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Abstract

1. Capture-recapture experiments are conducted to estimate population parame-

ters such as population size, survival rates, and capture rates. Typically, individuals
are captured and given unique tags, then recaptured over several time periods
with the assumption that these tags are not lost. However, for some populations,
tag loss cannot be assumed negligible. The Jolly-Seber tag loss model is used when
the no-tag-loss assumption is invalid. Further, the model has been extended to
incorporate group heterogeneity, which allows parameters to vary by group mem-
bership. Many mark-recapture models become overparameterized resulting in
the inability to independently estimate parameters. This is known as parameter

redundancy.

. We investigate parameter redundancy using symbolic methods. Because of the

complex structure of some tag loss models, the methods cannot always be applied
directly. Instead, we develop a simple combination of parameters that can be used

to investigate parameter redundancy in tag loss models.

. The incorporation of tag loss and group heterogeneity into Jolly-Seber models

does not result in further parameter redundancies. Furthermore, using hybrid
methods we studied the parameter redundancy caused by data through case

studies and generated tag histories with different parameter values.

. Smaller capture and survival rates are found to cause parameter redundancy in

these models. These problems resolve when applied to large populations.

KEYWORDS

1 | INTRODUCTION

Mark-recapture studies are often used to estimate population param-
eters. In open populations, the Jolly-Seber (JS) model described by
Schwarz and Arnason (1996) is widely used. A sample of individuals
from the population are marked with a single unique tag, released at
an initial stage, and then recaptured at future sample times. Unmarked
individuals that are captured can be marked and released at any sample

capture-recapture, identifiability, Jolly-Seber, parameter redundancy, tag loss

time. As marked and unmarked individuals are assumed to be subject
to the same birth/death and immigration/emigration processes, the JS
model provides estimates of survival, detection, and entry probabili-
ties. Derived parameter estimates of the number of births and popula-
tion size can also be obtained. The Jolly-Seber tag loss model (Cowen &
Schwarz, 2006) is based on the JS model. It follows the same assump-
tions as the JS model but allows for tag loss. Double-tagging studies
have been used to estimate tag loss. A fraction of the individuals are
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double tagged, and tag loss is assumed to be independent between
tags. Individuals that lose all of their tags are either recognized and not
retagged, or treated as new individuals. The number of individuals that
lose all tags is assumed to be small, with little effect on the parameter
estimates. Malcolm-White et al. (2020) explore this assumption and re-
port on violation conditions.

Double-tagging or double-marking studies occur under various
study contexts and with various species. There has been a long
history of using double tags to estimate tag shedding rates or tag
loss probabilities (see Wetherall, 1982; Fabrizio et al., 1999, for dis-
cussion). For example, Stevick et al. (2001) used double-marking of
humpback whales to study the use of natural markings in capture-
recapture experiments, and Vandergoot et al. (2012) used double
tagging to estimate tag loss in Lake Erie walleyes.

Often, group membership (such as males and females) will intro-
duce variability that can bias parameter estimates (Schwarz, 2005,
Chap. 8). Xu et al. (2014) developed the group heterogeneity Jolly-
Seber tagloss model (GJSTL), which is an extension of the Jolly-Seber
tag loss (JSTL) model, allowing for parameters to vary by groups.

In the JS model, data are in the form of capture histories, where
a 1 or O is recorded at each of the T sample times to represent if
an individual was respectively captured or not. Similarly, tag loss
models use tag histories where a 1 or O represents the presence or
absence of a particular tag. On first capture, 11 is recorded for a dou-
ble-tagged individual and 10 for a single-tagged individual. A tradi-
tional capture history may correspond to more than one tag history.
For example, a traditional capture history of {1 0 1} for a three sam-
ple time experiment could be associated with a tag history of {11 00
11}, {11 00 10}, or {10 00 10} based on whether it has both its tags, or
only one tag at each occasion it was captured. The tag history {11 00
10} is an example of tag loss between the first and last sample times.
The parameters involved in the probabilities of each tag history for T
sample times are described below.

Bep the probability that an individual in group g enters the popu-
lation between sample timesjand j+1,3=1, ...,G;j=0, ..., T-1. Note
E0 hi=1

Ag;j the probability that an individual in group g first tagged at
sample time i retains its tag between sample timesjand j+1,3=1, ...,
Gi=1,.,T-1j=i..,T-1.

Py the probability that an individual in group g is captured at
sample time j giveniitis alive,g=1,...,G;j=1,..,T.

(/)g‘j, the probability that an individual in group g survives and re-
mains in the population between sample times j and j+1 given it is
alive at sample timej,g=1,..,G;j=1, ..., T-1.

The tag retention parameter, Agijs
not in the JS model. It appears when an individual is first captured

is the only parameter that is

and tagged. It is similar to the survival parameters as it is defined
between sample times. All of the parameters can be either time and/
or group varying. Tag retention can vary by release group (or co-
hort). Models can be simplified with parameters constant over time
and group for example. We will refer to various models using nota-
tion similar to Lebreton et al. (1992). The notation involves a list of

parameters with subscripts referring to time dependent, t, or group

dependent, g; no subscript refers to a constant parameter. For exam-
ple, model B, g, pgy, A refers to the model where entry probability
varies by time, survival probability ¢ varies by group, capture prob-
ability p varies over group and time, and tag retention probability A
is constant.

The super-population size N is captured by modeling the {00
00 --- 00} tag history (Cowen & Schwarz, 2006) and extending to
groups requires a super-population Ng for each group g, but ulti-
mately does not add to the parameter list considered in redundancy
investigations.

The probability of a tag history, h, has compo-
nents that model the capture, survival, and tag loss pro-
cesses. For example, the full time varying probability of
tag history {11 00 10} for an individual from group 1 would be
BroP11911 {28011 (1= A111)} (1= P12) b12A112P1s + BroPradraAdss (1-P12) d12 {28012 (1= As12)} Pas.
The first component models the tag loss between sample times 1
and 2. The second component models the possibility of tag loss be-
tween sample times 2 and 3.

We investigated the intrinsic parameter redundancy associated
with the additional tag loss parameters in Jolly-Seber type models.
We also explored parameter redundancy issues that arise from the
data (extrinsic) through generated data sets and case studies. These
novel parameter redundancy results will add to the body of knowl-

edge for tag loss models.

2 | METHODS
2.1 | Symbolic algorithm

It may be intangible to estimate all of the parameters for certain
models. Such a model is called parameter redundant or the param-
eters are described as non-identifiable. Structural parameter re-
dundancy is caused by confounded parameters that always appear
together in the model in a particular combination, whereas param-
eter redundancy due to the sparsity in a particular data set is often
referred to as estimability. We used the symbolic algebra method
(Cole et al., 2010) to test all possible constraints of the GJSTL model
for parameter redundancy.

The first stage of the symbolic method involves creating a unique
representation of the model known as an exhaustive summary. An
exhaustive summary K(0) is a vector of parameters that uniquely
define the model; 0 is a vector of all parameters in the model (Cole
et al., 2010). In this case, the exhaustive summary is a vector of pa-
rameter combinations that uniquely represents the likelihood. As the
likelihood is formed from the probabilities of each tag history of the
GJSTL model, these form an exhaustive summary. The second stage of
the symbolic method is to form a derivative matrix D by differentiat-
ing the exhaustive summary with respect to each unknown parameter
givingD = 0K(0) /d60. The rank of the derivative matrix, D, denotes the
number of parameters that can be estimated in the model. If the rank
of the derivative matrix D equals the number of parameters, then the

model is not parameter redundant and termed full rank. If the rank is
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less than the number of parameters then the model is parameter re-
dundant. The deficiency of a model is defined as d = k-q, where k is
the number of parameters and g is the rank of the derivative matrix. A
full-rank model has deficiency zero, and a parameter redundant model
has deficiency greater than zero. If a model is parameter redundant, it
is possible to determine which of the original parameters are estimable
and/or the combinations of the remaining parameters that are estima-
ble. This involves first solving aD = 0 where a denotes the transpose
of a. This has d solutions; the jth solution is a vector whose ith entry
is A i=1,.,kj=1,..,dIf a;; = 0 for all j, then the ith parameter
can still be estimated. Then, a set of d partial differential equations
» k(,.:“a,-jaf/ae,. =0,j=1,--,d, where f is an arbitrary function) is
solved to find other combinations of parameters that can be estimated
(Catchpole et al., 1998; Cole et al., 2010).

