in the biomedical domain.

While these axioms have primarily been developed to tackle the
problem of continuously developing GO while maintaining consist-
ency (within GO and other ontologies) as well as to maintain bio-
logical accuracy, they have also the potential to significantly
improve GO-based data analysis by introducing new associations
between classes that are not present in GO but arise through infor-
mation in other, related ontologies. For example, the GO classes
Histidine catabolic process to glutamate and formamide (GO:
0019556) and Formamide metabolic process (GO: 0043606) are
not directly (or closely) related in the GO hierarchy but both are
related to the ChEBI (Chemical Entities of Biological Interest) class
Formamide (ChEBI: 16397) through axioms formulated in the
Web Ontology Language (OWL) (Grau et al., 2008), a formal lan-
guage based on Description Logics (Horrocks et al., 2006). If a data
analysis method can utilize the axioms in this formal language, we
expect improved performance results when applied to different
domains.

A task or method that explicitly relies on the axioms or the
meta-data in ontologies can be used not only to improve data ana-
lysis but also to evaluate the ‘quality’ of axioms in ontologies in con-
tributing to such an analysis task (Hoehndorf et al., 2013).
Specifically, such a method would enable determining whether axi-
oms and formalized knowledge contribute to biomedical data ana-
lysis, and allow evaluating and comparing how much they
contribute to particular tasks.

Recently, several machine learning methods became available
that make it possible to utilize different components of ontologies—
axioms, labels, definitions and other kinds of meta-data—in ma-
chine learning tasks without the need for manual extraction of fea-
tures (which may introduce a bias). Here, we use recently developed
techniques, Onto2Vec (Smaili et al., 2018a), OPA2Vec (Smaili
et al., 2018b) and Node2Vec (Grover and Leskovec, 2016), to pre-
dict protein interactions based on functional information and gene–
disease associations based on phenotypes. We evaluate the effect of
the axioms that have been added to the GO as well as the effect of
adding the axioms of additional domain ontologies as the back-
ground knowledge. We demonstrate that the formal axioms that
have been created for GO and other ontologies improve predictive
data analysis by providing background knowledge about biological
domains. Our approach is also applicable to evaluation of meta-
data such as labels and definitions and their contribution to

predictive analysis of biomedical data. We find that labels and defi-
nitions in ontologies can fill gaps in domain knowledge that are not
covered by the axioms and further improve prediction; however, the
labels and definitions have also the potential to add noise or bias to
prediction results. Finally, through our analysis we also improve the
performance of predicting protein interactions and gene–disease
associations through ontologies. Overall, our results demonstrate
the value that ontologies can provide to biomedical data analysis
not merely through their provision of controlled vocabularies but
also because they are richly formalized knowledge bases and sources
of definitions of domain entities.

2 Materials and methods

2.1 Ontologies
2.1.1 GO and GO-Plus

We downloaded the GO (Ashburner et al., 2000) in OWL (Grau
et al., 2008) format from http://www.geneontology.org/ontology/
on April 14, 2018. This version of GO contains 107 762 logical axi-
oms. We also downloaded the GO protein annotations from the
UniProt-GOA website (http://www.ebi.ac.uk/GOA) on December 2,
2018. All associations with evidence code IEA were filtered, which
results in a total of 3 474 539 associations for 749 938 unique
proteins.

GO-Plus (downloaded from http://purl.obolibrary.org/obo/go/
extensions/go-plus.owl) is an extension of GO that contains, in add-
ition to all the logical axioms of GO, additional inter-ontology axi-
oms that describe relationships between GO classes and other
external biomedical ontologies, in particular: ChEBI ontology
(Degtyarenko et al., 2007), PO (The Plant Ontology) (Jaiswal et al.,
2005), CL (The Cell Ontology) (Bard et al., 2005), PATO
(Phenotype and Trait Ontology) (Gkoutos et al., 2004, 2017), the
Uberon ontology (Mungall et al., 2012), SO (The Sequence
Ontology) (Eilbeck et al., 2005), FAO (Fungal gross anatomy), OBA
(Ontology of Biological Attributes), NCBITaxon (NCBI organismal
classification), CARO (Common Anatomy Reference Ontology)
(Haendel et al., 2008) and PR (Protein Ontology) (Natale et al.,
2011). A detailed description of each one of these ontologies is pro-
vided in Supplementary Material. In addition, Supplementary Table
S2 summarizes the number of axioms in GO-Plus describing rela-
tions to each of these ontologies and shows an example of such axi-
oms for each ontology.

