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The use of metabolomics as a comprehensive tool in the analysis of metabolic profiles in
disease progression and therapeutic intervention is rapidly advancing. Yet, a single
analytical platform could not be applied to cover the entire spectrum of a biological
sample’s metabolome. In the present paper, multi-platform metabolomics approaches
were explored to determine the diverse rat sera metabolites extracted from
intracerebroventricular lipopolysaccharides (LPS)-induced neuroinflammed rats treated
with oral therapeutic interventions of positive drug (dextromethorphan, 5 mg/kg BW); with
Clinacanthus nutans (CN) aqueous extract (CNE, 500 mg/kg BW); and with phosphate
buffer saline (PBS) as the control group for 14 days. Analyzed by nuclear magnetic
resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) techniques,
this study depicted the potential of metabolites associated with neuroinflammation and
verified by MetDisease. The key observations in the perturbed metabolic pathways that
showed ameliorative effects were linked to the class of amino acid and peptide metabolism
involving valine, leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and
tryptophan biosynthesis; and phenylalanine metabolism. Lipid metabolism of
arachidonic acid metabolism, glycerophospholipid metabolism, terpenoid backbone
biosynthesis, and glycosphingolipid metabolism were also affected. Current findings
suggested that the putative biomarkers, especially lysophosphatidic acid (LPA) and 5-
diphosphomevalonic acid from glycerophospholipid and squalene/terpenoid and
cholesterol biosynthesis, respectively, showed the ameliorative effects of the drug and
CN treatments by controlling cell differentiation and proliferation. Our study proved that the
complex and dynamic sera profiling affected during the CN treatment was greatly
influenced by the analytical platform selection as integration between the two data
yielded a more holistic summary of the metabolite pattern changes. Hence, an
evidence-based herb, such as CN, can be used for novel diagnostic tools in the quest
for ethnopharmacological studies.
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INTRODUCTION

Neuroinflammation is a medical phase that corresponds with the
protective host feedback of prolonged complex responses in any
aspect of brain injury, which results in activation of glial cells,
release of inflammatory mediators, such as cytokines and
chemokines, and reactive oxygen and nitrogen species
(Sochocka et al., 2017). When it is not treated, it could be one
of the main originators of severe neurodegenerative diseases. In a
recent report, Malaysian Burden of Disease and Injury Study:
2009–2014 by the Ministry of Health (MOH), neurological
diseases were shown to be among the top 12 diseases that
cause morbidity and mortality in Malaysia (Ministry of Health
Malaysia (MOH), 2017). Hence, the exploration of
neuroprotection through the pharmacological application of
anti-inflammatory agents using either synthetic drugs or
natural products is rapidly increasing in popularity since both
are well documented (Shal et al., 2018).

The limitation of the effective diagnostic methods for the
pharmacotherapeutic intervention prompts the need for
metabolomics applications. Using cells, tissues, and biofluids
as the matrix in metabolomics offers a wealth of information
for the metabolic profiling of direct diagnosis, therapeutic
strategies, and system biology studies (Benaki and Mikros,
2018). For the targeted responses to pathogenesis, tissue
metabolomics is deemed to be the most powerful platform as
it provides direct information on the metabolic modification and
upstream regulation (Johnson et al., 2016). However, obtaining
brain samples is invasive, limiting the clinical application. Thus,
serum metabolomics is a reliable choice for biomarker discovery
in neuroinflammation.

Clinacanthus nutans (CN) extracts (CNE) are well known for
their anti-inflammatory activities (Pongphasuk et al., 2005; Khoo
et al., 2018). Extensive studies in a comprehensive metabolomics
setting via proton nuclear magnetic resonance (1H NMR)
analysis have successfully elucidated the ameliorative effects of
CNE treatments in the serum (Ahmad Azam et al., 2019) and
brain (Ahmad Azam et al., 2020a) of lipopolysaccharide (LPS)-
induced neuroinflammed rats. The use of integrative omics
between metabolomics and cytokines microarray (genomics)
on brain tissue has resulted in the proposed ameliorating
effects of CN treatment in an LPS-induced rat model. This
study has successfully observed the increase of anti-
inflammatory cytokine levels of IL2 and four and the decrease
in notable biomarkers for neuroinflammation, such as choline,
glutamate, and acetate, similar to the positive drug,
dextromethorphan (DXM) (Ahmad Azam et al., 2020b). A
metabolomics approach was also used for the serum profiling
of the same CN intervention model wherein the profile of the
overall mechanism has revealed several improvements in
metabolic pathway of the neuroinflammation biomarkers:
lactate, glucose, and pyruvate (glycolysis and gluconeogenesis);
citrate and succinate (histidine); creatine, ethanol, choline, and
acetate (lipid metabolism); citrate, and succinate (TCA cycle);
isoleucine, leucine, and glutamate (amino acid metabolism); and
2- and 3-hydroxybutyrate (fructose and mannose metabolism,
and butanoate metabolism) (Ahmad Azam et al., 2019).Yet,

recently, the metabolomics community realized that a single
analytical platform could not detect all metabolites in a
biological sample. As a consequence, data integration between
multiple analytical platforms to study a mammalian system was
recommended (Dunn et al., 2011). For example, an epidemiology
study in the human serum metabolome (HUSERMET) project
has integrated data from gas chromatography-mass spectrometry
(GC-MS), ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS), and nuclear magnetic resonance
(NMR) spectroscopy on human serum (http://www.husermet.
org/).

Combining two most widely used analytical tools, NMR and
liquid chromatography-mass spectrometry (LC-MS) (Burgess
et al., 2014) for metabolomics studies would enhance the
NMR limitation in the analysis of a large number of low
abundance metabolites and result in increased secondary
metabolite detection and identification (Zhang et al., 2014).
The emerging separation mode in the liquid chromatographic
part uses a hydrophilic interaction column (HILIC) as the
stationary phase with high organic solvent as the mobile phase
in order to retain polar/ionic metabolites. In turn, this offers
compatibility with the mass spectrometry (MS), making HILIC
an attractive complementary tool in metabolomics studies
compared to the widely used reverse-phase (RP)
chromatographic columns (Theodoridis et al., 2013).

Hence, the primary objective of this study was to identify the
ideal biomarkers in the serum metabolome of neuroinflammed
rat model treated with CNE based on amulti-platform (NMR and
LC-MS) metabolomics approach.