When models become complex or involve large sample times T,
the symbolic algebra method becomes computationally infeasible;
the rank of the derivative matrix D requires large memory space for
estimation (see, e.g., Hunter & Caswell, 2009; Jiang et al., 2007). This
may be caused by the number of included exhaustive summary terms
being too large or too complex. This was the case for complex GJSTL
models. In Appendix A, we used the methods of Cole et al. (2010) to

develop a simpler exhaustive summary and explain its use.

2.2 | Hybrid symbolic-numerical algorithm

Since the symbolic algebra method sometimes can be computationally
infeasible, Choquet and Cole (2012) proposed a hybrid symbolic-nu-
merical algorithm to determine whether a model is parameter redun-
dant. This method finds the derivative matrix symbolically and the rank
numerically, by evaluating the derivative matrix at 5 random points in
the parameter space (five sets of parameter values). The maximum
rank of the 5 points becomes the model rank. In this approach, if D
is not full rank, then we find the numerical estimation of the left null
space a of D by solving aD = 0. As with the symbolic method, there will
be d solutions that are vectors with entries e If o is close to zero for all
j, then the ith parameter can still be estimated. However, it is not possi-
ble to find estimable parameter combinations (Choquet & Cole, 2012).
This algorithm was adopted for the extrinsic redundancy study in
section 3.2; multiple sets of parameter values were applied, which made
it difficult to compute the rank and the deficiency for the tested mod-
els. An example of this method is in Appendix A (Example 3). Since we
are investigating parameter redundancy caused by the data, we do not
require the possible reparameterization for confounded parameters.

3 | RESULTS
3.1 | Intrinsic parameter redundancy

Parameter redundancy caused by the model is known as intrinsic

parameter redundancy. We examined various constraints of the
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JSTL and the GJSTL models using symbolic algebra, the extension
theorem, and the reparameterization method in Maple by applying
the simpler exhaustive summaries (Appendix A: Table A2). The con-
straints included group (g), sample times (t), and cohort (first tag-
ging time, r). We explored all combinations of survival, capture, and
entry rates that could vary over group and/or time and tag reten-
tion rates that could vary over group, cohort, and/or time. Table 1
lists the parameter redundant models and the full table of parameter
redundancy results are given in the Appendix A (Table A4). Among
the models examined, only a few were found to be parameter redun-
dant for the same choice of A. For example, models {ﬂgyt, ¢t,pgyt,A};
{Bgeb0Pge Ngli {Bgp bt Py Aeli {Bges Doy At { Byt b Py Mg
{Bap buPap Age ks {Bae oPge Arefs and {Bge dePyp Ay} all had de-
ficiency 1.

We further explored parameter redundancy in the group het-
erogeneity tag loss models in terms of how parameters were
confounded. We found that group heterogeneity replicates the
confounded parameters for each group. For instance when param-
eters vary with time, one combination of confounded parameters
is ¢, = fyp,. This same confounding appears in each group with g1
= fy0Pg1 forg=1, -+, G. The full set of confounded parameters for
the GJSTL models with parameters varying over group and time is
Ca1 = ByoPy1,Car = by + a1, Cga =Per(1= T {772 Bgi) = dgr_1/ (1= T T2 pgy),
where groups g =1, ..., G. The confounded parameters for the JSTL
models with parameters varying over time are the same but without
the groups (Appendix A: Table A4).

Schwarz et al. (1993) reported a list of confounded parameters
for the JS model, but did not discuss their method for obtaining these
confounded parameters. It is possible to show that the confounded
parameters c,; ¢ , ¢ 5 and c,, are equivalent in form to the ones
reported in Schwarz et al. (1993). By letting fgr_; = (1 - Zg-z ﬁg,i)
and with simple algebra and rearrangement, the confounded param-
eters become fyoPg1,Bgr_1/Pgr-1=1/Cga:Pgr_1Pgt = Cg3 X Cgar
and fgq + By (1 —Pg1) dg1 = Cg0 — Cg1¢g4. This is identical to the
confounded parameters given in Schwarz et al. (1993) with the ad-
dition of groups. Thus, extending the JS model with tag loss and
groups does not affect what can be estimated within this model.

Additive models present another class of models to consider.
An additive constraint across group may allow for independent
estimation of parameters (Viallefont et al., 1998); however,
where the additive constraint is placed is important. Gimenez
et al. (2003) describe models with additive effects; standard pa-
rameterssuch as p;gare expressed as some function f(a,, m) where
a, would be parameters for time effects and ma parameter for
group effects. Assuming two groups, the choice of f(at, m) could
be either a logit-scale where p;; = exp (a; + m) / [1 + exp (a; + m)]
for group 1 and bo1 =exp(a;) / [1+exp(a;) ] for group 2, or a log-
scale where p,, = exp(a+m) for group 1 and Pyq = exp(a,) for
group 2. Results in Gimenez et al. (2003) and Viallefont (1995)
erroneously suggest that the additive model could resolve is-
sues with parameter redundancies in the Cormack-Jolly-Seber

model, due to an analytic computation error in older versions of
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TABLE 1 Parameter redundant GJSTL models which have
deficiency greater than 0. The rank gives the number of estimable
parameters, and the deficiency is the number of parameters minus
the rank. The deficiency (but not the rank) is identical for models
where A varies over group, cohort, and/or time. The full list of
parameter redundancy results is given in Table A4 of Appendix A

Model Rank Deficiency
B be, Py A 3T-2

Bt e bty Ag 3T+G-3

Br> bt Prs A 4(T-1)

Bt br b A 4(T-1)

B e, e Agy 5(T-1)

B> b, Py Mg,y 3T-2+G(T-1)
B b b Ay T-1)+ X T-h
Bt bt Pes Ng it 3(T-1)+G ¥ ,~T=_11i
B> b, Pges A T(G+2)-2

Bt bp Py Ag T(G+2)+G-3
B> brs Pg s Ay T(G+3) -4

Bt bp Py Ar T(G+3) -4

B b, Py Mgt T(G+4) -5

T(G+2)-2+G(T-1)
T(G+2) -3+ 3l
T(G+2)-3+G Y -t
T(2G+1) - (G+1)

T(2G+1) -2

T(2G+2) - (G+3)

T(2G+2) - (G+3)

T(2G+3) - (G+4)

T(2G+1) - (G+1) +G(T-1)
T(2G+1) - (G+2) + ZL‘fi
T(26+1) - (G+2) +G ¥ [t
3GT - (2G+1)

T(3G) - (G+2)

3(TG-1) —2G+T

T(3G+1) - (2G + 3)
3(TG-1) —-2G+2T-1

3GT - (2G+1) +G(T-1)
3GT-(2G+2)+ ¥ -1
3GT-(26+2) +G ¥ [-1i

B b, Py Agy
Bt e Py Ay
Bt bt Pyt Mgy
Byt b, Pg s A
Bgt bt Pyt Ag
Byt e Py Ay
Byt bo: Py Ay
Bgt e Py Ngt
Byt br Pyt Agy
Bgts e Pgps Ay
Bgtr P Do Agrt
Byt byt Py A
Byt Pgtr Pt Ag
Byt byt Py At
Byt Pgtr Pger Ar
Byt byt Pyt Agy
Byt Pgtr Pgtr Agr
Bgtr gt Pgir Art
Bgtr Ggtr Pgs Mgyt

OO0 0O 0O 0 0O 0O FP P P 1B P RPB B P B B B P R R Rl Rl Rl )l |l B ) |

Maple™. Choquet and Cole (2012) found that the additive model
did not reduce the deficiency.
We considered including additive effects to the group and time

dependent model, By (/)g’t, Py A with two groups. This model has

gt
deficiency 2. Adding either a logit-scale or log-scale additive effect
to Pyt reduces the deficiency to O, whereas adding either a logit-scale

or log-scale additive effect to bgi reduces the deficiency to 1. The

additive effect can reduce the deficiency; however, it has to be on
Py to give an identifiable model.

