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This paper derives a criterion for deciding conditional independence that is consistent

with small-sample corrections of Akaike's information criterion but is easier to apply

to such problems as selecting variables in canonical correlation analysis and selecting

graphical models. The criterion reduces to mutual information when the assumed dis-

tribution equals the true distribution; hence, it is called mutual information criterion

(MIC). Although small-sample Kullback–Leibler criteria for these selection problems

have been proposed previously, some of which are not widely known, MIC is strik-

ingly more direct to derive and apply.
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1 | INTRODUCTION

Conditional independence is fundamental to statistical inference (Dawid, 1979). Many tests for conditional independence have been proposed,

including tests based on partial correlation, conditional characteristic functions (Su & White, 2007), Hellinger distance (Su & White, 2008), maxi-

mal nonlinear conditional correlation (Huang, 2010), and projection-based distance covariance (Fan et al., 2020). These and other criteria are

developed from a hypothesis test framework, which has well-known limitations in multiple testing situations (Burnham & Anderson, 2002). An

alternative approach to deciding conditional independence is based on Kullback–Leibler (KL) criteria, such as Akaike's information criterion (AIC).

AIC is an attractive alternative because it can be applied to multiple testing problems, it does not require specifying an arbitrary significance level,

it accounts for out-of-sample variability, and it is derived from a proper score for selecting probability density functions (PDFs) (Akaike, 1973).

Nevertheless, applying AIC to decide conditional independence generally requires maximizing a likelihood function subject to the constraint indi-

cated by conditional independence. Such constrained optimization problems can be difficult to solve, which has hindered the application of AIC to

such problems.

A clue to a simpler approach comes from regression model selection. In regression model selection, AIC is relatively easy to apply because

one simply includes the variables that appear in the regression model and excludes the others. In particular, the relevant AIC does not require

solving a constrained optimization problem. For selection problems that cannot be reduced to regression model selection, the question arises

as to whether there exists a criterion similar to AIC that does not require solving constrained maximum likelihood problems, and yet can be
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evaluated by excluding the variables that are conditionally independent of the retained variables. The purpose of this paper is to derive such

a criterion.

We begin by seeking a criterion whose differences equal the differences in KL divergences in the case of selecting explanatory variables of a

regression model. This ensures that the criterion recovers regression model selection. Then, we add one more condition, namely, that the criterion

should be symmetric, in the sense that the criterion does not depend on which variables are labelled response and explanatory. Remarkably, only

one quantity satisfies these conditions. This quantity reduces to mutual information when the model PDF equals the true PDF. Accordingly, we

call this quantity mutual information criterion (MIC). This paper demonstrates that MIC is our desired criterion.

Sample estimates of MIC can be derived based on AIC. Naturally, the resulting estimates share the same limitations as AIC. One well-known

limitation of AIC is that it tends to select overfitted models. A standard fix to this problem is to use a small-sample corrected version called AICc

(Hurvich & Tsai, 1989). Unfortunately, AICc implicitly assumes that the explanatory variables are the same between training and verification sam-

ples (DelSole & Tippett, 2021; Rosset & Tibshirani, 2020; Tian et al., 2020). We show that this assumption implies that AICc is not guaranteed to

make consistent decisions about conditional independence. Therefore, AICc is not appropriate for estimating MIC. The appropriate small-sample

correction to AIC that accounts for independent training and verification samples has been derived recently by DelSole and Tippett (2021) and

Tian et al. (2020) (here called AICr). This criterion is used to derive an estimate of MIC, called MIC. Because MIC is based on the newly derived

AICr rather than AIC or AICc, it improves upon previous criteria even for the extensively studied case of regression model selection.

The problem of selecting both response and explanatory variables is more formidable. However, MIC provides a very reasonable small-sample

criterion for selecting explanatory and response variables and is well suited for selecting variables for canonical correlation analysis (CCA). Another

application of MIC is to select graphical models. Graphical models provide a visual summary of various conditional independencies among

variables. Conditional independence implies that an associated conditional mutual information vanishes. We derive an analogous criterion called

conditional MIC that provides a small-sample criterion for selecting graphical models.