MATERIALS AND METHODS

Solvents and Chemicals
All rats consumed the normal rat chow from Specialty Feeds
(Glen Forrest, Australia). The phosphate buffer saline (PBS),
lipopolysaccharide (LPS) derived from Escherichia coli 026: B6,
and dextromethorphan hydrobromide (DXM) were obtained
from Sigma Aldrich (St. Louis, United States). The NMR
analysis used solvents in deuterated form, including deuterium
oxide (D2O, 99.9%), deuterated methanol (CD3OD, 99.9%),
deuterated sodium hydroxide and potassium dihydrogen
phosphate were purchased from Merck (Darmstadt,
Germany), and 3-Trimethylsilyl propionic acid (TSP) was
purchased from Sigma Aldrich (St. Louis, United States). The
LCMS analysis acquired LC-MS grade methanol, acetonitrile,
water, and 0.1% formic acid from Merck (Darmstadt, Germany).

Preparation of the CN Aqueous Extract and
Phytochemical Analysis
The procedures followed the methods described by Ahmad Azam
et al. (2020b). In brief, the CN plant was authenticated by a
botanist and the voucher specimen (SK2883/15) was kept at the
herbarium of the Institute of Bioscience, Universiti Putra
Malaysia. The CN leaves collected in December 2015 at
Sendayan, Negeri Sembilan, Malaysia (coordinates: 2°38’03.4"N
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101°53’20.5"E) was extracted with ionized water by immersing it
for 3 days at a ratio of 1 g dried leaves: 50 ml solvent. The process
was repeated two times, and the extract was lyophilized
(extraction yield: 30%w/w) and kept frozen in −80°C. The
relative quantification of chemical markers for the CN
aqueous extract via 1H NMR metabolomics approach was
conducted as reported by Ahmad Azam et al. (2020b).

Experimental Design of Neuroinflammation
Rat Model
The animal tests were conducted, handled, and performed
following the ethical guidelines approved by Universiti Putra
Malaysia Animal Ethics Committee (Approval number: UPM/
IACUC/AUP189 R070/2015). The animal experiments were
carried out following the housing specification of Animal
Biosafety Level-2 (ABSL-2) at Laboratory of Animal
Resources, Universiti Kebangsaan Malaysia (Bangi, Malaysia)
with the room temperature maintained at 24 ± 2°C, a light cycle
of both dark and light for 12/12 h, and free access to food and ad
libitum water.

All rats were brought in from the in-house service of the same
laboratory and were acclimatized for 7 days before the
experiment. Only 12 male Sprague Dawley (SD) rats of
13 weeks of age (300 ± 50 g) from the overall 35 rats
published in Ahmad Azam et al. (2019) were used in this
study. All rats, three in each group, were divided into the
following: Group 1 was normal rats injected with phosphate-
buffered saline (PBS)+water as the control group (N); Group 2
was LPS-induced rats administered with water (LPS + water);
Group 3 was LPS-induced rats treated with 500 mg/kg of BW
CNE (LPS+500CN); and Group 4 was LPS-induced rats treated
with dextromethorphan 5 mg/kg of BW (LPS + DXM).

The induction of either 10 μl phosphate buffer saline (PBS) to
the normal rat groups or lipopolysaccharides (LPS, 1 μg/1 μl) to
the neuroinflammed groups have been described in previously
published manuscripts (Ahmad Azam et al., 2019; Ahmad Azam
et al., 2020a). To summarize, the rats were anesthetized with
ketamine-xylazine (K-X); K: 80 mg/kg BW; X: 10 mg/kg of BW
through intraperitoneal (i.p) route and they underwent
stereotaxic surgery with a single intracerebroventricular (ICV)
injection at the location of substantia nigra at the right side of the
brain with a consistent rate of 3 μl per minute using a Harvard
Apparatus Pump 11 elite infusion syringe via a Hamilton syringe
(Holliston, Massachusetts, United States). In total, 1 week after
the injection, the rats were administered with each treatment by
oral gavage for 14 consecutive days. The CNE was prepared
3 days before each use and preserved at 4°C whereas DXM was
freshly prepared before each use.

Serum Collection
All rats from the groups were fasted for 14 h and then euthanized
with K-X. Then, the terminal process via exsanguination was
done by cardiac puncture. The serum was procured from the
collected blood sample in a plain vacutainer, and centrifuged for
10 min at 4°C. The collected supernatant was stored at −80°C until
analysis.

Metabolite Fingerprinting of Serum Using
1H NMR Analysis
The 1HNMR spectroscopic serum data obtained as described in a
previously published report was further utilized in this study. This
was due to the success of the OPLS–DA model that revealed the
potential ameliorative effects of CNE by four selected groups of
normal (N), LPS + water, LPS+500CN, and LPS + DXM rats.
Three representatives were randomly picked from each of the
selected groups in the OPLS–DA data analysis of sera samples
(Ahmad Azam et al., 2019).

Acquisition and Pre-process of LC-MS Data
of Sera
A total of 12 serum samples (3 samples from each four selected
groups of N, LPS + water, LPS+500CN, and LPS + DXM) were
used. Each of the 50 µl serum samples were added with 400 µl
methanol in a sample tube placed on ice. The samples were
vortexed for 2 min, centrifuged at 5000 rpm for 4 min at 4oC
before 400 µl of the supernatant was transferred, and freeze-dried
for 8 h. The samples were kept in −80°C for not more than
2 weeks until analyzed.

The freeze-dried samples were reconstituted with 200 µl
acetonitrile: water (95:5) prior to usage. The samples were
vortexed for 2 min, centrifuged for 5 min at 1,000 rpm, and
then syringe-filtered using 0.45 µm, 13 mm, and PTFE filter
membranes. The samples were transferred into autosampler
vials from which 20 µl of the sample was injected into the
Agilent 1,290 Infinity LC system coupled to Agilent
6,550 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF)
mass spectrometer (Agilent Technologies, United States).
The HILIC column (2.1 × 100 mm, 1.7 µm, Waters, Milford,
MA) was eluted using an isocratic solution of MeOH with 0.1%
formic acid as the mobile phase at a constant flow rate of
300 µl/min for 15 min including the equilibration time. This
method was modified from the procedure for UPLC-TOF MS
on HILIC column in a broad-spectrum analysis [Center
Specific Procedure (CSP) no: RTI-RCMRC-LCMS-01 ver.00]
by the NIH Eastern Regional Comprehensive Metabolomics
Resource Core at the Research Triangle Institute International,
2011 United States (www.rti.org/rcmrc, accessed on April 10,
2017).