3.2 | Extrinsic parameter redundancy

Extrinsic parameter redundancy is caused by the data (Gimenez
et al., 2004) and is often referred to as estimability (Lele et al., 2010).
Here, we used the expected data set approach of Cole et al. (2014).
When considering extrinsic parameter redundancy, only the pres-
ence of a tag history matters, rather than tag history frequency. That
is, the parameter redundancy would be the same if any specific tag
history appeared just once or 100 times. However, redundancy may
change if the tag history is not present. Therefore, we considered
whether we expected a history to be present or not. For specific
parameter values, the probability P(h) of the occurrence of each tag
history h can be found. Suppose that n animals are tagged in each
group, then the number of individuals we expect to see is E(h) =nx
P(h). An exhaustive summary was created with terms correspond-
ing to the probability P(h) of the occurrence of each tag history h. A
tag history was included if E(h) = 1, meaning we expected to see at
least one individual with history h. Any tag history with E(h) < 1 was
excluded.

We used the following parameter values to generate tag histories.
Note that the fraction of double-tagged individuals among the tagged
individuals was the same (0.3) in all cases. The entry rates were 1/T.
The capture rates p were set to 0.1, 0.5, and 0.8. The survival rates
¢ were 0.2, 0.5, and 0.8.b To accommodate tag technology improve-
ments, we set a wide range of parameter values for the survival prob-
ability with consideration for future studies of any species that might
be double tagged (not only long lived species). Tag retention rates A
were motivated by the literature. We found tag retention rates to
vary depending on many factors such as the species, age, tag types,
tagging season, and experimental conditions. The tag retention rates
ranged from 13% (Fogarty & Russell, 1980) to 95% (Gonzalez-Vicente
et al., 2012) for lobsters only, depending on different experimental
methods. Adelie penguins had high tag retention rates 88% to 100%
depending on band ages (Ainley & DeMaster, 1980). Estimates for
double-tagging experiments also have a wide range. For instance,
Pistorius et al. (2000) conducted an experiment on elephant seals
where the tag retention rate of retaining both tags for males was 65%
while that of females was 83%. The values of the tag retention rates
A we used were 0.2, 0.5, and 0.8. The combination of the three values
for each parameter gave 27 tag history sets.

We generated tag histories for the 27 sets of parameter values for
T = 3 sample times, G = 1 or 2, and n = 1000. We excluded the tag
history terms with the expected number E(h) < 1. Some data sets were
found to have the same set of tag histories, such as tag history sets
A=02,p=01,$6=02and A =0.2,p =0.1,¢ = 0.5. This reduced the
number of tag history sets to 18. The hybrid symbolic-numeric method

was used to find the deficiency.
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Some sets of parameter values caused an increase in the defi-
ciency compared to the intrinsic parameter redundancy results of
Section 3.1. This inconsistency occurred because a key exhaustive
summary term was missing due to the data. The sets causing an in-
crease in the deficiency were mainly the ones with smaller param-
eter values.

Example 1

Table 2 shows an example of extrinsic parameter redundancy
results for two groups with n = 1000 and parameter values of
A=0.2,p=0.1,$ =0.2 were used. When all tag histories are in-
cluded, the deficiency for all the models with Bgtr Ggtsbgr Was 2
regardless of the constraint on A. However, for the set of tag his-
tories with A=0.2,p=0.1,¢ = 0.2 the deficiency was larger and
changed with the constraint on A as crucial tag histories were un-
observed. This is different from our conclusion in Section 3.1 that
the addition of tag retention rate does not affect the deficiency.

To determine the effect of the number of animals tagged, we in-
creased n to 10,000, 100,000, and 1,000,000 for the sets that had da-
ta-driven changes in the deficiency of a model. These models are listed
in Table 3, alongside how large n must be before parameter redun-
dancy results are identical to when all the tag histories are present. It
turned out that increasing n removed the additional parameter redun-
dancy caused by the data. If n increases from 1,000 to 10,000, many
of the additional deficiencies disappear. However, for the A =0.2,
p =0.1, ¢ = 0.2 case, the additional deficiency did not disappear until
n = 1,000,000 (Table 3). Therefore, data-driven parameter redun-
dancy in the GJSTL models disappear when there is a large n. We note
that in this case of low survival and capture rates, there are large bi-
ases in parameter estimates (Malcolm-White et al., 2020); these biases

are somewhat improved by high tag retention rates.

4 | CASE STUDIES

Southern rock lobster Jasus edwardsii are commercially fished

in Tasmania, Australia, and studied through a long-term tagging

TABLE 2 Evaluation of fig;, b4, byt A models with tag history
generated using entry rate p = 1 /T, tag retention rate A = 0.2,
capture rate p = 0.1, survival rate ¢ = 0.2, n = 1000, G = 2. Here,

r denotes varying by cohort. Note that for data with all possible tag
histories the deficiency would be G = 2 (see Appendix A: Table A4)

Models Rank Deficiency
Byt Ggr Pges A 4T-2 2T-1

Bgtr GgtrPgs Ag 4T-2 2T

Bgtr g Py A 4T -2 4T -6

Bgts g Pges At 4T-2 3ir-3

Byt Ggr Py Ngy 4T -2 4T -4

Bt gtrPgs Mgt 4T-2 5T-7

Bgtr Og s Pgts At 4T-2 5T-8

Bt gt Pgs Mgyt 4T-2 8T-14
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program. There were 5,993 females and 5,514 males single or
double tagged upon initial capture and followed for 8 years from
1999-2006. Xu et al. (2014) applied the GJSTL model to these data
(where sex determined group membership) modifying it slightly to
have annual sampling occasions. They used AIC for model selec-
tion which chose model b:‘,(ﬁg,p&t, Agy. However, Xu et al. noted that
they avoided fitting entry probabilities that varied by group so as to
avoid parameter redundant models. The parameter b*g’j is a function
of the parameter By and interpreted as the expected fraction of the
population in group g remaining to enter the population that enters

between sample times j and j+1. It maps to By using the function

Bgo ifj=0;
ﬁgj P
p* = ————ifj=1,-,T-2
8 Zl;jlﬂg,u
1ifj=T-1.

To investigate extrinsic parameter redundancy (cause by the
data), we considered the 11 models with highest AIC from Xu
et al. (2014), compared to the intrinsic parameter redundancy results
(caused by the model) (Table 4). We found that the extrinsic defi-
ciency was identical to the intrinsic deficiency. This was largely due
to the large sample size that allowed for a wide variety of tag histo-
ries allowing for parameter identifiability.

We also considered a much smaller mark-recapture data set
of walleye Sander vitreus. The study was conducted in the Woman
Chain of lakes in northern Cass County, Minnesota. Fish were
tagged with t-bar anchor tags a week or two each April to early May
as they entered the Boy River to spawn between 2009 and 2011.
They were given single or double tags resulting in 1,108 females and
1,473 males tagged over the 3-year period.

For comparison, we used the same 11 models as the lobster data
set. More models were considered beyond these 11 models with re-
sults in the Appendix A: Table A5. These data did affect parameter
redundancy results, with increased deficiency for some of the mod-
els (Table 4). The change in deficiency occurred when certain tag
histories were unobserved. In this case, there were many missing

TABLE 3 Number of tagged animals n required for the extrinsic
parameter redundancy results to be identical to intrinsic parameter
redundancy results

n Parameter Value Combination
1,000,000 A=02,p=01¢=02
100,000 A=02,p=05,$=0.2
10,000 A=02,p=05,¢=0.8

A=05p=01,¢$=08
A=05p=05,¢p=02
A=09,p=01¢$=08
A=09,p=05¢$=02
A=09,p=08¢$=05
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histories, including those for individuals captured for the first time
in 2011 (tag histories {00 00 11} or {00 00 01}). Key tag histories are
more likely to be missing when there is a small sample size or for sets

of parameters with low values.

5 | DISCUSSION

We investigated the parameter redundancy caused by model struc-
ture and data in Jolly-Seber tag loss models, with a focus on vari-
ous constraints on JSTL and GJSTL models. We used the symbolic
algebra method to determine the confounded parameters, which
were found to be the same for JSTL and JS models, showing that
the addition of independent tag retention parameters does not re-
sult in any further structural redundancies. The incorporation of
group heterogeneity only replicates the confounded parameters
of the JSTL models for each group, with no additional confounded
parameters.