2.1.2 PhenomeNET ontology

We downloaded the PhenomeNET ontology (Hoehndorf et al.,
2011; Rodrı́guez-Garcı́a et al., 2017) in OWL format from the
AberOWL repository http://aber-owl.net (Hoehndorf et al., 2015a)
on February 21, 2018. PhenomeNET is a cross-species phenotype
ontology that combines phenotype ontologies, anatomy ontologies,
GO and several other ontologies in a formal manner (Hoehndorf
et al., 2011).

2.2 Evaluation datasets
2.2.1 Protein–protein interactions

To evaluate our work, we predict protein–protein interaction (PPI)
on three different organisms: human, yeast and Arabidopsis thali-
ana. The datasets for all three organisms were obtained from the
STRING database (Szklarczyk et al., 2017). The human dataset con-
tains 19 577 proteins and 11 353 057 interactions, the yeast dataset
contains 6392 proteins and 2 007 135 interactions, while the
Arabidopsis dataset contains 10 282 070 interactions for 13 261
proteins.

2.2.2 Gene–disease associations

To further evaluate our method, we predict gene–disease associa-
tions. The first dataset used in this experiment is the mouse pheno-
type annotations obtained from the Mouse Genome Informatics
(MGI) database (Smith and Eppig, 2015) on February 21, 2018 with

2230 F.Z.Smaili et al.

http://www.geneontology.org/ontology/
http://www.ebi.ac.uk/GOA
http://purl.obolibrary.org/obo/go/extensions/go-plus.owl
http://purl.obolibrary.org/obo/go/extensions/go-plus.owl
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz920#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz920#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz920#supplementary-data
http://aber-owl.net


a total of 302 013 unique mouse phenotype annotations. The second
dataset used for this experiment is the disease to human phenotype
annotations obtained on February 21, 2018 from the Human
Phenotype Ontology (HPO) database (Robinson et al., 2008). We
limited our analysis to the OMIM diseases only which resulted in a
total of 78 208 unique disease-phenotype associations. To validate
our prediction, we used the MGI_DO.rpt file from the MGI data-
base to obtain 9506 mouse gene–OMIM disease associations and
13 854 human gene–OMIM disease associations. To map mouse
genes to human genes we used the HMD_HumanPhenotype.rpt
file from the MGI database.

2.3 Analysis algorithms
Our analysis is based on prediction results obtained using embed-
dings of biological entities (proteins, genes, diseases) obtained from
ontologies using two tools: Onto2Vec (Smaili et al., 2018a) and
OPA2Vec (Smaili et al., 2018b). The obtained embeddings are then
trained using a neural network (NN) to make predictions.

2.3.1 Onto2Vec

Onto2Vec (Smaili et al., 2018a) is a method that uses ontologies to
obtain embeddings of ontology classes and the entities they anno-
tate. Onto2Vec uses two main information sources: First, it used all
logical axioms describing the structure of an ontology including
both asserted axioms of an ontology as well as inferred axioms using
a semantic reasoner. Second, it uses the known ontology-based asso-
ciations of biological entities (e.g. protein–GO associations). These
two pieces of information form a corpus of text used to train
Word2Vec (Mikolov et al., 2013a, b) and obtain the embeddings.