An electrospray ionization (ESI) source interface was
used and set in dual-mode of positive and negative. The
following parameters were employed: capillary voltage,
3.5 kV; drying gas flow, 14 L/min; gas temperature: 200oC;
nebulizer pressure, 35 psig.; fragmentor voltage, 175 V; and
skimmer voltage, 65 V. The data were collected in a centroid
mode, and the mass range was set at m/z 50–1,000 using the
extended dynamic range. The trace of metabolites was referred
to several main available computational tools for LC-MS data,
namely, Agilent Masshunter Qualitative Analysis Ver. B.050.00
(MQA, RRID:SCR_019081) and Agilent Mass Profiler
Professional B.05.01 (MPP), and open-source softwares, such
as MZmine (RID:SCR_012040) (Pluskal et al., 2010), XCMS
(RRID:SCR_015538) (Smith et al., 2016), and Metabolite
Automatic Identification Toolkit (MAIT) of R package
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(RRID:SCR_001905) (Fernández-Albert et al., 2014). Lastly,
each of the metabolite’s mass representative was matched
and annotated via MPP, HMDB MS search (HMDB, RRID:
SCR_007712), KEGG (RRID:SCR_012773) compounds,
Chemspider (RRID:SCR_006360) and MassBank (RRID:
SCR_015535).

All processes were conducted in R wherein the LC-MS spectral
baselines were corrected, normalized, aligned, and grouped by
isotope. The data were binned into integrated regions with a
width of 0.6934 corresponding to the aligned point. The
processed data were then used for multivariate pattern
recognition analysis.

Multi-Platform Statistical Analysis
Metabolomics Multivariate Data Analysis (MVDA)
The preprocessed data of the different platforms were auto-
scaled in the UV scale by default (van Den Berg et al., 2006).
The visualization was computed for models of principal
component analysis (PCA) and partial least square
discriminant analysis (PLS-DA). All of the multivariate
data analyses were performed using the software package
SIMCA-P (version 13.0. Umetrics, Umeå, Sweden, RRID:
SCR_014688). The score plots were based on the two
principal components (PC1 and PC2) in which the
corresponding loading plots indicated the metabolites
associated with the group separation. The validation of the
model was done by using the R2 and Q2 values of cross-
validation, CV-ANOVA, misclassification Fisher probability,
and permutation test (Eriksson et al., 2006). Hierarchical
cluster analysis (HCA), using Euclidean distance and Ward’s
linkage method, was applied to depict the similarities of the
samples analyzed by the different analytical platforms. The
heat map generation was done using Metaboanalyst 3.0
(RRID:SCR_015539).

Metabolomics Univariate Data Analysis (UVDA)
Metabolite concentration difference based on the normalized
binned data among the groups (N, LPS + water, LPS +
CN500, and LPS + DXM) was evaluated in terms of fold
change (FC), and the p-value was assessed using Student’s
t-test in GraphPad Prism V 7.0 (GraphPad Software Inc., San
Diego, United States, RRID:SCR_002798). The displayed
metabolites with an increase (+) or decrease (−) in FC
values and lower p-value (<0.05) were selected as
significantly different.

Pathway Analysis
The overall possible metabolic pathways were constructed using
the Metabolic Pathway Analysis (MetPa, RRID:SCR_015539)
(http://www.metaboanalyst.ca) (Xia et al., 2015), MetScape 3.1.
1 (RRID:SCR_014687) of pathway filter and MetDisease plug-in
application (Karnovsky et al., 2012; Duren et al., 2014) of the
JAVA software Cytoscape ver. 3.7.1. (RRID:SCR_003032)
(Nishida et al., 2014). The possible pathways were also
annotated via the KEGG (https://www.genome.jp) and HMDB
(http://www.hmdb.ca/metabolites) libraries through metabolites
pathway search.

RESULTS AND DISCUSSION

A comprehensive phytochemical analysis for CNE was first
reported under the CN project funded by the Malaysian
Ministry of Agriculture (Khoo et al., 2018). The team revealed
the quantification of four compounds, namely, schaftoside
(0.65 ± 0.03 mg/g) followed by isovitexin (0.128 ± 0.007 mg/g),
orientin (0.005 ± 0.00 mg/g), and isooreientin (0.004 ± 0.000 mg/
g), via HPLC-DAD-ESI-MS/MS (Khoo et al., 2018). The result
was parallel to our findings from which the highest relative
intensities (height/area under peak) based on the binned 1H
NMR spectra were schaftoside (0.2), vitexin (0.07), and
orientin (0.009) (Ahmad Azam et al., 2019). Besides that, the
recently published paper on CN aqueous extract phytochemical
analysis related to anti-neuroinflammatory activities in LPS-
induced BV2 cells has revealed that the bioactivity might
depend on the synergistic effects between the reported
30 possible marker compounds. These markers, namely,
schaftoside, acetate, propionate, alanine, clinacosides A–C,
monoacylmonogalactosylglycerol, fructose, ascorbic acid,
choline, stigmasterol-β-glucoside, citric acid, valine, catechin,
orientin, chlorogenic acid, leucine, butyrate, cycloclinacoside
A1 and A2, sucrose, vitexin, β-sitosterol, β-glucose, vanillic
acid, gendarucin A, betulin, isoleucine, and a mixture of
cerebrosides, were identified via 1H NMR metabolomics
analysis of CNE treatment (Ahmad Azam et al., 2020b). Since
both in vitro and in vivo results of the 1H NMR metabolomics
approach have established that CNE can ameliorate
neuroinflammation, studies integrating the in vivo sera results
of 1H NMR data with LCMS data were further elaborated.

In total, 12 samples from four different groups of rat
treatments used in this study were analyzed by 1H NMR, and
LC-MS (ESI+) and (ESI−). The three sets of preprocessed data
from these two analytical methods were concatenated, resulting
in a total of 3,000 binned data of LC-MS (ESI+ and ESI− of each
1,375 m/z-rt bins) and 1H NMR (250 relative intensity bins). All
of the data were subjected as variables in the multivariate data
analysis techniques, including PCA, PLS-DA, and HCA.