Although the symbolic algebra method is effective to assess pa-
rameter redundancy for JSTL and GSTL models, we found that it had
large memory requirements for some complex models. Hence, the
hybrid symbolic-numerical algorithm can be used to investigate pa-
rameter redundancies caused by data.

We note that an increase in deficiency due to data is eliminated
by increasing the number of individuals tagged. For many param-
eter value combinations, there were no data-related redundancy
increases, even with n = 1000. However, for one set of parameter
values we had to increase n to 1,000,000 before there was no in-
crease in data-related deficiency. We recommend for scenarios with
low capture probability, low survival probability, and/or low tag
retention probability and small n (<1,000), extrinsic parameter re-
dundancy should be investigated per specific data set. Otherwise,
the general intrinsic parameter redundancy results in Table 1 and
Appendix A: Table A4 hold.

TABLE 4 Comparison of intrinsic and extrinsic parameter
deficiencies in the southern rock lobster data 1999-2006 and the
walleye data 2009-2011

Intrinsic Extrinsic deficiency

Model Deficiency Lobster Walleye

Bt» Gy Pgts Mgt
B ¢g,t’ Pgtr Agt
Btr bgs Pg s g
Bt e bes A¢
Bt byt Pgs Agy
Bt byt Pgr A
Be bg: Py Ag
Bt> &g, gy A
B g, 0, Ag
Bud,p, A

Be bg 0, A

o O O O O O O »~ O O O
O O O O O O O » O O o
O O O O O »r Kr N W u W

The walleye case study exhibited extrinsic parameter redun-
dancy due to sparse data. This occurred because some tag histories
were not included in the data. When conducting a capture-recap-
ture study involving tag loss, we recommend the study be designed
to obtain as many tag histories as possible. The walleye study did not
include capturing and tagging individuals at the last sample time, and
this caused some of the extrinsic parameter redundancy.

Future plans include assessment of parameter redundancy for
models where tag loss is dependent. The independence assumption
for tag loss is limiting as this assumption has been clearly violated
in several contexts, such as southern elephant seals (see Schwarz
et al., 2012). We are currently developing a model for dependent
tag loss. Further, incorporating covariates into these models is ex-
pected to also decrease redundancies (see Cole & Morgan, 2010).
This should be examined within individual studies.
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APPENDIX A
ADDITIONAL METHODS

Simpler exhaustive summary

As discussed in the main paper, for complex GJSTL models it is
computationally infeasible to calculate the rank of the derivative
matrix. It is necessary to create a simpler exhaustive summary (s)
for the models of this paper. We can find a simpler exhaustive
summary for K(@) by first proposing a reparameterization s(6). We
then rewrite K(@) as a function of s, K(s). If the derivative matrix
0K (s) /os is full rank, then s is an exhaustive summary. If it is not
full rank, then a new parameterization can be found by solving
an appropriate set of partial differential equations. If ds(0) /00 is
also full rank, then the rank of 0K(s) /ds will be the same as the
rank of 0K(®) /00. This is the reparameterization theorem from
Cole et al. (2010). For example, this method has been used to cre-
ate simpler exhaustive summaries in multi-state models (Cole et
al., 2012) and multi-event models (Cole et al., 2014).

Here, the original exhaustive summary, K(#), is a vector contain-
ing the probabilities of each tag history. We illustrate this method in
Example 1 below.

Example 1

Consider the time dependent JSTL model with sample times
T = 2. The probabilities for each tag history are given in Table Al.
The terms in Table A1 form the exhaustive summary K(9) with 8
= [fo, $1.P1.P2, A1 4l. The estimable parameters are found to be
Bob1, ®1P2, {1+ o (b1 — 1)} /by and Ay;. A reparameterization of
K(0)iss=1s 1,52,535S o =Bob1, d1P2, {ﬂo¢1 (1 - p1) +1- ﬂo} P2, g
[Bob1, 1P, {Bod1 (1 —p1) + 1= o} P2, Ayq] Where s, is the prob-
ability of tag history 0011 and 0010 and is found by manipulating
the estimable parameters. Rewriting K(@) in terms of s gives K(s) =
$15254,515252,515254 (1 —54) ,51 (1= 5254) 51 (1 — 25,54 +5,52) , 53],

The derivative matrix of K(s) with respect to s is full rank, which
implies that s is a simpler exhaustive summary for the time-depend-
ent JSTL model with sample times T = 2.

In general, the terms needed for a simpler exhaustive summary,
K.(6;) for the time dependent JSTL model with T sample times are
given in Table A2. If groups are included in the model, the simpler
exhaustive summary is repeated for each group.

The simpler exhaustive summary, K.(0;), is not necessarily valid for
every possible constraint on the parameters. We can check whether
any nested models are parameter redundant within a full-rank model
using a PLUR decomposition of the derivative matrix and examining
the determinant of one of the resulting matrices (Cole et al., 2010).
The same procedure applies for checking the exhaustive summary.
We write the derivative matrix, Dy = dK;(01) /00y, as a product of 4
matrices, P, a permutation matrix consisting of Os and 1s, L, a lower
diagonal matrix with 1s on the diagonal, U, an upper diagonal matrix
with any entry on the diagonal, and R, a matrix in reduced echelon
form. If Det (U) = O for any constraints, then K(8;) will not be an

exhaustive summary for the constrained model.

Extension theorem

The extension theorem was introduced by Catchpole and Morgan
(1997) and generalized in Cole et al. (2010). Suppose a full-rank
model with exhaustive summary Kp1 and parameters O has a deriva-
tive matrixD,; = 9K, (8,;) /98,,. By adding extra exhaustive terms

sz and extra parameters 6_,, the model is extended. Construct a de-

p2’
rivative matrix Dp2 by differentiating the extra exhaustive summary
terms with respect to the extra parameters D,, = 9K, (8,5) /00,,.

Then, the derivative matrix for the extended model is

D . aKp2 (epl)
D=| 7 06,
0 D,,

The extension theorem states that if the derivative matrices D,
and D,, are full rank then the extended model is full rank. This is
trivially true if the number of extra parameters is zero or one. Results
can be generalized for any sample time T by induction extension the-
orem (Catchpole & Morgan, 1997).

The extension theorem is demonstrated in Example 2 below.

Example 2

The model g;, ¢, p, A with T = 3 sample times has a simpler ex-

haustive summary

(214
[0P14

(1-p) ¢y
A
K=|A2

A=A

Bop

{Bo(X=p)py + B} P
7{ﬁo(l—P)2¢1¢z+ﬂ1(1—P)¢2+1—ﬂo—ﬁ1}P_

and parameters 0 = [p, A, ¢y, $2, Bo, f1) The derivative matrix
oK / 06 has full rank 6.

Extending the model to T = 4 sample times requires an adjust-
ment to the extension theorem because 1-4,-4, is replaced by g,.
This is known as the two-stage extension theorem (Hubbard et al.,
2014). Part 1 consists of the terms

$10

hab

1-péy

A

pl = A?

A(l—A)

Bob

{Bo(X=p)y +B1}p
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and parameters 0,3 = [p, A, ¢4, by, Bo, f1] The derivative matrix
0K, / 90, has full rank 6 as well.

The second part consists of the terms

$3b

1-p) ¢,

A3

A2(1-A)

{Bo(1=p)h1dy +B1(L—pP)bo+ By }p

(8o (1= p)3h1dady + B1(1—p) 2otz + fr (L—p) s+ 1= fy = o — 3 }p

with extra parameters 0, = [¢3, 8, The derivative matrix
0K, / 98,5 has full rank 2. Since D, and D, are both full rank, it
follows from the extension theorem that the extended, four sample
time model is full rank. When this model is extended from T=t to
t+1 sample times, the extra parameters added are ¢, and g;_,. The
extra exhaustive summary terms will be similar to those in sz. If the
t sample time model is full rank, then the t+1 sample time model will
be full rank from the extension theorem. By induction, it can be con-
cluded that this model will be full rank for any sample time T.