In a series of papers, Yasunori Fujikoshi derived small-sample criteria for many of the above selection problems by explicitly maximizing the

likelihood function under the appropriate hypothesis of conditional independence (Fujikoshi, 1982, 1985; Fujikoshi et al., 2010). We show that dif-

ferences in MIC are equivalent to each of these criteria derived by Fujikoshi (after accounting for slight differences in formulation). Despite these

earlier derivations, the derivation presented here is of considerable value because of its greater simplicity compared to previous derivations. The

basis of this simplification is that KL divergences satisfy certain identities called chain rules. These chain rules can be used to convert certain con-

strained maximum likelihood problems into unconstrained problems. As a result, small-sample criteria for conditional independence can be derived

from these chain rules, thereby avoiding direct maximization of the likelihood function, which often requires intricate matrix manipulation.

2 | DERIVATION OF THE NEW CRITERION

Let x and y be random vectors with a joint PDF p(x, y). In practice, the true PDF is unknown. Our goal is to identify an approximate PDF by decid-

ing if the PDF has structure and then to estimate the PDF under this constraint. Let q(x, y) denote a candidate PDF without structure, and let

q1(x, y), q2(x, y), … denote candidate PDFs with different structures. Our criterion for choosing a particular structure is that it minimizes the KL

divergence or equivalently minimizes

HiðXYÞ¼�2EXY log qiðx,yÞ½ �, ð1Þ

where EXY ½�� denotes the expectation with respect to p(x, y). HiðXYÞ is called the cross entropy between p and qi (ignoring an irrelevant factor of 2).

HðXYÞ (with no subscript) denotes the cross entropy between p and q. When p¼ q, cross entropy equals (twice) the entropy of p(x, y).

The criterion for selecting structure is well developed in the special case of selecting regression models. To be precise, the selection of regres-

sion models will be called X-selection and defined as follows.

Definition 1 X-selection. A regression model (also called a prediction model) is effectively a conditional PDF qi(yjx), where the first

and second variables are called response and explanatory, respectively. The prediction model is related to the joint PDF as

qiðx,yÞ¼ qiðyjxÞqiðxÞ: ð2Þ

The X-selection problem is to select one prediction model from a set of candidate models q1(yjx1), q2(yjx2), …. The candidate

PDFs are restricted to ones in which the prediction models differ in their explanatory variables x1, x2, …, each of which is a subset

of x, but have the same response variable y. It is assumed that each prediction model equals the unconstrained PDF conditioned on

the appropriate subset of explanatory variables:
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qiðyjxÞ¼ qiðyjxiÞ¼ qðyjxiÞ: ð3Þ

The first equality states that certain X variables may be omitted from qi(yjx) without changing the prediction, and the second

equality states that the resulting prediction model equals the unconstrained PDF q(yjxi). Aside from this, no further structure is

imposed. In particular, no structure is imposed on qi(x):

qiðxÞ¼ qðxÞ for all i: ð4Þ

It follows from (2)–(4) that

qiðx,yÞ¼ qðxÞqðyjxiÞ: ð5Þ

This identity shows that the joint PDF can be written as a product of PDFs where structure is imposed by omitting X variables in the condi-

tional PDF. Note that the joint PDF qi(x, y) depends on the full x even when the prediction model q(yjxi) depends only on a proper subset of x.

Variables that can be omitted from conditionals are said to be redundant.

Lemma 1 The chain rule lemma. It follows from (1) and (2) that cross entropy satisfies the chain rule

HiðXYÞ¼HiðXÞþHiðYjXÞ, ð6Þ

where the cross entropy for prediction models is HiðYjXÞ¼�2EXY logqiðyjxiÞ½ �. Under X-selection,

HiðXYÞ¼HðXÞþHðYjXiÞ, ð7Þ

where HiðXÞ¼HðXÞ follows from (4), and HiðYjXÞ¼HðYjXiÞ follows from (3).

Lemma 1 implies that under X-selection,

HiðXYÞ�HjðXYÞ¼HðYjXiÞ�HðYjXjÞ: ð8Þ

Because only differences in cross entropy affect selection, this identity shows that, under X-selection, selecting prediction models based on

HðYjXiÞ is equivalent to selecting structured PDFs based on HiðXYÞ. Importantly, the left-hand side of (8) involves structured PDFs while the right

hand side involves only unstructured PDFs. This fact will become important later when we derive estimates of cross entropy—the left-hand side

will require solving constrained maximum likelihood problems, whereas the right-hand side will not.