2.3.2 OPA2Vec

OPA2Vec (Smaili et al., 2018b) is also a tool used to obtain embed-
dings of biological entities from ontologies. In addition to using lo-
gical axioms, OPA2Vec also uses annotation property axioms from
the ontology meta-data. These annotation axioms use natural lan-
guage to describe different properties of the ontology classes (labels,
descriptions, synonyms, etc.) and they, therefore, form a rich corpus
of text for Word2Vec. To provide the Word2Vec model with some
background knowledge on the ontology concepts described by the
annotation properties, OPA2Vec pre-trains the model on a corpus
of biomedical text (PubMed by default). Entity-class annotations are
also used an additional source of information to produce the
ontology-based embeddings of biological entities.

2.3.3 Node2Vec

We use Node2Vec (Grover and Leskovec, 2016) to obtain entity
embeddings from the biomedical ontologies and their annotations.
Node2Vec is a model that learns embeddings of nodes in a graph by
applying the Word2Vec model on sequences of nodes. Here, we
apply Node2Vec on the ontology graph consisting of subclass,
equivalence and disjointness axioms as well as all types of axioms
involving exactly two classes. We use relational patterns
(Hoehndorf et al., 2010) to map some axioms to graph edges: we
identify all axioms of the type X SubClassOf: R some Y and X
EquivalentTo: R some Y (with X, Y and R being variables) and
for each triple (X, Y, R) we assign an edge labelled R from X to Y
(bidirectional in the case of EquivalentTo:). In addition to these
relations, we also represent the annotated entities as a direct edge.
The detailed parameters used to execute the Node2Vec algorithm
are shown in Supplementary Table S2 and the general workflow of
how we used Node2Vec is shown in Supplementary Figure S3.

2.4 Neural network training and optimization
To optimize our prediction models (PPI and gene–disease associa-
tions predictions), we train a NN using the obtained embeddings
from Onto2Vec, OPA2Vec and Node2Vec. Limited grid search has
been performed to select a suitable NN for our predictions based on
suggested guidelines (Hunter et al., 2012). The chosen NN is a feed-
forward network with two hidden layers of 800 and 200 neurons,

respectively. The NN is optimized using binary cross entropy as the
loss function. We train our model on 70% of our data and test on
the remaining 30% without performing cross-validation.

3 Results

3.1 Contribution of axioms in PPI prediction
We follow a strategy for the external evaluation of ontologies
(Hoehndorf et al., 2013) and apply the method to the task of pre-
dicting interactions between proteins and gene–disease associations.
Specifically, we test the impact of ontology axioms and ontology
meta-data on machine learning applications that rely on ontologies.
For this purpose, we use a basic version of the GO (Ashburner et al.,
2000) as the baseline, implement an ontology-based prediction
workflow and evaluate the results. We then compare the perform-
ance of ontology-based predictive analysis to the use of GO-Plus in
the same workflow and evaluate the results on the same evaluation
set. GO-Plus is GO with a large set of formal axioms added that de-
fine and constrain GO classes and connect them to classes that are
defined in other ontologies (Mungall et al., 2011). Furthermore, we
add additional background knowledge of the form of the complete
set of axioms in biomedical ontologies that are explicitly used in the
GO-Plus axioms, and evaluate their impact on predictive perform-
ance. Throughout these experiments, we keep training and testing
data (comprised protein identifiers with their associated GO classes)
fixed, changing only the amount of background information avail-
able through GO.

Since GO-Plus combines all axioms existing in GO with add-
itional axioms that describe relations to other biomedical ontolo-
gies, we expect GO-Plus in combination with the axioms and the
meta-data of other ontologies to improve predictive performance.
We first apply GO and GO-Plus to the task of predicting PPIs, and
to account for possible differences between taxa in predicting PPIs,
we evaluate our hypothesis on human, yeast and Arabidopsis pro-
teins and their interactions.