The XCMS package in R was used to visualize and preprocess
the LCMS data by extracting relevant information from the raw
LCMS data by peak identification, matching, and nonlinear
retention time correction (alignment) (Grace and Hudson,
2016). After grouping matched peaks, XCMS used the groups
to identify and drift the alignment of retention time from run to
run. The representatives of the aligned chromatogram using an R
package and MS spectra in ESI+ and ESI− (LC-MS) for all rat
serum samples obtained from all groups are provided in
Supplementary Figure S1. Supplementary Figure S2
visualizes all the centroid-raw data of LCMS spectra using
MQA. The sera 1H NMR spectra for the four groups can be
referred in the published manuscript (Ahmad Azam et al., 2019).

For the multivariate data analysis, unit variance (UV) scale
selection was used for both ESI+ and ESI− of the LC-MS data. To
standardize all spectroscopic data, the previous Pareto 1H NMR
sera results for the four groups were also explored using the UV
scale. The use of a UV scale for the multi-platform analysis is well
established and preferred as it gives equal influential importance
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to a model (Eriksson et al., 2006; Mumm et al., 2016). The
findings from the different analytical platforms were separately
visualized in the Supplementary Figure S3A–F. Almost all of
the PCA and PLS-DA score plots showed a similar pattern
distribution between groups based on the mean PC (principal
component) scores trajectories calculated from PC-1 and
PC-2.

For Supplementary Figure S3, all of the score plots for both
unsupervised (PCA) and supervised (PLS-DA) models
followed the rule of thumbs whereby the R2 value was
larger than Q2 value. A Q2 value greater than 0.5 is
considered as the minimum requirement for appropriate
use in a metabolomics analysis, yet the model is still valid if
the Q2 is above 0 (Eriksson et al., 2006). Hence, all of the
method platforms produced valid models as they complied

with the R2 and Q2 criteria. Each analytical platform revealed
clear discrimination between normal and LPS groups treated
with CN500, DXM, and water along the PC1. Although the
normal and treated groups were discriminated by PC1, the
distribution of each LPS-treated group with CN500 and DXM
(positive drug control) could only be differentiated into two
clusters by PC2. Hence, to investigate the global metabolomics
alterations in the neuroinflammed rats treated with CN500
and DXM (positive control), all data acquired in both ion
modes of LCMS and NMR were integrated to yield a
holistic view.

The tree diagram of the HCAwas utilized to observe the points
that joined together sooner or later for high or low similarity,
respectively (Tullis and Albert, 2013). The height of the clusters
depicts the distance between each cluster using the Euclidean

FIGURE 1 | (A) PLS-DA score plot of four selected groups, (B) the overall loading scatter plot, and (C) loading scatter plot of the selected variables according to VIP
value >1.3 of the two analytical methods. U � Unknown.
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TABLE 1 | Major biomarkers of neuroinflammatimeon induced by LPS in rats and their fold change values due to the treatments with CN or DXM.

No VIP value Putative annotated
metabolites

Formula Analytical
method

m/z
or ppm

RT
(min)

Fold change Related pathway

CN/LPS DXM/LPS

1 1.704 2-Octenoylcarnitine C15H29NO4 LC-
MS (ESI+)

287.20965 0.91 ↑8.02* ↑1.81 Lipid metabolism pathwaya

2 1.692 Androstenedione C19H30O2 LC-
MS (ESI+)

290.22458 0.93 ↑7.34* ↑2.63* Steroid hormone
biosynthesisb

Androgen and estrogen
biosynthesis and
metabolisma,c

3 1.662 8-Hydroxy-deoxyguanosine C10H13N5O5 LC-
MS (ESI+)

283.09166 0.76 ↑8.37 ↑1.82 Purine metabolisma

4 1.658 Choline C5H14NO LC-
MS (ESI+)

104.10753 1.16 ↑1.39 ↓0.93 Glycine, serine and threonine
metabolisma,b,c

Glycerophospholipid
metabolisma,b,c

5 1.639 Allantoin C4H6N4O5 LC-MS
(ESI-)

158.04399 1.24 ↑1.22 ↓0.42* Purine metabolisma

6 1.619 L-Phenylalanine C9H11NO2 LC-
MS (ESI+)

165.07897 3.06 ↑8.62 ↑1.23 Phenylalanine, tyrosine and
tryptophan biosynthesisa,b

Aminoacyl-tRNA
biosynthesisa,b

Biopterin metabolisma,c

7 1.606 U1 C19H24N2 LC-
MS (ESI+)

280.19394 1.02 ↑3.03* ↑1.34 -

8 1.576 Deoxycholic acid C24H40O4 LC-MS
(ESI-)

392.29265 0.84 ↑1.92 ↓0.23 Bile acid metabolism*h

Cell signaling h

9 1.558 U2 C16H42N10O6S LC-
MS (ESI+)

502.2997 1.44 ↓0.94 ↓0.66 -

10 1.550 U3 C21H52N26 LC-
MS (ESI+)

668.487 2.08 ↓0.49 ↓0.07 -

11 1.532 Ethanol - NMR 1.2 - ↓0.11** ↓0.22** Glycolysis or
gluconeogenesisa,b,c

12 1.531 Isoleucine - NMR 0.92 - ↓0.42* ↓0.36* Aminoacyl-tRNA
biosynthesisa,b

Valine, leucine, isoleucine
biosynthesisa,b,c

13 1.484 Acetate - NMR 1.88 - ↓0.66 ↓0.50* Glycolysis or
gluconeogenesisa,b,c

Pyruvate metabolisma,b

TCA cyclea,c

14 1.462 7,8-Dihydropteroic acid C8H14N10O4 LC-MS
(ESI-)

314.11273 1.02 ↓0.39** ↓0.29** Folate biosynthesisa,b

15 1.450 Lactate - NMR 1.36 - ↓0.68** ↓0.76 Glycolysis or
gluconeogenesisa,b,c

Pyruvate metabolisma,b

16 1.429 5-Diphosphomevalonic acid C6H14O10P2 LC-MS
(ESI-)