Not all selection problems can be reduced to X-selection. For instance, in CCA, both X and Y variables are selected. We call this simultaneous

selection. HðYjXÞ is not a meaningful criterion for simultaneous selection because Y differs between models. For instance, HðYjXÞ is a proxy for

prediction error, and comparing prediction errors of different quantities with different units is not meaningful. In such cases, the natural approach

is to define the structure in qi(x, y) associated with the selection problem and then compute the corresponding cross entropy HiðXYÞ. However,

this approach inevitably leads to solving a constrained maximum likelihood problem, which can be difficult. We seek an alternative approach that

avoids solving a constrained maximum likelihood problem, similar to the way regression model selection avoids this problem. More precisely, we

seek a criterion that can be computed by omitting redundant X and Y variables from the calculation, just as HðYjXÞ can be computed by omitting

redundant X variables from the prediction model. Let this new criterion be denoted MICðX;YÞ, where explanatory and response variables are

separated by a semicolon. The first natural requirement is that it should be consistent with cross entropy for X-selection.

Definition 2. MICðX;YÞ is said to be consistent with cross entropy for X-selection if for all q(y, x1, x2) and p(y, x1, x2),

MICðX1;YÞ�MICðX2;YÞ¼HðYjX1Þ�HðYjX2Þ: ð9Þ
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A second requirement is that it should be suitable for simultaneous selection, particularly for selecting variables in CCA. Importantly, CCA

does not distinguish response and explanatory variables. Therefore, we seek a criterion that satisfies the following property.

Definition 3 Symmetric. A selection criterion is said to be symmetric if it does not depend on which variables are labelled response

and explanatory.

Clearly, HðYjXÞ is not symmetric, since HðYjXÞ¼�2EXY ½log qYjXðyjxÞ�≠ �2EXY ½log qXjYðxjyÞ� ¼HðXjYÞ. On the other hand, HðXYÞ is symmet-

ric, but it is not consistent with cross entropy since HðX1YÞ�HðX2YÞ¼HðYjX1Þ�HðYjX2ÞþHðX1Þ�HðX2Þ. In general, HðX1Þ�HðX2Þ≠0. The

criterion that is both symmetric and consistent with cross entropy is given in the following proposition.

Proposition 1. To within an additive constant, the only criterion that is both symmetric and consistent with cross entropy for

X-selection is

MICðX;YÞ¼HðXYÞ�HðYÞ�HðXÞ ð10Þ

¼HðYjXÞ�HðYÞ ð11Þ

¼HðXjYÞ�HðXÞ: ð12Þ

Proof. Let HðYjX1X2Þ and HðYjX1Þ denote cross entropies for q(yjx1, x2) and q(yjx1), respectively. By assumption, MICðX;YÞ is con-
sistent with cross entropy for X-selection; hence,

MICðX1X2;YÞ�MICðX1;YÞ¼HðYjX1X2Þ�HðYjX1Þ: ð13Þ

Rearranging this equation gives

MICðX1X2;YÞ�HðYjX1X2Þ¼MICðX1;YÞ�HðYjX1Þ: ð14Þ

The absence of X2 on the right implies that the right-hand side is a functional of the distribution of x1 and y only. It follows that

the left-hand side has this same dependence. Repeating the above argument but with the roles of x1 and x2 swapped leads to

the conclusion that the left-hand side is a functional of the joint distribution only of x2 and y. These two properties hold for arbitrary

p(x1, x2, y) only if the left-hand side is a functional of the distribution of y only. That is,

MICðX;YÞ�HðYjXÞ¼ fðYÞ, ð15Þ

where f(Y) is some functional of q(y) and p(y). Similar arguments, but swapping the roles of X and Y, give

MICðY;XÞ�HðXjYÞ¼ gðXÞ, ð16Þ

where g(X) is some functional of q(X) and p(X). By assumption, MIC is symmetric; hence, MICðX;YÞ¼MICðY;XÞ. Therefore,
MIC may be eliminated from (15) and (16) to give

HðYjXÞþ fðYÞ¼HðXjYÞþgðXÞ: ð17Þ

Substituting the chain rule (6) into (17) and rearranging terms gives

HðXÞþgðXÞ¼HðYÞþ fðYÞ: ð18Þ

The left-hand side does not depend on the distribution of Y, and the right-hand side does not depend on the distribution of X.