To predict PPIs using GO and GO-Plus, we assign GO functions
to human, yeast and Arabidopsis proteins based on their annota-
tions in the GOA database (Huntley et al., 2015). We then apply the
Onto2Vec method (Smaili et al., 2018a), using either GO or GO-
Plus as background knowledge, to obtain ontology embeddings of
the proteins. An ontology embedding is a function that maps entities
from an ontology (and its annotations) into an n-dimensional vector
space (Smaili et al., 2018b), and Onto2Vec encodes for ontology-
based annotations of entities together with all the axioms in the
ontology (Smaili et al., 2018a). We further use the Node2Vec
(Grover and Leskovec, 2016) method on the graph structure gener-
ated from GO and GO-Plus to generate embeddings (details on how
we use Node2Vec to generate the embeddings can be found in
Section 2.3.3).

Our workflow generates features (embeddings) for proteins
based on the same set of GOAs but utilizes different sets of axioms
(either the axioms in GO, or the extended set of axioms in GO-
Plus), and therefore allows us to evaluate the contribution of the
ontology axioms to predictions based on these features.

We use the generated features to predict PPIs in two different
ways: first, we calculate the cosine similarity between pairs of pro-
tein feature vectors (generated through Onto2Vec/Node2Vec), and
second, we train a four-layer fully connected NN on pairs of vectors
(see Section 2.4), and use a sigmoid output to obtain a prediction
confidence score (Onto2Vec-NN/Node2Vec-NN). We evaluate the
results of both prediction methods.

Table 1 shows the corresponding AUC values for PPI prediction
on GO and GO-Plus using Onto2Vec and Node2Vec. The ROC
curves for PPI prediction for GO and GO-Plus using both Onto2Vec
(cosine similarity) and Onto2Vec-NN (NN) for human, yeast and A.
thaliana are shown in Figure 1. The ROC curves obtained from
using Node2Vec for PPI prediction care shown in Supplementary
Figure S1.

Our results show that the PPI prediction performance obtained
from feature vectors generated using GO-Plus (and the rich set of
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axioms it contains) outperforms the predictions obtained from using
GO axioms alone, in both the unsupervised model (Onto2Vec) and
the supervised model (Onto2Vec-NN). The improvement in predict-
ive performance is significant for the Onto2Vec prediction based on
cosine similarity (P¼0.021 for human, P¼0.034 for yeast,
P¼0.027 for Arabidopsis; Mann–Whitney U-test), and significant
for human and Arabidopsis in the NN based models (P¼0.047 for
human, P¼0.061 for yeast, P¼0.039 for Arabidopsis; Mann–
Whitney U-test). However, the improvement in performance using
Node2Vec is significant for Arabidopsis using cosine similarity
(P¼0.063 for human, P¼0.071 for yeast, P¼0.044 for
Arabidopsis; Mann–Whitney U-test) and for human and
Arabidopsis using the NN (P¼0.038 for human, P¼0.060 for
yeast, P¼0.042 for Arabidopsis; Mann–Whitney U-test).

GO-Plus uses axioms from many biomedical ontologies but only
includes small parts of these ontologies; we hypothesize that the axi-
oms in the ontologies that are referenced in GO-Plus can contribute
additional background knowledge that may further improve data
analysis. Therefore, we evaluate the individual contribution of each
of the ontologies used in GO-Plus axioms, i.e. we individually evalu-
ate the axioms in the ChEBI ontology (Degtyarenko et al., 2007),
the PO (Jaiswal et al., 2005), the Cell type Ontology (CL) (Bard
et al., 2005), the PATO (Gkoutos et al., 2004, 2017), the Uberon
ontology (Mungall et al., 2012), the SO (Eilbeck et al., 2005), the
FAO, the OBA, the NCBITaxon, the CARO (Haendel et al., 2008)
and the PR (Natale et al., 2011) (a detailed description of each
ontology can be found in Section 2.1). We perform this evaluation
using Onto2Vec only due to its ability to exploit different types of
ontology axioms.

