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Today, Mg2+ is an essential cofactor with diverse structural and
functional roles in life’s oldest macromolecular machine, the trans-
lation system. We tested whether ancient Earth conditions (low
O2, high Fe2+, and high Mn2+) can revert the ribosome to a func-
tional ancestral state. First, SHAPE (selective 2′-hydroxyl acylation
analyzed by primer extension) was used to compare the effect of
Mg2+, Fe2+, and Mn2+ on the tertiary structure of rRNA. Then, we
used in vitro translation reactions to test whether Fe2+ or Mn2+

could mediate protein production, and quantified ribosomal metal
content. We found that (i) Mg2+, Fe2+, and Mn2+ had strikingly
similar effects on rRNA folding; (ii) Fe2+ and Mn2+ can replace
Mg2+ as the dominant divalent cation during translation of mRNA
to functional protein; and (iii) Fe and Mn associate extensively
with the ribosome. Given that the translation system originated
and matured when Fe2+ and Mn2+ were abundant, these findings
suggest that Fe2+ and Mn2+ played a role in early ribosomal
evolution.
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Life arose around 4 billion years ago on an anoxic Earth with
abundant soluble Fe2+ and Mn2+ (1–5). Biochemistry had

access to vast quantities of these metals for over a billion years
before biological O2 production was sufficient to oxidize and
precipitate them. The pervasive use of these “prebiotic” metals
in extant biochemistry, despite current barriers to their biological
acquisition, likely stems from their importance in the evolution
of the early biochemical systems.
The translation system, which synthesizes all coded protein (6,

7), originated and matured during the Archean Eon (4 Ga to 2.5
Ga) in low-O2, high-Fe

2+, and high-Mn2+ conditions (8). The
common core of the ribosome, and many other aspects of the
translation system, has remained essentially frozen since the last
universal common ancestor (9). In extant biochemistry, Mg2+

ions are essential for both structure and function of the ribosome
(10) and other enzymes involved in translation (11). In ribo-
somes, Mg2+ ions engage in a variety of structural roles (Table
1), including in Mg2+-rRNA clamps (12, 13) (Fig. 1A), in dinu-
clear microclusters that frame the peptidyl transferase center
(PTC) (13) (Fig. 1B), and at the small subunit−large subunit
(SSU−LSU) interface (14) (Fig. 1C). Functional Mg2+ ions
stabilize a critical bend in mRNA between the P-site and
A-site codons (15) (Fig. 1D), and mediate rRNA−tRNA and
rRNA−mRNA interactions (16) (Fig. 1 E and F). Mg2+ ions also
interact with some rProteins (17). Additionally, accessory en-
zymes needed for translation—aminoacyl-tRNA synthetases,
methionyl-tRNA transformylase, creatine kinase, myokinase,
and nucleoside diphosphate kinase—require Mg2+ ions as
cofactors (Table 1).
Multiple types of cationic species can interact productively

with RNAs in a variety of systems (18–20). Recent results sup-
port a model in which Fe2+ and Mn2+, along with Mg2+, were
critical cofactors in ancient nucleic acid function (21). As pre-
dicted by this model, functional Mg2+-to-Fe2+ substitutions un-
der anoxic conditions were experimentally verified to support
RNA folding and catalysis by ribozymes (22, 23), a DNA poly-
merase, a DNA ligase, and an RNA polymerase (24). Functional

Mg2+-to-Mn2+ substitution has long been known for DNA
polymerases (24–26). For at least some nucleic acid-processing
enzymes, optimal activity is observed at lower concentrations of
Fe2+ than Mg2+ (22, 24). Based on these previous results, we
hypothesized that Fe2+ and Mn2+ could partially or fully replace
Mg2+ during translation. In this study, we relocated the trans-
lation system to the low-O2, Fe

2+-rich, or Mn2+-rich environment
of its ancient roots, and compared its structure, function, and
cation content under modern vs. ancient conditions.