308.00621 0.73 ↑ 2.84 ↓0.88 Terpenoid backbone
biosynthesisa,b,c

Squalene and cholesterol
biosynthesisc

17 1.401 Chenodeoxycholic acid disulfate C24H40O10S2 LC-MS
(ESI-)

552.20628 0.84 ↑ 1.65* ↑ 2.03* Lipid metabolisma

Cell signalinga

18 1.400 LPA(18:2(9Z,12Z)/0:0) C21H39O7P LC-MS
(ESI-)

434.24334 2.49 ↑ 1.55* ↑ 2.59* Glycerophospholipid
metabolisma,b,c

19 1.392 Canrenone C22H28O3 LC-MS
(ESI-)

340.20384 0.92 ↓0.52* ↓0.38** Lipid metabolism a

Cell signalinga

20 1.384 Palmitic acid methyl ester C17H34O2 LC-MS
(ESI-)

270.25588 2.67 ↑ 1.56 ↑ 5.48 Glycerophospholipid
metabolisma,b,c

21 1.383 PI(18:1(9Z)/20:3(8Z,11Z,14Z )) C47H83O13P LC-MS
(ESI-)

886.55712 0.90 ↑ 1.20 ↑ 2.12* Cell signal a

Signal transduction a

Phospholipid metabolism a

Phosphatidylinositol
phosphate metabolismb

22 1.372 PE(22:4(7Z,10Z,13Z,16Z)/19:O) C46H84NO8P LC-
MS (ESI+)

849.62475 1.76 ↓0.73 ↓0.63 Glycerophospholipid
metabolisma,b,c

(Continued on following page)
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distance and Ward’s method. A tall vertical line means the
clusters are far apart and vice versa.

Multi-Platform Metabolomics Analysis of
Sera
The PCA model for multi-platform integration data in
Supplementary Figure S4 yielded an R2 value of 0.699 and
Q2 value of 0.495. The first PC explained 36.6% of the total
variation, mainly separating the normal and LPS-induced
neuroinflammed rats. Notable grouping between the groups
of LPS + water, LPS + DXM, and LPS + CN500 could be
observed via PC2, which explained 16.6% of the total variation.
However, the random distribution of LPS + CN500 variables
made this group difficult to be clearly discriminated. Thus,

compared to the PLS-DA, the supervised method gave a clearer
observation for pattern recognition, leading to the
identification of the important metabolites responsible for
the discrimination between groups.

PLS-DA Analysis of the LC-MS Sera
Samples
PLS-DA uses the classification technique of linear combination of
original variables to classify label prediction by using zeros and
ones (Westerhuis et al., 2010). Figure 1 reveals a good
metabolomics model of PLS-DA with R2 and Q2 values of
0.743 and 0.731, respectively, for the combination of both
analytical methods of LC-MS and NMR. The variations that
could be explained by each PC were 34.6% (PC1) and 14.5%

TABLE 1 | (Continued) Major biomarkers of neuroinflammatimeon induced by LPS in rats and their fold change values due to the treatments with CN or DXM.

No VIP value Putative annotated
metabolites

Formula Analytical
method

m/z
or ppm

RT
(min)

Fold change Related pathway

CN/LPS DXM/LPS

23 1.367 Trans-2-dodecenoylcarnitine C19H35NO4 LC-MS
(ESI-)

341.25660 1.01 ↓0.45* ↓0.30* Lipid metabolism pathway a

Cell signaling a

24 1.365 7′-carboxy-gamma-chromanol C20H30O4 LC-MS
(ESI-)

334.21440 0.95 ↑ 2.28 ↑ 1.51 Dehydrogenation
carboxylate producta

25 1.363 1-Methylinosine C11H14N4O5 LC-
MS (ESI+)

282.09641 1.00 ↑ 1.21 ↓0.37* Purine metabolisma

26 1.340 DHA ethyl ester C24H36O2 LC-
MS (ESI+)

356.27153 2.13 ↑ 0.01 ↑ 8.9** Arachidonic acid
metabolisma,b,c

Biosynthesis of unsaturated
fatty acidsa,b

27 1.339 Leucine - NMR 0.96 - ↓0.58* ↓0.50* Aminoacyl-tRNA
biosynthesisa,b

Valine, leucine, isoleucine
biosynthesisa,b,c

28 1.337 Cholesterol sulfate C27H46O4S LC-MS
(ESI-)

466.31168 0.84 ↑ 1.08 ↓0.98 Steroid hormone
biosynthesisa,b,c

29 1.332 Lacto-N-triose C18H46N10O7S LC-
MS (ESI+)

545.19558 1.03 ↑ 2.54* ↑ 2.91* Oligosaccharides

30 1.328 2,4-Dimethyl-tetradecanoic acid C16H32O2 LC-MS
(ESI-)

256.24023 1.12 ↓0.53* ↓0.15* Lipid metabolism a

Cell signaling a

31 1.319 U4 C19H17NOS LC-MS
(ESI-)

307.10308 0.97 ↑ 1.04 ↓0.31** -

32 1.316 LysoPE(24:0/0:0) C29H60NO7P LC-MS
(ESI-)

565.41073 1.15 ↑ 0.60 ↓0.38 Glycerophospholipid
metabolisma,b,c

33 1.313 Arachidonic acid C20H32O2 LC-MS
(ESI-)

304.24023 2.39 ↓0.79 ↓0.36* Arachidonic acid
metabolism a,b,c

Leukotriene metabolism c

Omega-6-fatty acid
metabolism c

Prostaglandin formation
from arachidonate c

34 1.311 2-Amino-4-oxo-4-alpha-hydroxy-6-
(erythro-1′,2′,3′-trihydroxypropyl)-
5,6,7,8-tetrahydroxypterin

C9H15N5O8 LC-
MS (ESI+)

321.09206 0.80 ↓0.32* ↓0.36* Biopterins and derivatives a,c

35 1.303 C16 Sphinganine C16H35NO2 LC-
MS (ESI+)

301.29807 1.61 ↑ 0.14 ↓0.34* Sphingolipid metabolism a,b

↑ and ↓ values denote an increase and decrease, respectively. **p < 0.001, and *p < 0.05 show significant differences as compared to LPS + water (negative control). Fold change (FC)
value in bold represents metabolites difference in pattern alteration between DXM and 500CN, while italic serves for metabolites which have either one value significant between DXM or
CN500, respectively. The possible pathway was suggested by.
aPathway from KEGG and HMDB.
bFor MetaboAnalyst 3.0 pathway analysis.
cMetscape plugin in Cytoscape.
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(PC2) with a total of 49.1% of explainable variations in this
model. As shown in Figure 1A, the score plot of PLS-DA revealed
a clear discrimination along PC1 between normal (N) and LPS
groups treated with DXM, CN500, and water. Rats treated with
CN500 clustered together with LPS + DXM on the right side of
PC1 but separated from the LPS + water group by PC2. This
grouping implied the possibility of CNE positively affecting the
neuroinflammatory condition as it clustered closely to the
positive control (DXM).