We repeat the same workflow as before to generate features: rep-
resentation of GOAs of the proteins in human, yeast and
Arabidopsis, and representation learning with Onto2Vec using GO-

Plus as background knowledge; in each experiment we limit the axi-
oms in GO-Plus to those that contain a reference to a particular
ontology. We then again apply Onto2Vec to generate features and
predict PPIs through cosine similarity or using a NN (Onto2Vec-
NN) on human, yeast and Arabidopsis. The AUC values for the PPI
prediction using GO-Plus but limited to the axioms that refer to a
particular ontology are shown in Table 2. We observe that most of
the inter-ontology axioms generally improve the predictive perform-
ance, with ChEBI contributing the most to improving PPI prediction
and PATO improving the least (even decreasing the performance in
some cases). The PO is a plant-specific domain ontology and
improves predictive performance mainly when predicting PPIs in
Arabidopsis, as can be expected.

As a further experiment, we combine all ontologies, i.e. we add
the complete set of axioms from each referenced ontology to the axi-
oms of GO-Plus so that the background knowledge of the referenced
ontology becomes available to Onto2Vec as well, and then apply
our feature learning and prediction workflow. The detailed AUC
values for predicting PPIs based on this comprehensive set of ontolo-
gies are shown in Supplementary Table S1. We observe a similar
performance to using only the ontology-specific axioms in GO-Plus.

As a final experiment, we replace Onto2Vec with OPA2Vec to
evaluate the contribution of ontology meta-data such as labels, syn-
onyms and definitions, to their predictive performance. We again
add each ontology that is referenced in a GO-Plus axiom to the axi-
oms of GO-Plus, this time also including the meta-data (in the form
of annotation axioms) of GO-Plus and the referenced ontology.
OPA2Vec (pre-trained on the PubMed corpus) can encode both the
axioms and meta-data of ontologies and observing the difference
from the performance of Onto2Vec can therefore help to evaluate
if—and how much—the labels, definitions and other meta-data
contribute.

We again predict PPIs in two different ways: calculating the co-
sine similarity between the obtained protein feature vectors (referred
to as OPA2Vec in the results table) and using the feature vectors to
train a NN for PPI prediction (referred to as OPA2Vec-NN in the
results tables). The obtained AUC values from this experiment com-
pared to using GO are shown in Table 3. We find that the additional
meta-data does, in general, not improve predictive performance; on
the contrary, the predictive performance drops markedly when add-
ing the meta-data in several ontologies, most notably PATO and
ChEBI.

3.2 Gene–disease association prediction using GO-Plus
In our initial analysis we apply GO and GO-Plus to the task of pre-
dicting PPIs. Although we utilize PPI datasets from different species
for the evaluation to generalize our results, it is nevertheless limited
to prediction of PPIs and it is unclear if our results also hold for
other types of predictive analysis.

Fig. 1. ROC curves for PPI prediction using GO and GO-Plus based on Onto2Vec and Onto2Vec-NN for (a) human, (b) yeast and (c) A. thaliana

Table 1. AUC values of ROC curves for PPI prediction for GO-Plus

and GO using Onto2Vec (cosine similarity) and Onto2Vec-NN

(neural network) as well as using Node2Vec (cosine similarity) and

Node2Vec_NN (neural network)

Human Yeast Arabidopsis

GO_Onto2Vec 0.7660 0.7701 0.7559

GO_Onto2Vec_NN 0.8779 0.8711 0.8364

GO_plus_Onto2Vec 0.7880 0.7943 0.7889

GO_plus_Onto2Vec_NN 0.9021 0.8937 0.8834

GO_Node2Vec 0.7648 0.7671 0.7601

GO_Node2Vec_NN 0.8431 0.8568 0.8245

GO_plus_Node2Vec 0.7713 0.7802 0.7751

GO_plus_Node2Vec_NN 0.8794 0.8762 0.8573

Note: The best AUC value for each data set is shown in bold.