Results
Fe2+ and Mn2+ Fold LSU rRNA to a Near-Native State. To test
whether Fe2+ or Mn2+ can substitute for Mg2+ in folding rRNA
to a native-like state, we compared folding of LSU rRNA of the
bacterial ribosome in the presence of Mg2+, Fe2+, or Mn2+ by
SHAPE (selective 2′-hydroxyl acylation analyzed by primer ex-
tension). SHAPE provides quantitative, nucleotide-resolution
information about RNA flexibility, base pairing, and 3D struc-
ture, and has previously been used to monitor the influence of
cations, small molecules, or proteins on RNA structure (27–32).
We previously used SHAPE to show that the LSU rRNA adopts
a near-native state in the presence of Mg2+, with the core
interdomain architecture of the assembled ribosome and resi-
dues positioned for interactions with rProteins (33). Here,
SHAPE experiments were performed in an anoxic chamber to
maintain the oxidation state of the metals and to prevent Fenton
cleavage. The minimum concentration required to fully fold
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rRNA (10 mM Mg2+, 2.5 mM Fe2+, or 2.5 mM Mn2+) was used
for all SHAPE experiments (Datasets S1 and S2).
Addition of Mg2+, Fe2+, or Mn2+ induced widespread struc-

tural changes in the LSU rRNA in the presence of Na+, as
reflected in SHAPE profiles (see Materials and Methods) and
displayed as “heat maps” on the LSU rRNA secondary structure
(Fig. 2 and SI Appendix, Fig. S1). Among the nucleotides forming
the PTC, similar SHAPE profiles were obtained in the presence
of Mg2+, Fe2+, or Mn2+ (SI Appendix, Fig. S1). The ΔFe2+ and
ΔMg2+ heat maps obtained for the entire 23S rRNA are nearly
identical in most regions (Fig. 2 D and E). As expected for
conversion of secondary structure to fully folded tertiary struc-
ture, helices tended to be invariant, whereas loops and bulges
were impacted by addition of Mg2+, Fe2+, or Mn2+. For the 23S
rRNA, 86% of nucleotides (43/50) that exhibited a significant
response (>0.3 SHAPE units) to Mg2+ also exhibited a similar
trend with Fe2+. The greatest discrepancy between Fe2+ and
Mg2+ was observed in the L11 binding domain (Fig. 2 D and E).

Fe2+ and Mn2+ Mediate Translation. Translation reactions were per-
formed in an anoxic chamber in the presence of various cations and
cation concentrations. Production of the protein dihydrofolate re-
ductase (DHFR) from its mRNA was used to monitor translational
activity. Protein synthesis was assayed by measuring the rate of
NADPH oxidation by DHFR. These reactions were conducted in a
small background of 2.5 mM Mg2+ (SI Appendix, Fig. S2A). This
background is below the requirement to support translation, con-
sistent with previous findings that a minimum of ∼5 mM Mg2+ is
needed for assembly of mRNA onto the SSU (34, 35). As a control,
we recapitulated the previously established Mg2+ dependence of the
translation system, and then repeated the assay with Fe2+.
Activity of the translation system with variation in [Fe2+]

closely tracks activity with variation in [Mg2+] (Fig. 3). Below
7.5 mM, total divalent cation concentration, minimal translation
occurred with either Fe2+ or Mg2+, as expected (36). Activity
peaked at 9.5 mM for both cations and decreased modestly be-
yond the optimum. At a given divalent cation concentration,
Fe2+ supported around 50 to 80% of activity with Mg2+ (Fig. 4).

This result was observed with translation reactions run for 15, 30,
45, 60, 90, and 120 min at the optimal divalent cation concen-
trations. Mn2+ also supported similar translation activity to Fe2+

at optimal divalent concentrations (SI Appendix, Fig. S3). Along
with Mg2+, Fe2+, and Mn2+, we investigated whether other di-
valent cations could support translation. No translation activity
was detected with Co2+, Cu2+, or Zn2+ (SI Appendix, Fig. S3).
To test whether alternative divalent cations could completely

replace Mg2+ in translation, we decreased the background Mg2+

from 2.5 mM to 1 mM by thoroughly washing the ribosomes before
translation reactions with 7 mM to 11 mM Fe2+ or Mn2+ (SI Ap-
pendix, Fig. S2B). With 1 mM background Mg2+, Fe2+ supported 12
to 23% of the activity with Mg2+ over the concentrations tested,
while Mn2+ supported 43 to 50% activity relative to Mg2+ (Fig. 5A).
Washing the factor mix allowed us to decrease the background
Mg2+ in translation reactions to ∼4 μM to 6 μM (SI Appendix, Fig.
S2C). At this level, minimal protein production was observed with
Fe2+, while Mn2+ supported 29 to 38% of the activity measured
with Mg2+ (Fig. 5B).