If the model is parameter redundant, we combine the reparam-
eterization and extension theorems to obtain general results Cole
et al. (2010) and Hubbard et al. (2014).

Example 3

Consider the model g, ¢y, p;, A Where tag retention is constant and
all the other parameters are time dependent. An exhaustive sum-
mary for the three sample time model is

{ﬂo (1 - P1) 0N +ﬂ1}p2

$2P3

A

{Bo (1=p1) (1=py) p1hs +B1 (L —py) do+ 1= fo— B1} s
Ks = Bops

$h1P2

(1 - pz) b1

A2
(A=A

The derivative matrix formed from differentiating K, with
respect to the parameters 03 = [fo, 1, b1, b2 P1.P2 03, A] has
rank 7, but there are eight parameters. Therefore to use the

TABLE A1 Exhaustive summary for
the Jolly-Seber tag loss (JSTL) models.

Probabilities of tag histories fora T =2
sample time study. Note that p, = 1-f,

Tag history
1010

1111

11 10

1000

1100

00 10and 00 11
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extension theorem, we first need to reparameterize to seven pa-
rameters. A reparameterization of the three sample time model is
3= [51,52, 53,54, 55,56, 57| = [A P2, b1, Boba, Bods + B1.P3 (1= o — B1) b2/ (1= Bo — B1)].

This  gIVES Ko (ss) = (55— ss56) $2:5657:51,56 {1457 (1=52) (55 = $352) }15005253,5 (1= 52) 851 (1= 51) 1T,
D, = oK;(s3) /9s3 has full
reparameterizing the four

The derivative matrix rank
7. After

the extra

sample time model,

exhaustive summary terms used to extend

the three to the four sample time model are found to be
Kexe (54) = [59510,9 {57510 (1= 52) {sa5a (56 = 5g) +55 (S5 = 56)} + 510 (53 = 56) +1}57 (55— 56) 53,53 (1=51)] "+
The extra parameters are s, = f, sg = p, (1-f,-p,~p,) and
s10 =3/ (1 - Bo — By — B2). which gives s, = [sg, S, 510} The deriva-
tive matrixD,,; = 0K (S4) /95,y has full rank 3, so by the extension
theorem the reparameterized model has full rank 10. By induction,
the reparameterized model will always have full rank 3T-2. By the
reparameterization theorem, the original model will have rank 3T-2.
Since the original model has 3T-1 parameters, it will always be pa-

rameter redundant with deficiency 1.

ADDITIONAL RESULTS
A full listing of all models investigated for parameter redundancy is
shown below.

Table A3 shows the parameter redundancy results for Jolly-Seber
(JS) models. Table A4 shows the parameter redundancy results for
group heterogeneity Jolly-Seber tag loss model (GJSTL) models. The
deficiency of each model is given alongside the estimable param-
eter combinations when the deficiency is greater than zero. A defi-
ciency of zero indicates the model is not parameter redundant. The
estimable parameter combinations specify which parameters are
identifiable and which parameters are confounded when a model is

parameter redundant. In the model notation t represents varying by

TABLE A2 Terms needed in a simpler exhaustive summary
for the JSTL model. Note that for the GJSTL model, terms are
replicated by group

The probability of Exhaustive summary terms

First capture at each sample time  fopy, (Bo (1 —p1)p1 + B1) P
$1P2br_1P7
&1 (1=py)dbr_o(1=pr_y)

AggAgp X X Agr g

Surviving and being captured
Surviving and not being captured
Retaining tags since first capture
A7 o7 2T 2T 1AT_17-1
App (1= Agp)Agg X X Agr_y,
Ar_o7-2(1=Ar_p7_4)

Losing one tag since first capture

Probability

Bob1P1P2A1 4

ﬂo¢1P1P2Ai1

Bob1p1P2As1 (1= Agy)

BoP1 (1= 1+ ¢1 (1 =pp) Arg + by (1= Asgy))

Bop1 (1= 1+ 1 (1= py) A2, + 261 (1=py) Agq (1= Agq) + by (1= Ag,1)2)
(Bo (1 =p1) by +1—Bo) P2
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time, g represents varying by group, and r represents varying by re-
lease cohort. A lack of subscript indicates the parameter is constant
over time, group, or release cohort. In the estimable parameter com-

binations, T is the number of sample occasions and G is the number

of groups.
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TABLE A3 Deficiency of JS models. A deficiency of O indicates
the model is not parameter redundant. A deficiency of greater
than O indicates the number of redundant parameters. When the
deficiency is greater than O, the table also provides the estimable

parameter combinations

Model
B b
B b, pg
B b, by
Be b, byt
B g, 0
B g: bg
Bt g, by
Bt bg: Pgt
B b, p
Bt b g
Brr b, Py

B bt Py

B g0
Bt bgtPg
B> bt Pt
B gt Pyt
Bgr . P
Bgt, b, Py
Bg b 0;
Bgtr &:Pgt
Byt bg: 0
Bgtr bgr Py
Bgtr bg: Pt
Batr bgr Pyt
Byt du b
Bgt r, Pg
Bgtr bt by
Bat Gt Pgt

Bgtr gt P
Bat Pyt Py
Bt Pgr Py
Bat Pgtr Pt

Deficiency

, O O O O © O oo o o o

, O O O O O O O O o o o o o o o

O ©o o o

Estimable Parameter combinations

Ny dg, s br_2 B2y Br_2 P2, Pr_1, Bob1,
Bob1 + 1, br_1PT, PTBT_1

Ng, &1, Pr_2 B2y s Br_2 Pgo = PgT_1,
Bobgy, BoP1 + Br dr_1Pgr Br_1/Pr-1

Ng, bq, oo, ﬂg,zy "'yﬂg,'r_zy Pg2s P11
BgoPg 1 BgoP1 + Bg1 PorPgr— 10
D17-1P17 Do 17— 1P 1.7 [ (Bgjr d1)

Ng &g 1.+ bgr_2 g2, Pgr—2
Pg,z, ] pg,T— 1

BgoPg1; Bgobg1 + Bg1, Og1_1Pg7 PgrBgr—1

TABLE A4 Deficiency of GJSTL models. A deficiency of O
indicates the model is not parameter redundant. A deficiency of
greater than O indicates the number of redundant parameters

Model

B o0, A
B, b, A
Bd.p A
B, b, p, Ay
B.d.p. Ag,
B, ¢, 0, gy
B .o, Ay
B, 0, Ag,y
B b bg, A
B, . pg, Ag
B, d.pg A,
B, b, pg, Ay
B ®,Pg, Agy
B, b, Py, Agy
B, 4, g, Ay
B, d,Pg, Agrt
B, b, b, A

B, d, b, Ag
B d,p A,

B, . by, A

B b b Mg,
B, &, b, Mgy
B, b, P Ay
B, b Mgt
B, b, A
B b g, Ag
B, 4, Py, A
B, b, Py At
B, Pyt Agr
By, Pg Agy
B, D Ary
B, bt Agrt
B dg 0. A
B, dg, 0, Ag

B g, s A

Deficiency
0

0

Estimable parameter combinations

(Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
B, bg, 0, Ay 0 By ey Ngrt 0
B, g, 0, A, 0 B, b bg, A 0
B g 0 Agy 0 B, b, Pg: Ag 0
B g, 0 Ay Y B, b, pgs A, 0
By ®g, P, gt 0 B be Py At 0
B. g, g, A 0 B de Py Mgy 0
B, dg Py Ag 0 B, e, Py Mgy 0
B, g bg, A, 0 By e g Art 0
B, bg, Py, Ay 0 B, de by, Ayt 0
By bgs Pgs Agy 0 B, b, e A 0
By bg, Py Agy 0 B de Py Ag 0
By g: Pgs At Y B, b, P A, 0
B, dg, Pg Mgt 0 B, b Py Ay 0
By &g P A 0 By e P Agy 0
B, bg. P, Ag 0 B bt P Ag 0
B, &g, e A, 0 By P Ay 0
B, &g, Py, At 0 B, bt P Agrt 0
B g, Py Agt 0 B Py A 0
By bgs Prs Agy 0 By bes Pyt Ag 0
B g by Ay 0 B, be by A 0
B, bg bty Ag 0 B, b, Py Ay 0
B, g Py A 0 B, bt Py Agy 0
Brdg by Ag 0 Br s Pyt Ngy 0
By &g g A 0 By bt Py At 0
B, bg, Pgss A 0 BobebPgt gt O
B, bgs g Mgy Y By g A 0
B g Dgtr Mgt 0 By bgts P, g 0
B dg, Py Ay 0 B, dges D, A 0
By bgs Pgts Mgt 0 B, dgt, b Ay 0
B, dpp A 0 B, ¢g,np'Ag,r 0
B, bu b, Ag 0 B, dge P, Agy 0
B, be.p, A 0 By g0 Ay 0
B, bu b, Ay 0 B, dger P, Ayt 0
B de 0, Ag, Y B bg1r Py A 0
B b, P Agy 0 By bgp Py Ag 0
B0y At Y B g P A 0