2232 F.Z.Smaili et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz920#supplementary-data


We extend our analysis to the evaluation of predicting gene–dis-
ease associations based on phenotype similarity (Hoehndorf et al.,
2011). While GO is not a phenotype ontology, it is used in the axi-
oms that make up most phenotype ontologies (Gkoutos et al.,
2017). We use the cross-species phenotype ontology PhenomeNET
(Hoehndorf et al., 2011; Rodrı́guez-Garcı́a et al., 2017), which relies
on the GO for defining phenotypes, and replace the GO in
PhenomeNET with GO-Plus.

We annotate genes with mouse phenotypes from the MGI (Blake
et al., 2017) database as well as disease phenotypes from the HPO
(Köhler et al., 2017) database, and apply Onto2Vec, Onto2Vec-NN
(Smaili et al., 2018a) and Node2Vec (Grover and Leskovec, 2016)
to encode these phenotypes and the axioms in PhenomeNET as fea-
ture vectors (more details on the gene–phenotype and disease–
phenotype datasets can be found in Section 2.2). We then predict
gene–disease associations or mouse models of human disease based
on either cosine similarity or a NN using Onto2Vec, OPA2Vec and
Node2Vec. We report the results in Table 4. The detailed ROC
curve figures are shown in Figures 2 and 3. The ROC curves show-
ing the Node2Vec-based results for gene–disease association predic-
tion are reported in Supplementary Figure S2. The results show that

Table 2. AUC values of the ROC curves for PPI prediction showing the contribution of the GO-Plus axioms corresponding to each ontology

for human, yeast and A. thaliana

Note: The improvement (blue)/decrease (red) in performance of each ontology compared to GO is shown between parentheses. The last row shows the average

difference of the performance across all ontologies compared to the GO baseline. (Color version of this table is available at Bioinformatics online.)

Table 3. AUC values of the ROC curves for PPI prediction for different external ontologies in GO-Plus using OPA2Vec and OPA2Vec-NN

Note: Each prediction method uses the meta-data encoded in GO as well as the meta-data from the external ontologies. In each model, all logical axioms and

annotation properties from GO, all logical axioms and all annotation properties from the external ontology and all GO-Plus inter-ontology axioms are included.

The improvement (blue)/decrease (red) in performance of each ontology compared to GO is shown between parentheses. The last row shows the average differ-

ence of the performance across all ontologies compared to the GO baseline. (Color version of this table is available at Bioinformatics online.)

Table 4. AUC values of ROC curves for gene–disease prediction

using PhenomeNET and when replacing GO in PhenomeNET with

GO-Plus as well as using Node2Vec with PhenomeNET and when

replacing GO in PhenomeNET with GO-Plus

Human Mouse

PhenomenetþGO_Cos 0.7841 0.8431

PhenomenetþGO_NN 0.8461 0.9141

PhenomenetþGO-plus_Cos 0.7990 0.8507

PhenomenetþGO-plus_NN 0.8532 0.9182

PhenomenetþGOþmetadata_Cos 0.8304 0.8651

PhenomenetþGOþmetadata_NN 0.8595 0.9188

PhenomenetþGO-plusþmetadata_Cos 0.8313 0.8672

PhenomenetþGO-plusþmetadata_NN 0.8761 0.9204

PhenomenetþGO_Node2Vec 0.7604 0.8104

PhenomenetþGO_Node2Vec_NN 0.8003 0.8601

PhenomenetþGO_plus_Node2Vec 0.7794 0.8376

PhenomenetþGO_plus_Node2Vec_NN 0.8283 0.8882

Note: The best AUC value for each data set is shown in bold.
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the additional information that GO-Plus provides can significantly
improve the overall prediction performance of PhenomeNET in pre-
dicting human gene–disease associations and mouse models of
human disease (P¼0.0411 for mouse and P¼0.0254 for human,
OPA2Vec, Mann–Whitney U-test).

4 Discussion

We developed a method to evaluate the contribution of ontology
axioms to computational analysis of biomedical data. We use fea-
ture learning methods which are generic and data-driven, and en-
code for a large set of information contained in ontologies. Our
choice is motivated by the desire to avoid potential biases, and the
ability to use a wide range of formal as well as informal information
contained in biomedical ontologies. However, our evaluation is nat-
urally limited to the choice of the embedding methods (Onto2Vec,
OPA2Vec and Node2Vec) as well as the application to the

prediction of PPIs and gene–disease associations, and the results
may change with different application domains.