The only way that this identity can hold for arbitrary distributions is that the two sides must equal a constant. Therefore,

HðYÞþ fðYÞ¼ α,
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where α is a constant. Since only differences in MIC are important, the constant α may be set to zero without loss of generality.

Solving for f(Y) and substituting into (15) determines MIC uniquely and yields (11). Equations (10) and (12) follow from (11) by the

chain rule (6).

To our knowledge, MIC has not appeared in the literature. If pðx,yÞ¼ qðx,yÞ, then MICðX;YÞ¼�2MðX;YÞ, where

MðX;YÞ¼EXY log
pðx,yÞ
pðxÞpðyÞ

� �

is the mutual information between x and y. Just as H is cross entropy (times 2), MIC may be called cross mutual information (times �2). Anticipating

its application to variable selection, we call MIC mutual information criterion. The explicit dependence of MICðX;YÞ on the model PDF is

MICðX;YÞ¼�2EXY log
qðx,yÞ
qðxÞqðyÞ

� �
¼�2EXY log

qðyjxÞ
qðyÞ

� �
: ð19Þ

Conditional MIC can be defined analogously to conditional mutual information:

MICðX;YjZÞ¼HðYjX,ZÞ�HðYjZÞ¼�2EXYZ log
qðx,yjzÞ

qðxjzÞqðyjzÞ
� �

: ð20Þ

MIC satisfies chain rules analogous to mutual information; for example,

MICðXZ;YÞ¼MICðX;YÞþMICðZ;YjXÞ: ð21Þ

3 | VARIABLE SELECTION AND CONDITIONAL INDEPENDENCE

Although MIC is consistent with cross entropy for X-selection, this does not guarantee that it is a sensible criterion for simultaneous selection. To

show the latter, we first clarify the structure associated with X-selection.

Definition 4. X variables will be partitioned as x¼ðxTKxTRÞ
T
, where xK denotes the MK variables to keep and xR denotes MR variables

either to remove or retain. Similarly, Y variables will be partitioned as y¼ðyTK ,yTRÞ
T
, where yK and yR have dimensions PK and PR.

Under X-selection, the decision to remove xR from the prediction model depends on the cross entropies of p(yjxK, xR) and p(yjxK). The
structure relevant to this problem is (3), which is expressed below in the notation of Definition 4:

qωðyjxK ,xRÞ¼ qωðyjxKÞ¼ qðyjxKÞ, ð22Þ

where ω denotes the appropriate structural constraint on the PDF. Under (22), HωðYjXKXRÞ¼HðYjXKÞ, and therefore,

HðYjXKXRÞ�HωðYjXKXRÞ¼HðYjXKXRÞ�HðYjXKÞ,

which shows that using cross entropy to decide to remove xR is indistinguishable from deciding that the model PDF satisfies (22). The first

equality in (22) asserts that, under the model PDF, y and xR are conditionally independent given xK. We denote this condition as

Y ⊥XRjXK: ð23Þ

Conditional independence defines a particular structure on a PDF. Importantly, conditional independence can be expressed through q(�) in
different ways. For instance, by repeated application of the probability law (2), the structure (22) can be expressed equivalently as

qωðyjxR ,xKÞ¼ qðyjxKÞ, ð24Þ
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qωðxRjy,xKÞ¼ qðxRjxKÞ, ð25Þ

qωðy,xRjxKÞ¼ qðyjxKÞqðxRjxKÞ, ð26Þ

qωðy,xR ,xKÞ¼ qðy,xKÞqðxR,xKÞ=qðxKÞ: ð27Þ

These expressions are equivalent statements that the model PDF satisfies Y ⊥ XR j XK. This equivalence allows us to prove the following.