(Continues) (Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
By bgp: Pgs A¢ 0 Bar B, Pg, Ngyt 0
By bgp Pgs Agy Y Bg &, P A 0
B, byt Py Agi 0 Bar b, P Ag 0
B, Pyt bgy Ay 0 Bg b, P A, 0
By &gt Pgs gt 0 Bg &, Py At 0
B g, P A 0 Bar &, by Ay 0
By gt P Ag 0 By, P Mgy 0
B g s A 0 Bar b, 0p Ary 0
Br dgpr 1o Ay 0 By b, P Mgt 0
By dgps 1o Mgy 0 Bg &, Pgp, A 0
B by Pty Mgt 0 Bar . Pyt Ag 0
Br gt Prs Ay Y By &, Pg1s A 0
B b Pt Mgt 0 Bar b, Py A 0
BrdgtsPgrs A Y Bg &, Pgps Agy 0
B bgt: Pyt Ag 0 Bgr Dy Mgt 0
B, dgtiPgs Ay 0 B b, Pg 1 Ay 0
By &gt Pyt At 0 B &, Pt gyt 0
B bgt:Pgp Agy 0 By bgy P, A 0
B dgbgeAge O Bgr §g: 0, g 0
Brbg g Ay O Bar bgo D, A, 0
B gty Ngre O Bgr &g s Ay 0
Bg &, A Y Bgr &g 01 Ag, 0
By b, Ay 0 Ppdpp At O
Bg &0 A, 0 By gs 0, Ay 0
By &P, Ay 0 B g D, gt 0
Bg b0 Ag, 0 By §gs Py A 0
By &: 0, Agy 0 Bgr bg: Pg: Ag 0
Bgr D, Ay 0 By gy Pgr A, 0
By &P, Agrt 0 B bg, Py, At 0
By & pgr A 0 Bgr g Pgr Ag, 0
By b, Pg, Ag 0 By bg, Py, Mgt 0
By .05, A, 0 By O
B s Py, At 0 By g P Agrt O
Bgr &:Pg: Ag, 0 Bgr bgr b1, A 0
By &:Pgs Mgy 0 By g Py Ag 0
Bgr &,Dg, Ary 0 Bgr §gs Py A 0

(Continues)

(Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
Bgr bgs P A 0 Ba bt Py Ngprt 0
Bgs &g Pes Agy 0 B s Pgp, A 0
ﬁg' d’g’ Pt Asyt 0 ﬂg’ de Pgts Ag 0
By bgr bt Ayt Y Bgr bt Pg s Ar 0
By g P At 0 By s Pt At 0
Bgs bg: Pgss A 0 Py bePgphgr O
Bgr bg: Py Ag 0 By br: Py Agy 0
Bgr g Py A 0 Bg bt Py Art 0
Bgs g Pgs A 0 By b6 Py Agre O
By by PgpNgr O By g0 A 0
By bg:bgpNge O g g s Ag 0
Bgr Pgs Py At 0 By g 0 A 0
Bg g Pyt Ngry O Bgr g s Ay 0
By dr 0, A Y By gt Pr Ny 0
Bgr b, P, Ag 0 By gpo s Agy 0
By bp . A, 0 Bar by 05 At 0
B bt A 0 By bgts Py Mgyt 0
By bt P Ag, 0 Bg by Pgs A 0
By e, Agt 0 Bg byt Pgs g 0
By bty Ay 0 Bgr gt gs 0
By PP, Agyrt 0 Bg> gt s Ay 0
By &t P A 0 Bg: gt Pgr Ay 0
By i Pgs g 0 By gtr Py Agy 0
Bgr bt g A, 0 Bg bgt Py Ay O
Bgs s Pgs Ay 0 By bgt:Pgi Ngrr O
By bt Py gy 0 By g Pt A 0
Bg &t Pg Mgy 0 Bg: gt Pt Ag 0
B bts Pgs Ayt 0 Bgr bgts Pt Ar 0
By bt Pgs Ngyt 0 By gt P At 0
By bt bp A 0 Bgr gt Pty Agr 0
Bg: e Pes g 0 B gt Pty Agy 0
By bpbes A 0 Bgr gt s Ar 0
Bg: s Pos Ay 0 By bgPe Agry O
Bgs bt e Agy 0 Bgs dgts P A 0
Bgs bt Py Mgy 0 Bgs bg s Pgps Ag 0
Bgs s Pes Ay 0 By gt Paes Ny 0

(Continues) (Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
Bgr Pgts Pgpr At 0 B, Pgt Agry 0
By g Pyt Agr O B dg 0, A 0
By bge:PgpAge O Berbgr P A 0
B bgpo Py Ay O Bt &g s A 0
By &gt Dt Agrt O Bi g 0, At 0
Bud,p. A 0 B bgr P, Agy 0
B Ay 0 Podpp Ay O
Be d,p, A, 0 Bt g0, Ary 0
B b, 0, Ay 0 B bgy P, Ag 0
Bud,p, Ag, 0 B bg: b, Ag 0
B b0 Mgy 0 Be bg: Pe A, 0
B .o, Ay Y Bts &g Py A 0
Ber b0 Ag 0 B bg: Pt Mg 0
Be b, bg, A 0 Be &g, P Agy 0
Bt b Pg, Ag 0 Bt bg, Pt A 0
Ber b bg, A, 0 Bt» bgr P Agyt 0
B b, bg, At 0 Bt bg, Py A 0
BudPphg, O Podgpphs O
B, gy Mgy 0 B bg: b, A, 0
Ber & bg, Ay 0 B g: bgs Ay 0
Bt §,Pgy Ag it 0 Bt bgy Py Agy 0
Be b b A 0 Bt bg) Py, Agyt 0
B b, b, Ag 0 B bgy Pgs Avy 0
B . A, 0 B g Py g O
Ber &, b At 0 Bt bg: Py, A 0
B, P Ag, 0 B Gy Pgs g 0
Ber &, b, Age 0 Bt bg: Pgtr Ay 0
Bt &b Ay Y B> bgs Pg s At 0
Bt . Pt Mgt 0 Bt Bgs Pyt Agy 0
Ber b bg s A 0 Bes bg: Pg s Ngt 0
Bt b, g1 g 0 Bt bgs Pgps Art 0
Bt &, P, Ay 0 B §g Py Agre O
B &: P Ay 0 B b b A 0
Ber®,Pge Agy 0 B b Ag 0
Bes§,Pg s Mgy 0 B e 0, A 0
Be &, Pgr, At 0 B, bp P, Ay 0

(Continues)

(Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
B b, P, Agr 0 Bobg; Pod1 + B1, br_1Pgr
Br-1/dr-1
ﬂp (l)t, P, Ag,t 0
Brs b, Pg e At 1 Ng’ At 1, 072 P2 Pr_2
B b, P, At 0 Pg2: 1 PgT -1,
ﬂt’ ¢t’ p, Agrt 0 ﬂOpg,lY ﬁo(bl + ﬁlv ¢T— lpg,T
. Proa/dr_q
ﬂpd)ppgy/\ 0 ﬂt'q)t’pg,t’Ag,r 1 Ng, /\g',y Ggy o broo By Proo
Bes bt Pgs Ag 0 Pg2: " Pg7-1
0 BoPg1, Bod1 + F1, br_1Pgr
ﬂtyq)trpgvAr uBT—l/q)T—l
Be» b Pgs Ay 0 B p Py, Mgy 1 Ng, Agps §1s s dr_2 By Br_2,