Figure 1B reveals the complexity of the overall data
compilation in the loading scatter plot. The VIP score is a
weighted sum of squares of the PLS loadings, considering the
amount of explained Y-variation in each dimension. The
metabolites scoring VIP values higher than one were the most
influential contribution to the model (Eriksson et al., 2006).
However, the selection of VIP > 1 resulted in 112 putative
metabolites, an amount considered as too many and difficult
to be explained. Hence, the VIP indicator was increased to higher
than 1.3, which appropriately categorized metabolites that yield
the most influential contribution for the model discrimination.
Consequently, 35 metabolites were listed as the potential
biomarkers for the model (Figure 1C). The metabolites
with variable importance of projection (VIP) values of 1.3 and
above in the PLS-DA model are visualized in Supplementary
Figure S5.

The biomarkers were determined through metabolite
alteration, which was interpreted by the VIP values in
MVDA. The importance of 35 putative biomarkers from
three sets of analytical data is tabulated in Table 1. The
application of chemometrics data, which is the mathematical
statistics, from the analytical chemical analysis data is vital in a
metabolomics approach (Polanski et al., 2017) that involves
both the univariate (UVDA) and multivariate data analyzes
(MVDA) (Pinto, 2017). When a large number of metabolites is
obtained, it is natural to primarily use MVDA. Afterwards, the
application of the univariate method becomes necessary to
protect against the increased probability of obtaining false
positives resulting from the significance testing for
metabolites ranging from the tens to the hundreds by
correcting multiple tests (Storey and Tibshirani, 2003;
Broadhurst and Kell, 2006). The univariate method is used
when only one variable is analyzed at a time.

Therefore, the UVDAwas conducted to obtain the metabolites
alteration expressed in fold change (FC). The summary of the
metabolite properties such as mass data, chemical shifts (ppm),
chemical formulations, related pathways, and their FC value was
listed. In Table 1, the FC displayed only focused on LPS-induced
neuroinflammed rats treated with DXM or CN500. The herb
(CN500) and drug (DXM) treatments yielded consistent results
of amelioration without normalization. Hence, the comparison
was focused only on LPS + water treatment to understand the
relationship of the chemical interventions on the
neuroinflammed rats. Among the 35 VIP > 1.3 metabolites,
only nine of them differed in pattern alteration (fold change
increase or decrease, bolded; Table 1) between the biomarker of
DXM and CN500. The metabolites that increased in CN
treatment were identified as choline, allantoin, deoxycholic

acid, 5-diphosphomevalonic acid, 1-methylinosine, cholesterol
sulfate, unknown 4 (U4), LysoPE(24:0/0:0), and C16 sphinganine.
Similar significant metabolite alteration was also observed in the
DXM group, suggesting that both DXM and CN treatments
produced a similar pattern in ameliorating the
neuroinflammed condition of LPS-induced rats. Only
allantoin, 1-methylinosine, U4, and C16 sphinganine were
significantly different between the treatments of CN500
and DXM.

Among the remaining 26metabolites, only seven metabolites in
either one of the group treatments (LPS + CN500 or LPS + DXM)
significantly differed in intensity (FC value in italic inTable 1). The
comparison between these two treatments showed a significant
difference in the increase of 2-octenoylcarnitine, U1 in the CN
treatment group, whereas PI(18:1(9Z)/20:3(8Z,11Z,14Z)), DHA
ethyl ester, and arachidonic acid decreased in the DXM group.
The significant decrease of lactate could only be observed by CN
treatment. For the remaining 19 metabolites, androstenedione,
chenodeoxycholic acid disulfate, LPA(18:2(9Z,12Z)/0:0), and
lacto-N-triaose have uniformly signified increase in both groups.
The significant fold change (FC) decrease for both treatments was
observed in isoleucine, ethanol, 7-8-dihydropteroic acid,
canrenone, trans-2-dodecenoylcarnitine, leucine, 2,4-dimethyl-
tetradecanoic acid, and 2-amino-4-oxo-4-alpha-hydroxy-6-
(erythro-1’,2’,3’-trihydroxypropyl)-5,6,7,8-tetrahydroxypterin.
However, 8-hydroxy-deoxyguanosine, L-phenylalanine, palmitic
acid methyl ester, and 7’-carboxy-gamma-chromanol equally
increased without any significance. The rest of the compounds,
including U2, U3, and PE(22:4(7Z,10Z,13Z,16Z)/19:O) decreased
in intensity, yet these changes were not significant.

Validation of PLS-DA of Multi-Platform
Model
One of the problems mostly encountered in building PLS models
in MVDA is the greediness of the technique, leading to the
overfitting of the data. This can be controlled by using other
appropriate cross-validation strategies (Kjeldahl and Bro 2010;
Westerhuis et al., 2010), such as permutation test, CV-ANOVA
test, misclassification Fisher probability and double cross-
validation. Hence, the present PLS-DA of the multi-platform
model was validated by the confirmation of the significant CV-
ANOVA value of p � 0.034. The validation was further observed
in the misclassification table in which the Fisher probability value
obtained was 6.5e-5. The correct classification ratio was
calculated to be 100%, meaning that all rats were correctly
predicted by the model. Both CV-ANOVA and Fisher
probability values of less than 0.05 proved the validity of the
model (Eriksson et al., 2006). The CV-ANOVA and
misclassification table were tabulated in Supplementary
Tables S6, S7, respectively.