Proposition 2. Under conditional independence ω : Y ⊥ XR j XK,

MICðXKXR;YÞ�MICðXK ;YÞ¼HðXKXRYÞ�HωðXKXRYÞ: ð28Þ

where HωðXKXRYÞ is the cross-entropy of qω(xK, xR, y) defined in (27).

Proof. Computing the cross entropy of (27) yields HωðYXRXKÞ¼HðYXKÞþHðXRXKÞ�HðXKÞ, and therefore,

HðXKXRYÞ�HωðXKXRYÞ ¼ HðXKXRYÞ� HðYXKÞþHðXRXKÞ�HðXKÞð Þ
¼ HðXKXRYÞ�HðXRXKÞ�HðYÞð Þ� HðYXKÞ�HðXKÞ�HðYÞð Þ
¼ MICðXKXR;YÞ�MICðXK ;YÞ,

which proves the proposition.

Proposition 2 shows that MIC is consistent with cross entropy for deciding conditional independence (23). By analogy, we anticipate that

simultaneous selection corresponds to selecting some form of conditional independence. To define this form, note that simultaneous selection

asks whether (xR; yR) should be included with (xK; yK). By analogy with X-selection, the criterion for simultaneous selection should be based on

comparing MIC with and without the potentially redundant variables (xR; yR), that is, based on comparing MICðXKXR;YKYRÞ to MICðXK ;YKÞ. The
structure required for this difference in MIC to equal the difference in cross entropies between unstructured and structured PDFs is

given next.

Proposition 3. The criterion

MICðXKXR;YKYRÞ�MICðXK ;YKÞ¼HðXKXRYKYRÞ�Hψ ðXKXRYKYRÞ ð29Þ

holds if and only if the constraint ψ is

ψ : YK ⊥XRjXK and YR ⊥XKXRjYK: ð30Þ

For clarity, we note that (30) can be expressed in other equivalent forms using logical equivalences (an example is 73 below;

see Dawid, 1979).

Proof. ExpandingMIC using definition (10) and rearranging terms gives

MICðXKXR;YKYRÞ�MICðXK ;YKÞ ¼ HðXKXRYKYRÞ�HðYKYRÞ�HðXKXRÞð Þ� HðXKYKÞ�HðXKÞ�HðYKÞð Þ
¼HðXKXRYKYRÞ� HðYRjYKÞþHðYK jXKÞþHðXKXRÞð Þ: ð31Þ

Comparison with (29) implies

Hψ ðXKXRYKYRÞ¼HðYRjYKÞþHðYK jXKÞþHðXKXRÞ, ð32Þ

or equivalently
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0 ¼ Hψ ðXKXRYKYRÞ� HðYRjYKÞþHðYK jXKÞþHðXKXRÞð Þ

¼ EXKXRYKYR log
qψ ðxK ,xR,yK ,yRÞ

qðyRjyKÞqðyK jxKÞqðxK ,xRÞ
� �� �

¼ EXKXRYKYR log
qψ ðyRjxK ,xR,yKÞ

qðyRjyKÞ
� �

qψ ðyK jxK ,xRÞ
qðyK jxKÞ

� �
qψ ðxK ,xRÞ
qðxK ,xRÞ

� �� �� �
:

For the expectation to vanish for any true PDF p(xK, xR, yK, yR), the argument of the log must equal one. The first parenthesis is

the only term that depends on yR. By familiar arguments in separation of variables, this term must equal a constant and that con-

stant must be one to ensure that the model PDFs integrate to one. Under this result, the second parenthesis is the only term that

depends on yK; hence, by similar arguments, it too must equal one. Given these two results, the last term in parenthesis must equal

one, implying that ψ does not impose structure on q(x). It follows that

qψ ðyRjyK ,xK ,xRÞ¼ qðyRjyKÞ , YR ⊥XKXRjYK, ð33Þ

qψ ðyK jxK ,xRÞ¼ qðyK jxKÞ , YK ⊥XRjXK, ð34Þ

which are the constraints in (30). The corresponding constrained joint PDF is

qψ ðxK ,xR,yK ,yRÞ¼ qðyRjyKÞqðyK jxKÞqðxK ,xRÞ: ð35Þ

This proves the “only if” part. To prove the “if” part, note that ψ in (30) implies (35), which implies (32), which if substituted

in (29) yields (31).