Fe and Mn Associate Extensively with the Ribosome. To experimen-
tally confirm that Fe and Mn associate with the assembled ribo-
some, we analyzed the total Fe or Mn content of ribosomes after
incubation in anoxic reaction buffer containing 7 mM Fe2+ or 7 mM
Mn2+. Under the conditions of our translation reactions, 584 ± 9 Fe
atoms or 507 ± 28 Mn atoms associate with each ribosome.
Finally, we computationally investigated whether Mg2+, Fe2+,

and Mn2+ might be interchangeable during translation, using
quantum mechanical characterization of M2+-rRNA clamps
(Fig. 1A and SI Appendix, Fig. S4), which are abundant in the
ribosome (12, 13). The geometries of Mg2+-rRNA, Fe2+-rRNA,
and Mn2+-rRNA clamps are nearly identical (SI Appendix, Table
S1). However, due to the accessibility of their d orbitals, more
charge is transferred to Fe2+ or Mn2+ than to Mg2+ (SI Appendix,
Table S2). The effect of the modestly greater radius of Mn2+ (SI
Appendix, Table S1) is offset by d-orbital charge transfer (SI Ap-
pendix, Table S2), leading to elevated stability of the Fe2+-rRNA
clamp over the Mn2+-rRNA clamp (SI Appendix, Table S3).

Table 1. Structural and functional roles for select divalent cations (M2+) in the translation system

Translation system
component(s)

Location of
divalent ion Role of divalent cation

Optimal
[Mg2+],
mM

Ribosome
LSU/SSU M2+-rRNA clamps (12) Mediates and maintains folding/structure

of rRNAs
∼10 (34)

LSU Dinuclear microclusters (13) Frames PTC ∼10 (34)
LSU/SSU LSU/SSU interface (27) Mediates docking of mRNA to SSU and

association of SSU with LSU
∼10 (34)

SSU/mRNA Critical bend in mRNA between the
P-site and A-site codons (16, 55)

Maintains correct reading frame on mRNA ∼10 (34)

A-site tRNA/P-site
tRNA

tRNA-tRNA interface (27) Stabilize tRNAs in the PTC ∼10 (34)

LSU/tRNA rRNA-tRNA interface (27) Stabilize rRNA-tRNA in the PTC ∼10 (34)
Auxiliary

EF-Tu GTP binding site (56) Stabilizes the transition state 5 to 15 (57)
EF-G GTP binding site (58) Stabilizes the transition state n.a.
Aminoacyl-tRNA synthetases ATP binding site (59) Stabilizes the transition state >1 (60)
Methionyl-tRNA transformylase ATP binding site (61) Stabilizes the transition state 7 (61)
Creatine kinase NTP binding site (62) Stabilizes the transition state ∼5 (62)
Myokinase Acceptor NDP binding site (63) Stabilizes the transition state ∼3 (45)
Nucleoside

diphosphate kinase
NTP binding site (64) Stabilizes the transition state >1 (64)

Pyrophosphatase Active site (65) Stabilizes the transition state >7 (66)

All biomolecules in the table have been shown to require Mg2+ andmay also be active with Fe2+ or Mn2+; “n.a.” indicates that data are not available.
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Discussion
In this study, we successfully replaced ribosomal Mg2+ with Fe2+

or Mn2+ under conditions mimicking the anoxic Archean Earth.
Previously, the only divalent cation known to mediate rRNA
folding and function was Mg2+. We found that isolated rRNA
folds to essentially the same global state (37, 38) with Mg2+, Fe2+,
or Mn2+ under anoxia. This study revealed that Fe2+ or Mn2+