Pg2s s PgT—1s

B, s Py, Ag, 0
preTe st BobPg1, Bod1 + b1, br_1PgT

Ber Dt Py Av 0 Proa/dr_q
& Pgr A 1 Ng, Appy d1, s b1 _ 0 B2, Br_ s
Bes b Pgs Agrt 0 B bt Py Art g Are G100 Or_2 B2+ Br_2
Pg2s P11
B b6 Pe A 1 NoAs s b1 By o0 Br o BoPg1, Pod1 + B1, dr_1Pg7
P2, Pr-1, Bro1/broq
BoP1, Bod1 + Py, br_1P1. PrhrT_1 BobePgpAgre 1 Ny Agro 10 dr_2 Bos v Br_ o
Bt> b1, Pes Ag 1 Ng, Ag, 1.+ br_2 B2+ Br_ 2, Pg2: s PgT- 1,
b2; =+ Pr—1, BobPg1, Bod1 + b1, br_1Pgr
Bob1, Bod1 + B1, dr_1b1, PrhT_1 Broa/dr-1
Bor bt Pe Ay 1 N, A @, br_2 By Broo ﬂf"b&t’p’A 0
P2, Pr_1s
2 T_1 B bgob Ay 0
Bob1 Bod1 + P1, dr_1P7, PTAT_1
s Gg D A 0
Bt bt Py Ay 1 N, Ay by, brog Bo e Proa P kg '
b2s s Pr—1, ﬂtvq)g,tvpv/\t 0
Bob1 Bod1 + B1, dr_1P7, PTAT_1
ﬂt' q)g,t’ p’ Ag,r O
Bt b, Py Ngr 1 Ng Agp §1, 7+, dr_2, B2, Br_2
P2, Pr_1s Btr &g Py Agy 0
Bob1, Bod1 + B1 1 1PT, PrhT_1 Bes g P Avg 0
Bes bt Pey At 1 Ng, A, &g, - br_ 2 By, Br_ 2
Doy PT_ 1, B d)g,tv p, Ag,r,t 0
BoP1; Bods + B, dr_1P1. Prhr_1 Bt bg g, A 0
Bes b, b Ay 1 N, Aryt, by, ooy br_ g B2y Br_os Ber Byt Py Ag 0
P2, P15
Bob1 Bod1 + P1, dr_1P1, PTAT_1 P g Psr Ar 0
B o s Agrt 1 Ng Agre @1, dr_2 Ba, -+ Br_2, Bt bt gy At 0
P2, PT_ 1
ﬂt' ‘bg,tv Pg, Ag,r 0
BoPy Bod1 + Py, br_1Pr, PrhrT_1
Bt e g s A 1 Ng A, dg, s br_2 Bor o Br_2 Pe bt Psr Mgy 0
Pg2:+Pgr-1 /}hq)gyhpg, Ar,t 0
BoPg1, Bod1 + b1, br_1PgT,
Br_1/dr_a B bgesPg Agre O
ﬂty(btypg,thg 1 Ng’ Ag' ¢'1""'¢T—2’ Boy s Br_o ﬁt,d)g,ppt,/\ 0

Pg2s s PgT_ 1

BoPg1, o1 + B1, br_1PgT,
Br_1/dr_1 Bt g, P, Ay 0

ﬁt’q)t’pg,t’/\r 1 Ng' Ar’ ¢1""’¢T—2’ ﬂ2v"'1ﬁT—2'
Pg2s s PgT -1

Btr bg P Ag 0

Bts &g P At 0

(Continues) (Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
Bt bgts P, Agy 0 Batr G Dgen A 0
Bt byt Py Agy 0 Bgtr &g g 0
Bt gt Py Arp 0 Batr ®:Dg e Ay 0
Bt gDt Agre O Bgtr Py At 0
Bt b g A 0 Byt d:Dg Ay, O
Bi» b Pyt Ag 0 Bgr & Pgp Mg 0
Bt b Do Ay 0 Bats & Dgs Ary 0
Bt g s Py Ay 0 Botr Pyt Ngre O
Bo®gsPgr Agy O Bgtr bg: 0, A 0
B bgpPgrs Agr O Bgts Bg D Ag 0
Bodgp Py Ay O Bgt g0, A 0
Bt PgtrPgpn Agre O Bgtr bgs s Ay 0
o P A 0 Bt bg 0, Mgy 0
Bgtr Py Ag 0 Bgts g Pr Agy 0
Bgr b0 A 0 Bt bgo P Ary 0
Byt &0, A 0 Byt g0, Mgyt 0
Bgtr &0, Ag, 0 Bt g, Pgy A 0
Bgt b0, g 0 Bat bgs Py g 0
Bgtr &0 A Y Byt bg: Py A, 0
Bgtr .0 Ag 0 Bgtr g, Py At 0
Byt & pg, A 0 Bgtr bg: Pg: gy 0
Bt §:Pg: Ag 0 Bgts g Pgr Agy 0
Byt . pg, A 0 Bgt g Py Ary 0
Bt &Py At 0 Byt bg:Pgy Ngrr O
Bgt . Pg, Ay, 0 Bgt g, P A 0
Bt §:Pg: Mgy 0 Bgts g Pr Ag 0
Bgtr ®:Pgs At 0 Bgtr bg: Pe Ay 0
Bgt®:Pg Agre O Bgtr bg: P At 0
Bgtr P A 0 BoprbgPAg, O
Bgtr & Pi Ag 0 Bgtr bg: Py Ag 0
Byt &, P, A 0 Byt bg: P Art 0
Bgtr @, P A 0 Bt bg: P Agrt O
Bgtr &, P, Mg, Y Bgtr bg: Pyt A 0
Byt . b, Mgy 0 Bgt Gg, Pgts Ag 0
Batr . b Ay 0 Bgt g Pyt Ay 0

o

Bt &b Agyt Bt Ggr g At 0

(Continues) (Continues)
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TABLE A4 (Continued) TABLE A4 (Continued)
Model Deficiency Estimable parameter combinations Model Deficiency Estimable parameter combinations
Pstr @y PgeNgr - O Bt s Pgp A 1 Ng, A, b1, -+, dr_2 B2, -+ Bgr_ 20

Pg2s s PgT- 15

ﬂg,t: ¢g‘ Pgts Ag,t 0
Bg0Pg1.P50P1 + Bg1, PgrBgr—1,

s §gs Pgts A 0
Pyt by Pt vt P17_1P1T P 17-1P6 1T

Bgts ¢g, Pgt Ngrt 0 f(ﬂgr'-’ 1)
A 0 ﬂg,b d)ppg_t,/\t 1 Ng, Ay bq, by, ﬁgyzy“', ﬂgj,z,
ﬁg,t:q)trpr pg,Z’ '"'pg,T—l’
Bgt» bt D, Ag 0 BgoPg1.85001 + Bg1, PgrBgr— 1,
—1P11 b6 1T-1PG - 1T

Bt b, o A 0 bir-1P1, : :

s F(Byiob1)
Bt e s A 0 Bt dubgrnAgy 1 Ng, Agps &1, br_2, Bg2r ) Pgr—2
ﬂg,ty ¢'t, P, Ag,, 0 Pg2s s PgT- 15

B DA . Bg0Pg1.85001 + Bg1, PgrBgT— 1,
it P Py Agit
8 ¢ d1r_1P1m o1 7-1P6 1T

Bgtr bt 0, Ay 0 f(Bgird1)
Bgt O P, Agyy 0 Bgt b bgrs gy 1 Ny, Agps g, v+ 1, By s+ Bar_ 2
’ a Pg 2, Pg1_ 1
Byt b Py A 0 Bg0Pg1.85001 + Bg1, PgrBgr— 1,
Byt Op, Pg, Ag 0 ¢1iT—1p1,Ti o Pg_17-1P6 -1,
f(Bgir b1
Bt bt gy A 0
st rete ﬁg,t, b Pgtr Ar,t 1 Ng, Ar,p Gg, oo ﬂg_zy ey ﬂg,'r,z,
ﬂg,t’ ¢t,pg,At 0 Pg 2 Pg1_ 1)