The internal cross-validation of the model can be referred
back to R2 and Q2 values whereby the model was proven to be
an established metabolomic model. Unfortunately, the
permutation test did not fit into the first regulations of
R2 < 0.3 and Q2 < 0.05 (Eriksson et al., 2008). The
R2 values of the model for each group were 0.56, 0.54, 0.57,
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and 0.47 while the Q2 values were −0.03, −0.22, −0.29, and
−0.23 for normal, LPS + CN500, LPS + water, and LPS + DXM,
respectively. However, there was another criterion for
metabolomic model validation in which all Q2 values on the
permuted data set to the left would be lower than the Q2 value
of the actual data set on the right or the regression line (line
joining the point of observed Q2 to the centroid of a cluster of
permuted Q2) had a negative value of Y-intercept. Hence, this
criterion for the permutation test proved the validity of the
PLS-DAmodel as all four permuted classes yielded negative Q2

intercept values (Mahadevan et al., 2008; Sedghipour and
Sadeghi-Bazargani, 2012). The permutation tests are shown
in Supplementary Figure S8A–D in the Supplementary
Material.

Comparative Results From the Previous
Study
A published study of the same project on 1H NMR serum has
shown seven intervened biomarkers: choline, allantoin, ethanol,
isoleucine, acetate, lactate, and leucine (Ahmad Azam et al.,
2019). However, the use of UVDA on the quantitative results

FIGURE 3 | HCA of sera metabolite profiles of the four groups (N � normal; LPS � LPS + water; CN � LPS + CN500 and P � LPS + DXM; n � 3) with a separate
analytical platform of (A) LC/MS (ESI+), (B) LC/MS (ESI-), and (C) 1H NMR. The labelled boxes indicate samples that were mixed classified.

FIGURE 2 |HCA of the four groupsmetabolome (N � normal; LPS � LPS
+ water; CN � LPS + CN500 and P � LPS + DXM; n � 3) as classified by two
analytical platforms. Samples are color-coded according to the clustered
classes.
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(Table 1) revealed a complexity due to the inconsistent pattern
changes of each biomarker when two analytical tools were
combined. Hence, the MVDA of the component analysis was
referred to holistically summarize the pattern changes of both
analytical observations. The PLS-DA model cluster analysis
resulting in the groups of nested trees could also assist in
recognizing the variations in the metabolites of LCMS and
NMR data.

The Hierarchical Cluster Analysis (HCA) of the PLS-DA
Model
The HCA of Euclidean distance and Ward’s linkage method in
Figure 2 illustrated the division of the samples analyzed by the
two analytical platforms. The first cluster break was between
the normal vs. LPS-induced neuroinflammed rat groups. The
LPS-induced neuroinflammed groups were then further
divided into two groups: water and the CN500- and DXM-
treated group. Although the CN500 treatment did not
effectively regulate the metabolites up to those of the
normal rats, CN500 improved the conditions of the
neuroinflammed rats as the metabolites clustered together

with those of the positive control, DXM. Both CN500 and
DXM groups were well separated from the water-treated
neuroinflammed rats, suggesting the possible ameliorative
effects of these treatments on LPS-induced neuroinflammed
rats.

Figures 3A–C represent the HCA dendrograms of separate
analytical data of LC-MS (ESI+ and ESI−) and 1H NMR,
respectively. The LC-MS (ESI+) showed a similar tree
cluster to that in Figure 2 while the other two dendrograms
showed a similar separation only between normal and LPS-
induced neuroinflammed rats. The LC-MS (ESI-) data differed
in the classification as LPS + CN500 was clustered with the LPS
+ water group. However, the NMR data produced an unclear
HCA classification tree because the CN500 and DXM (P2)
samples were mixed. Furthermore, each sample from LPS +
DXM and LPS + CN500 branched together with LPS + water.

The 35 putative biomarkers were further visualized using
heatmap computed using MetaboAnalyst 3.0 (Figure 4). The
heatmap successfully classified LPS + CN500, LPS + DXM, and
normal rats together as a group that differed from the LPS +
water group.

FIGURE 4 | Heat map of the 37 biomarkers in normal, LPS-induced, LPS+500CN, and LPS + DXM rats sera based on HCA using Euclidean distance and Ward’s
minimum variance method. The concentration of each metabolite is coloured based on a normalized scale of minimum −2 (dark blue) to a maximum of 2 (dark red).
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Pathway Analysis
The results shown by the ingenuity metabolic pathway analysis
(MetPA) index byMetaboAnalyst suggested sevenmost impacted
pathways based on the input of 31 metabolites (four unknowns
were excluded). The valine, leucine and isoleucine biosynthesis;
phenylalanine, tyrosine, and tryptophan biosynthesis;
phenylalanine metabolism; arachidonic acid metabolism;
glycerophospholipid metabolism; terpenoid backbone
biosynthesis; and sphingolipid metabolism were pathways
showing an impact value higher than 0.1. This value was
required to be categorized as the most relevant pathway. The
summary of pathway analysis suggested by MetPA was visualized
and tabulated in the Supplementary Figure S9 and
Supplementary Table S10, respectively. Only two of the
pathways (glycolysis and gluconeogenesis; and valine, leucine,
and isoleucine biosynthesis) were in agreement with the previous
1H NMR sera profiling results (Ahmad Azam et al., 2019).
However, all of the other suggested relevant pathways from
the previous and recent reports were compatible with the
overall systemic map suggested by MetScape ver. 3.1.3.
Figure 5 summarizes the shortest route to explain the
interactions among the metabolites. Further analysis was
conducted with another plugin in Cytoscape called
MetDisease. This plugin matched the metabolites to those
reported in PubChem Compound record under their medical
subject headings (MeSH) (Duren et al., 2014). As a result,
Figure 6 is a list of the promising outcomes from MetDisease

analysis from which the compatibility of the metabolites with
nervous system diseases was recorded to be the highest by
36 nodes of successful linkages. Hence, the model of this study
has been demonstrated as an established neuroinflammation
model since the metabolites were mostly well-matched with
the central nervous system diseases by 36 nodes.