can serve as the dominant divalent cation during translation.
Mg2+ at 2.5 mM was insufficient to mediate protein synthesis;
5 mM additional Mg2+, Fe2+, or Mn2+ restored translational
activity. These findings suggest that functional substitutions of
Mn2+ or Fe2+ for Mg2+ can occur in large ribozymes, similar to
previous reports for protein enzymes and small ribozymes
(24–26, 39, 40). Near-complete removal of Mg2+ prevented
Fe2+-mediated translation and partially inhibited Mn2+-mediated
translation, suggesting that Mg2+ is optimal for some specific
roles in the translation system. Regardless, the general effec-
tiveness of Mn2+ or Fe2+ for Mg2+ substitutions in the translation
system is astounding considering the enormous number of di-
valent cations associated with a given ribosome, and the broad
scope of their structural and functional roles (10, 11) (Fig. 1 and
Table 1).
The observation that >500 Fe or Mn ions can associate with a

bacterial ribosome is consistent with the number of Mg2+ ions
observed by X-ray diffraction [100 to 1,000 Mg2+ per ribosome
(41)], and supports a model in which Fe2+ or Mn2+ has replaced
Mg2+ as the dominant divalent cation in our experiments. The

high capacity of ribosomes for Fe2+ and Mn2+ reflects all rRNA-
associated divalent cations, including condensed, glassy, and
chelated divalent cations (42), and, in addition, we presume that
Fe2+ or Mn2+ can associate with a variety of rProteins, including
those previously shown to bind Zn2+ (e.g., uS2, uS15, bS16, uS17,
uL2, uL13, bL31, and bL36 in Escherichia coli) (43).
The differences in protein production observed among the

three divalent cations likely arise from a variety of evolutionary
and physiological factors. For instance, E. coli ribosomes may be
evolutionarily adapted to Mg2+ instead of Fe2+ or Mn2+. The
difference in translational activity between Mn2+ and Fe2+, par-
ticularly when background Mg2+ was removed, suggests that
Mn2+ is more viable than Fe2+ upon full substitution. Mn2+/Mg2+

interchangeability may depend on relative stabilities of Mn2+ and
Mg2+ in M2+-rRNA clamps (SI Appendix, Fig. S4). Besides the
ribosome, our translation reactions utilize many accessory proteins
such as elongation factors and aminoacyl-tRNA synthetases that
also have divalent cation requirements. Decreased activity of any of
one these systems with Mn2+ and Fe2+ would cause a pinch point in
an otherwise fully functional translation system. Indeed, the relative
activity of myokinase and arginine tRNA synthetase are both lower
with Mn2+ or Fe2+ than with Mg2+ (44, 45).
While intracellular Mg2+ is around 10−3 M (46), specific physi-

ological or environmental conditions can significantly elevate in-
tracellular Fe2+ and Mn2+. Under oxidative stress, some microbes
accumulate excess Mn2+. For example, radiation-tolerant Dein-
ococcus radiodurans contains ∼10 times higher Mn2+ than E. coli
[∼10−5 MMn2+ (47, 48)]. In the absence of O2, E. coli contains ∼10
times higher labile Fe2+ (∼10−4 M) than in the presence of O2
[∼10−5 M (49)]. Thus, it is possible that the absence of Fe2+ and
Mn2+ in experimentally determined ribosomal structures is re-
flective of culturing, purification, or crystallization conditions (high
O2, high Mg2+, low Fe2+, and low Mn2+), and that other cations
may also be present under diverse physiological conditions.
We have shown that the translation system functions with mix-

tures of divalent cations, which are variable during long-term evo-
lutionary history and during short-term changes in bioavailability
and oxidative stress. When combined with previous results that
DNA replication and transcription can be facilitated by Fe2+ and
Mn2+ (18–20, 22–26, 39, 40), our findings that both Fe2+ and Mn2+

can mediate rRNA folding and translation of active protein has
revealed that these prebiotic divalent metals can facilitate the entire
central dogma of molecular biology (DNA→RNA→protein). These
findings raise important questions about evolutionary and physio-
logical roles for Fe2+ and Mn2+ in ancient and extant biological
systems. Were Mg2+, Fe2+, and Mn2+ collaborators as cofactors on
the ancient Earth, when Fe2+ and Mn2+ were more abundant (1–5),
and Mg2+ was less abundant (2), than today? What was the role of
Fe2+ and Mn2+ in the origin and early evolution of the translational
system? Finally, what are the implications for ribosome-bound Fe2+

in oxidative damage and disease (50, 51)?