Byt ber g A 0 Bgobg1:Pg0P1 + B Pg1hgr— 1,
s> Pt Py Dgr

d1ro1P1m o1 7-1P6 1T
Byt e, Py Ag 0 f(Bgird1)

Ng, Agro G+ br_2 Bg2, B2
Pg 2, Pg1_ 1)

BgoPg1Pg0P1 + g1, PgrBgr—1,
ki ; P17-1P17 G- 17-1P6-1T
P bl ° f(Bgind1)

Byt e, Pe A 0

Bt be P At 0

Byt e, P, Agyr 0

Byt be Lo Agy 0

Bt Ops Pt At 0

Bgt bePeAgre O

Bgtr Ot g A 1 Ng, A, &gy s br_ 2, Bg o+ Bgr— 2
Pg2, s Pg1_1s

[N

ﬂg,t: (bp Pg, Ar,t 0 ﬂg,t’ q)t’ Pgtr Ag,r,t

ﬂg,t! q)tv pg! Ag,r,t 0

Batr Pyt P, A 0
Bgts g Ps Ag 0
Bgtr g0, A 0
Bgtr bger s Ay 0
Bgtr Pgtr Py Mgy 0
Bats Pgto P Ngy 0
Bgtr bt s Ay 0

Batr Pgr s Ag, s 0

Bg0Pg1:B50P1 + By 1 Pg1hgT— 15 Bt gt Pgr A 0
Gr7-1P1T - Pe_17-1P6 1T
' ' ' ' Bgtr gt Pgs A 0
f(Bgis01) st
Byt Pr, Pyt Ag 1 Ng, Ag, b1, -+, 12, Bg s Bgr— 2 Bgtr byt P Ay 0
Po2: PeT-1 By bgiPpAe O

BgoPg1:B50P1 + By 1 PgrPgr— 15

Bgps GgrsPgs g, O
Gir-1P1r P 17— 1P 11 gt Tette e
f( ﬂg,;, ¢1 ) ﬂg,tv d)g,t’ pgY Ag,t 0

(Continues) (Continues)
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TABLE A4 (Continued) TABLE A5 Comparison of intrinsic and extrinsic parameter

deficiencies in the southern rock lobster data 1999-2006 and the

Model Deficiency Estimable parameter combinations walleye data 2009-2011
ﬂg,t’ ¢g,tv pg’ Ar,t 0 oo e . e
Intrinsic Extrinsic Deficiency
ﬂg,ty d)g,p Pqs Agﬂ 0
Model Deficiency Lobster Walleye
B ,pd) o+ Py A 0
e B b Do gt 0 0 5
R Bo bt Py Mg 0 0 5
Bgtr bgr P A 0 B bgr Do A 0 0 5
ﬂg,t! ¢g’t, pp At 0 ﬂtv ¢g,t’ pg,tv A 0 0 5
B A 0 Bes g Pgr Nt 0 0 1
Lt Pgtr Pt g
s shTR e Bes By Py Ag 0 0 1
ﬂg,t’ ¢3,t' ptY Ag,t 0 ﬂtr ¢g,tv pg' At 0 0 1
Bgts g e Ay O Brr g P A 0 0 1
s g ts Pgs A 0 0 2
ﬂg,t’ ¢g,tv ptv Ag,r,t 0 ﬂt ¢g,t pg at
ByobgePguh G Ny A, Gy, g r— 2By B e ° ° 5
, y p , y N AR _ o, b0ty _ 9
gt Pgtr Mgt g mg,l g, T—2Pg2 g, T — 2 ﬂty 4)th1 Pr At 0 0 2
Pg2s s PgT— 15
s Dot Ppy A 0 0 2
ﬂg,Opg,lv ﬂg,Oq)g,l + ﬂg,iv ¢3,T— 1Pg 1 b ¢g,t Pe
PgrBgT-1 B b s Agy 0 0 0
ﬂg,p ¢g,p Pgts Ag G Ng: Ag, ¢g,1y y ¢g,'r_2yﬂg,2y ety ﬁgyT_Zy ﬂt1¢g,t’p’ Ag 0 0 0
Pg2s s Pg1_ 1, Bts g0, Ay 0 0 0
BgoPg 1 Bgodgr + Bg1 Ggr—1PgT B g s A 0 0 0
PegrBgr-1
Boobyibye, G Ny A iv g7 2By P P o Pats Bt ° ° °
gt g,hpg,t’ r g I Pg 15" WgT 2P g2, * "5 PgT—2
s &gs Pgis A 0 0 3
Pg2s s PgT- 15 be ¢g Py g
s gy Pgis I\ 0 0 3
BgoPg 1 Bgodg1 + Bgr, dgr_1PgT B by Pyt e
PgrPgr—1 Bt g, Pgr A 0 0 3
BgtbgoPge Ay G Ng, Ay Pg1, -+ bg 72852, Bgr -2 Bt bg:Pgy Agy 0 0 0
Pg2s+* Py 15 Bt bgPgs Ay 0 0 0
BgoPg1 Bgodsa + B bgr—1PgTs Bes g Py Ay 0 0 0
PgrBer-1
Bgt . A, G NgAch) Pgr_2P B e ° ° °
ot Pt Pgts g, » Dgp Pg 15 Pgr_2P g2, Pgr_2
gt Ygt Fgtr Hgr g g.r“ g:t t:t E:t kS ﬂty%‘phAg’t 0 0 1
Pg2s s PgT- 1
s &gs Pps A\ 0 0 1
BgoPg 1 Bgobg1 + Bg1 Gg7—1PgT B @5 Pe Ag
PgrPgT -1 Bt bgr e At 0 0 1
ﬁg,tY (l)g,ty pg,thg,t G Ngr Ag,tv q)g,lv h ¢g,T—2vﬁg,2» ) ﬂg,T—Zv ﬂp ¢g: Ppl\ 0 0 1
Pg2, " PgT_1, Bt bgr D, Agy 0 0 0
/’g,opg/,}l' Bgobga + P bgr—1Pg7 Be g P, A 0 0 0
PgrhgT—1
Bgt ®. Ay G N, SA gq) Pgr_2P B P darp ° ° °
gt Pgtr pg,t’ Tt g r,.t:. g1 " WgT—-22Pg2) " » PgT—-2» ﬂp ¢3, P, A 0 0 0
Pg2, P15
s Dgs Pgis A\ 1 1 3
BgoPg 1 Bgobg1 + Bg1, Pg1_1PgT Be &g Pst Mgy
’pg,Tﬂg,T— 1 ﬂp ¢g: Pg,t, Ag 1 1 3
ﬂg,p ¢g,tv Pgts Ag,r,t G Ng: Ag,r,tv ¢g,1: sy d)g,r_ zyﬂg,zy sy ﬁg,T_ 2% Pe ¢gv Pgt Ay 1 1 3
Pg2s s PgT— 15 Bt g Py A 1 1 3
ﬂg,opg/,}lv Bgobg1 + P bgr-1Pgr Bis by Pgs Agy 0 0 0
PgrhgT—1
e Bos by Py Ag 0 0 0
Bt g Pgs Ay 0 0 0
Table A5 shows a more extensive comparison of the extrinsic pa- B bgPg A 0 0 Y

rameter redundancy in the southern rock lobster vs. walleye data

sets for various models. (Continues)
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TABLE A5 (Continued)

Intrinsic Extrinsic Deficiency

Model Deficiency Lobster Walleye

B bt bt Agt
Bts e s Ag
B o Prs Ay
Bt p Py A
Be b P, Agy
Bt i Ag
B & 0 A
Be e b, A
Be» 1 Dg gt
Bt b, Pgr Ag
Be &, Py Ay
Bt b, Pg s A
Ber d1Dgs Agy
B d:Dg, Ag
B dDgs Ay
B b pg, A
Be &, b, Mgy
Ber b, Py, Ag
Be &, 0, A
Bt &, pp, A
Be &, b, Agy
B b0 Ag
Be &, 0, Ay
Be b0, A

O O O O O O O O O O O O O O O O O O O O ~»r K»r K, B,
O O O O O O O O O O O O O OO O O O O O r» K»r k» B,
O O O O » » P kP O O O O N N N N O O O O N DNMDNMNDN