Nevertheless, our study allows us to draw several conclusions.
First, our results demonstrate that including ontology axioms may
add background knowledge that can significantly improve different
prediction tasks. Consequently, our results can be used to improve
the axioms as well as textual definitions and labels in existing ontol-
ogies. For example, we find that the axioms in ChEBI contribute sig-
nificantly to the prediction of PPIs because ChEBI axioms reveal
relationships between GO classes that are associated with the same
chemical entities but that are not directly related in the GO hier-
archy. The axioms also add information in a context-specific man-
ner; for example, axioms from the PO only contribute to predicting
protein interactions in Arabidopsis but no other taxa since PO con-
tains plant-specific domain knowledge. Axioms may also add noise
to a prediction if they are not well aligned with the prediction task.
For example, axioms in the PATO ontology, despite PATO being

Fig. 2. ROC curves for gene–disease prediction comparing PhenomeNET with GO (PhenomeNET þ GO) to PhenomeNET with GO-Plus (PhenomeNET þ GO-Plus) using

Onto2Vec with cosine similarity (Cos) and with a NN for human gene–disease associations and mouse models of human disease. (a) Human and (b) mouse

Fig. 3. ROC curves for gene–disease prediction comparing PhenomeNET with GO with the metadata (PhenomeNET þ GO þ metadata) to PhenomeNET with GO-Plus

(PhenomeNET þ GO-Plus þ metadata) using OPA2Vec with cosine similarity (Cos) and with a NN for human gene–disease associations and mouse models of human disease.

(a) Human and (b) mouse
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significantly smaller in size than ChEBI, do not improve or even de-
crease performance across several applications.

We also find some evidence that there can be a performance differ-
ence when incorporating ontology meta-data into the data analysis.
For example, when the OWL annotation axioms of ChEBI are
included, the overall PPI prediction performance drops; the labels and
definitions in ChEBI often consist of chemical formulas and other
properties expressed in symbols or in a mathematical form (e.g. syno-
nyms such as ‘(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tet-
raenoic acid’ which are not well represented in literature and therefore
not exploited well by our methods). One possibility to overcome this
limitation would be combine our embedding method with a chemical
named entity recognition and normalization method.

Including the meta-data (labels, definitions, synonyms, etc.) of
the PATO ontology in the embeddings consistently decreases pre-
dictive performance across all our applications; a possible explan-
ation for this observation is that the labels and definitions in PATO
are not well aligned with any of the tasks we intend to perform; our
approach provides a quantitative measure that can be used to im-
prove the PATO definitions and labels for our tasks if this is deemed
desirable by the PATO developers.

5 Conclusions

We evaluated the contribution of axioms in biomedical ontologies to-
wards predictive analysis methods. In our experiments, we do not alter
the biological data used for training and evaluation but only alter the
background knowledge encoded in ontologies, using a set of data-
driven methods that can encode entities with their ontology-based
annotations, together with the ontologies and their axioms, within
vector spaces. We find that the background knowledge contained in
ontologies has the potential to significantly improve data analysis and
machine learning in at least two distinct tasks in bioinformatics:
exploiting functional similarity of proteins to predict PPIs, and exploit-
ing phenotypic similarity between genotypes and diseases to predict
gene–disease associations. While our analysis is limited to two tasks,
many bioinformatics workflows utilize functional or phenotypic simi-
larity over ontologies and may similarly benefit from exploiting the
knowledge contained in richly axiomatized ontologies.

Our results have implications on the further development of
knowledge bases and ontologies in the life sciences, in particular as
machine learning methods are more frequently applied across the
life sciences. Our findings motivate the need for further develop-
ment, and the systematic, application-driven evaluation and im-
provement, of formal axioms in biomedical ontologies.
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