Materials and Methods
rRNA Folding via SHAPE. SHAPE (28, 32, 33) was conducted on the ∼2,900-nt
Thermus thermophilus 23 rRNA (LSU) in 250 mM monovalent cation (Na+ or
K+) to favor formation of secondary structure, and in 250 mM Na+ or K+ plus
various divalent cations (10 mM MgCl2, 2.5 mM FeCl2, or 2.5 mM MnCl2) to
favor tertiary interactions. These divalent cation concentrations are suffi-
cient to fold rRNA. To keep rRNA samples from O2, solutions of rRNA alone
or 200 mM NaOAc or KOAc plus 50 mM Na-Hepes (pH 8) or K-Hepes (pH 8)
and divalent cations were lyophilized and transferred into an anoxic
chamber with a 98% Ar and 2% H2 atmosphere. The rRNA solutions were
rehydrated with nuclease-free, degassed water, and added to the dried salts
to achieve the appropriate concentrations. After rRNA modification reac-
tions, divalent cations were removed by chelating beads. Samples were re-
moved from the anoxic chamber before reverse transcription and analysis by
capillary electrophoresis as in ref. 33. Essentially identical SHAPE profiles
were observed with Na+ or K+ alone (SI Appendix, Fig. S1), as previously
described (32, 52), and for monovalent cations in combination Mg2+, Fe2+, or

Mg2+-rRNA clamp dinuclear microcluster

LSU-SSU interface mRNA bend

rRNA-tRNA interface rRNA-mRNA interface

A

C

E

D

F

B

Fig. 1. Divalent cations serve many structural and functional roles in the
ribosome. Mg2+ ions (A) form bidentate clamps with adjacent phosphate
groups of rRNA, (B) form dinuclear microclusters that frame the rRNA of the
PTC, (C) stabilize the LSU−SSU interface, (D) stabilize a functional kink in
mRNA, (E) stabilize association of tRNA (teal) with 23S rRNA (beige carbon
atoms), and (F) stabilize association of mRNA (green) with 16S rRNA (beige
carbon atoms). Thick dashed lines are first-shell RNA interactions of Mg2+.
Dotted lines indicate second-shell interactions. Images are of the T. ther-
mophilus ribosome (PDB ID code 1VY4). This figure was generated with the
program RiboVision (54).
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Mn2+ (Fig. 2 and SI Appendix, Fig. S1). Nucleotides were classified as
exhibiting a significant change in SHAPE reactivity if the difference between
the initial reactivity (in Na+) and final reactivity (in Na+/Mg2+, Na+/Fe2+, or
Na/Mn2+) was >0.3 SHAPE units. To compare the Mg2+, Fe2+, and Mn2+ re-
sponsiveness of specific nucleotides, we binned nucleotides into three cat-
egories (increased, decreased, or little/no change) based on their general
SHAPE reactivity response to each divalent cation (SHAPE data are found in
Datasets S1 and S2).

In Vitro Translation. Each 30-μL reaction contained 2 μM (4.5 μL of 13.3 μM
stock) E. coli ribosomes in 10 mM Mg2+ (catalog # P0763S; New England
Biolabs), 3 μL of factor mix (with RNA polymerase, and transcription/trans-
lation factors in 10 mM Mg2+) from the PURExpress Δ Ribosome Kit (E3313S;
New England Biolabs), 0.1 mM amino acid mix (catalog # L4461; Promega),

and 0.2 mM tRNAs from E. coli MRE 600 (product # TRNAMRE-RO; Sigma-
Aldrich). Thus, a total of 2.5 mM “background” Mg2+ was present in each
reaction (SI Appendix, Fig. S2A). To remove the background Mg2+, we ex-
changed the buffer of the ribosome and factor mix using centrifugal filter
units. Thirty microliters of either ribosome solution or factor mix was added
to an Amicon Ultra 0.5-mL centrifugal filter (Millipore-Sigma), followed by
450 μL of divalent-free buffer (20 mM Hepes pH 7.6, 30 mM KCl, and 7 mM
β-mercaptoethanol). Samples were spun at 14,000 × g at 4 °C until
the minimum sample volume (∼15 μL) was reached. The samples were
resuspended in 450 μL of divalent-free buffer, and centrifugation was re-
peated. The samples were then transferred to new tubes, and 15 μL of
divalent-free buffer was added to bring the volume to 30 μL. This process
decreased Mg2+ concentrations in the ribosome and factor mix from 10 mM