Almost half of the resulted (18/31) biomarkers were
categorized in the chemical taxonomy as a superclass of lipid
and lipid-like molecules (Human Metabolome Database
(HMDB), 2018). They were identified as 2-octenoylcarnitine,
androstenedione, deoxycholic acid, chenodeoxycholic acid
disulfate, LPA(18:2(9Z,12Z)/0:0), PE(22:4(7Z,10Z,13Z,16Z)/19:
O), LysoPE(24:0/0:0), canrenone, arachidonic acid, DHA ethyl
ester, palmitic acid methyl ester, trans-2-dodecenoylcarnitine,
PI(18:1(9Z)/20:3(8Z,11Z,14Z )), 7’-carboxy-c-chromanol, 2,4-
dimethyl-tetradecanoic acid, cholesterol sulfate, choline, and
C16 sphinganine. Most of these metabolites were located at
the right side of the loading scatter plot (Figure 1C) which
belonged to the LPS-induced rats. Lipids are a crucial member
of the cellular membrane and source of stored energy
metabolism, and they act as a signaling transductor at the
membrane cell (van Meer et al., 2008).

The model pathway analysis results showed a substantial
influence among lipid metabolisms via glycerophospholipid,
glycosphingolipid and arachidonic acid metabolism alteration.
Glycerophospholipids, such as phosphatidylethanolamine (PE)
and LysoPE are important components of membrane bilayers.

FIGURE 5 | Suggested metabolic system by MetScape. The map summarizes the shortest route to explain interactions among metabolites with VIP value > 1.3.
Sign * indicates the most affected pathway based on the ingenuity pathway analysis computed from MetPa analysis. The clear image can be accessed at http://www.
ndexbio.org/#/network/d77dd163-9ad1-11e9-8bb4-0ac135e8bacf?accesskey�f1aa0859c5f3b7d9c5507942b02596bd3a1eee60414d960f22920a3a68c10701.
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Lysophosphatidic acid (LPA) is extremely important in the
biochemical process as a lipid mediator that controls growth,
mortality, and differentiation of chemotaxis and ultrastructure of
human neutrophils for the innate immune system (hmdb.ca,
2019). The separation by PC2 in Figure 1C shows the location of
PE and lysoPE to be higher in LPS + water while LPA was
observed among LPS + DXM, LPS + CN500, and normal rats.
Consequently, the LPS induction has successfully resulted in lipid
rafts on the serum lipid membranes since an amphiphilic
structure of LPS allowed the lipids to be rapidly inserted into
the cell membranes, forming into the disordered phase of lipid
ratios (Martins, 2016). Sphingolipid is also the backbone of neural
tissue. The induction of LPS has been reported to interrupt the
blood-brain barrier (BBB), increasing the level of the sphingolipid
C16 sphinganine in the serum of LPS + water rats (Figure 1C).
Furthermore, the roles of squalene/terpenoid and cholesterol
biosynthesis in the ameliorative effects of DXM and 500CN
treatments were demonstrated by the putative biomarker of 5-
diphosphomevalonic acid via the mevalonate pathway. This
pathway leads to the synthesis of sterol and isoprenoids, which
have been recognized to be essential for cell proliferation for the
survival of various types of cancer cells (Ameer et al., 2018). The
high abundance of arachidonic acid, which is a polyunsaturated

and essential fatty acid, among the LPS + water rats was reported
to be important in the inflammation-associated disease as it could
act as a mediator to regulate leukocyte chemotaxis, inflammatory
cytokines, and immune function (Thakur et al., 1998).
Nevertheless, further lipids analysis needs to be confirmed
with a proper lipidomic analysis.

Another class of the possible biomarkers was nucleotides and
analogs (hydroxyl-deoxyguanosine and 1-methylinosine); organic
acid and derivatives (phenylalanine, isoleucine, leucine, acetate,
and lactate); organoheterocyclic compounds (allantoin, 7,8-
dihydropteroic acid and 2,4-dimethyl-tetradecanoic acid); and
organooxygen compounds (ethanol, 5-diphosphomevalonic acid
and lacto-N-triose). As the parallel relationships between the
metabolites in the pathways involved in the nervous system
diseases were deciphered, we suggest looking into the signaling
of neurotransmission. The strongest impact obtained from MetPa
was observed on the valine, leucine and isoleucine biosynthesis,
and phenylalanine, tyrosine, and tryptophan metabolism. The
production of essential amino acids, such as phenylalanine and
branched-chain amino acid (BCAA) (isoleucine and leucine),
could influence the neurotransmitter levels in the brain. This
study revealed the elevation of BCAA in the serum of LPS +
water group, confirming the inflammation as an activation of the
nervous system. Unfortunately, due to the lack of LCMS databases,
the identification of some important metabolites in the spectra
could not be completely accomplished. Thus, the overall suggested
metabolic system was only based on the 31 identified biomarkers
(Figure 5).

CONCLUSION

The findings from both analytical data sets revealed the complexity
of serum metabolites, exhibiting the success of LPS induction in
producing a neuroinflammed rat model. An ameliorative effect
could be suggested as a result of CN treatment. The multi-platform
cross-validation models have allowed an in-depth understanding
and holistic view of the metabolite variations; hence, a novel
diagnostic tool was established. However, for future research,
these obtained results should be validated with a larger
prospective cohort by integrating other omics.
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GLOSSARY

ANOVA analysis of variance

BBB blood-brain barrier

BW body weight

CN Clinacanthus nutans

CV coefficient of variance

DHA: DXM dextromethorphan

ESI+ positive electrospray ionization

ESI- negative electrospray ionization

FC fold change

HCA Hierarchical cluster analysis

HILIC hydrophilic interaction column

HMDB human metabolome databse

HUSERMET human serum metabolome

ICV intracerebroventicular

i.p intraperitoneal

KEGG Kyoto encyclopedia of genes and genomes

K-X ketamine-xylazine

LC-MS liquid chromatography-mass spectrometry

LPA lysophosphatidic acid

LPS lipopolysaccharides

MAIT metabolite automatic identification toolkit

MetPa metabolic pathway analysis

MQA Agilent masshunter qualitative analysis

MPP Agilent mass profiler professional

MVDA multivariate data analysis

NMR nuclear magnetic resonance

OPLS-DA orthogonal partial least squares discriminant analysis

PBS phosphate buffer saline

PC principal component

PCA principal component analysis

PE phosphatidylethanolamine

PI phosphatidylinositol

PLS-DA partial least square discriminant analysis

RP reverse-phase

SIMCA statistical isolinear multiple component analysis

TCA tricarboxylic acid cycle

U unknown

UV unit variance

UVDA univariate data analysis.
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