+2.0

-2.0

+1.5

+1.0

+0.5

0.0

-0.5

-1.0

-1.5

Δ
(S

H
A

P
E

 r
e

a
ct

iv
it

y)

0.00

0.50

0.75

2.00

3.00

1.00

4.00

S
H

A
P

E
 r

e
a

ct
iv

it
y

0.25

5.00

A

D E

Na+
B

Na+/Fe2+
C

Na+/Mg2+

L11 binding 

domain

L11 binding 

domain

L1 stalk

Inter-

subunit

interface
Central 

protuberance II

PTC

Exit

tunnel I

Exit

tunnel II

Central 

protuberance I

L11 binding 

domain

Fig. 2. SHAPE reactivities mapped onto the T. thermophilus LSU rRNA secondary structure in (A) Na+, (B) Na+/Fe2+, or (C) Na+/Mg2+. Key functional elements
are labeled in A, and the color scale in A applies to B and C. (D) Fe2+-induced changes (ΔFe2+) in SHAPE reactivity calculated by subtracting Na+ data from Na+/
Fe2+ data for each nucleotide, and (E) Mg2+-induced changes (ΔMg2+) in SHAPE reactivity calculated by subtracting Na+ data from Na+/Mg2+ data for each
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values denote decreased reactivity. Regions where data are not available (5′ and 3′ ends) are gray. These figures were generated with the program RiboVision
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to 10 μM to 30 μM Mg2+, resulting in 4 μM to 6 μM Mg2+ in each reaction (SI
Appendix, Fig. S2 B and C).

Translation Experimental Conditions. All reactions (30 μL total volume) were
assembled and incubated in an anoxic chamber. Divalent cation salts [MgCl2,
FeCl2, MnCl2, Zn(OAc)2, CoCl2, CuSO4] were added to 7 mM final concen-
tration, with the exception of MgCl2, FeCl2, and MnCl2, which were tested
over a range of concentrations (SI Appendix, Fig. S2). Solutions were clear,
with no indication of metal precipitate, suggesting that reduced, divalent
metals cations were the primary chemical species. All experiments were as-
sembled in the following order: DHFR mRNA (∼5 μg per 30-μL reaction),
factor mix, ribosomes, amino acids, tRNA, nuclease-free H2O, and reaction
buffer (see SI Appendix for details on mRNA template and reaction buffer

recipe). Changing the order of reactant addition did not affect translational
activity. Reactions were run in triplicate on a 37 °C heat block for up to 120
min. Reactions were quenched on ice and stored on ice until they were
assayed for protein synthesis.

Protein Activity Assay. Protein synthesis was measured using a DHFR assay kit
(product # CS0340; Sigma-Aldrich), which measures the oxidation of NADPH
(60 mM) to NADP+ by dihydrofolic acid (51 μM). Assays were performed by
adding 5 μL of protein synthesis reaction to 995 μL of 1× assay buffer. The
NADPH absorbance peak at 340 nm (Abs340) was measured at 15-s intervals
over 2.5 min. The slope of the linear regression of Abs340 vs. time was used to
determine protein activity (Abs340 min−1). Different counter ions (Cl−,
CH3COO−, SO4

2−) had no effect on protein synthesis from mRNA. To our
knowledge, no dependence on, nor inhibitory effect of, Mg2+ or Fe2+ exists
for DHFR. We confirmed this by varying the metal concentrations in our
assay reaction, which had no effect on DHFR activity.

Ribosome Metal Content. The Fe and Mn content of E. coli ribosomes was
measured by total reflection X-ray fluorescence spectroscopy after the ri-
bosomes were incubated in 7 mM FeCl2 or 7 mM MnCl2. See SI Appendix for
additional details.

Quantum Mechanical Calculations. The atomic coordinates of a Mg2+-rRNA
clamp were initially extracted from the X-ray structure of the Haloarcula
marismortui LSU [Protein Data Bank (PDB) ID code 1JJ2] (53). The free 5′ and
3′ termini of the phosphate groups were capped with methyl groups in lieu
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of the remainder of the RNA polymer, and hydrogen atoms were added,
where appropriate (SI Appendix, Fig. S4). Additional details on calculations
adapted from previous publications (12, 22) are described in SI Appendix.
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