To clarify the reasonableness of (23) and (30), the following proposition describes their consequences in terms of CCA.

Proposition 4 Adding redundant variables to xK and yK does not alter the canonical correlations.. Consider CCA of x and y, which

yields a projection vector pair u and v such that the correlation between uTx and vTy equals the canonical correlation. Following

Definition 4, partition u¼ðuTKuTRÞ
T
and v¼ðvTKvTRÞ

T
. If (23) is true, then uR ¼0 for all canonical correlations. If (30) is true, then uR ¼0

and vR ¼0 for all canonical correlations. In either case, the canonical correlations for (xK; yK) are identical to those of (x; y).

Proof. The constraint ψ in (30) can be written in terms of qψ(�) as in (33) and (34), which in turn can be written, respectively, as

qψ ðyR ,xjyKÞ¼ qψ ðyRjyKÞqψ ðxjyKÞ and qψ ðyK ,xRjxKÞ¼ qψ ðyK jxKÞqψ ðxRjxKÞ: ð36Þ

Let covψ ½yR,xjyK � denote the conditional covariance matrix between yR and x given yK under model PDF qψ(xK, xR, yK, yR).

Then (36) implies

covψ ½yR,xjyK � ¼0 and covψ ½yK ,xRjxK � ¼0: ð37Þ

Under covariance constraints (37), Fujikoshi (1982) showed that uR ¼0 and vR ¼0. Under the second identity in (37), Fujikoshi

et al. (2010) showed that uR ¼0. In both cases, the canonical correlations for (xK; yK) are identical to those of (x; y). This completes

the proof.

4 | SAMPLE CRITERION FOR NORMAL DISTRIBUTIONS

The above considerations have ignored the fact that model PDFs generally involve parameters that are unknown and must be estimated from

finite samples. This estimation can lead to overfitting and must be taken into account. Let qðYjX;θYjXÞ denote the PDF model for predicting

Y given X with parameters θYjX . We follow Akaike (1973) by using maximum likelihood estimates (MLEs) for the parameters. Accordingly, let θ̂YjX
denote the MLE of θYjX derived from the sample ðX̂, ŶÞ. A fundamental principle in model selection is to judge model performance based on how

well the model predicts an independent sample (X0,Y0). Following Akaike (1973), we average the cross entropy for qðY0jX0; θ̂YjXÞ over ðX̂, ŶÞ and
(X0,Y0), which have identical distributions but are independent of each other. The result is IC:
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ICðYjXÞ¼�2EX̂Ŷ EX0Y0 logqðY0jX0; θ̂YjXÞ
h ih i

: ð38Þ

Under normality, the PDF model satisfies qðX,Y; θ̂XYÞ¼ qðX; θ̂XÞqðYjX; θ̂YjXÞ, where θ̂XY , θ̂X , θ̂YjX are MLEs of the parameters in the respective

PDF models (this identity does not hold in general; Barndorff-Nielsen, 1976). As a result of this identity, IC satisfies the chain rule

ICðXYÞ¼ ICðXÞþ ICðYjXÞ, ð39Þ

where ICðXYÞ¼�2EX̂Ŷ ½EX0Y0 ½log qðX0,Y0; θ̂XYÞ�� and ICðXÞ¼�2EX̂½EX0 ½log qðX0; θ̂XÞ��. By analogy, we define the following:

Proposition 5. The Akaike-type extension of MIC is defined as

MICaðX;YÞ¼ ICðYjXÞ� ICðYÞ¼�2EX̂Ŷ EX0Y0 log
qðY0jX0; θ̂YjXÞ

qðY0; θ̂YÞ

" #" #
: ð40Þ

To within an additive constant, the only criterion that is both symmetric and whose differences equal the corresponding

differences in IC is MICa.

Proof. In the proof for Proposition 1, replace H everywhere by IC. Then, the proof follows the same steps. In particular, the analo-

gous expression for (14) has the right-hand side MICaðXK ;YÞ� ICðYjXKÞ, which still is a functional of the distribution of xK and

y only, because qðyjxK ; θ̂YjXK
Þ does not depend on xR. Also, IC satisfies the chain rule (39), so the step from (17) to (18) is essentially

the same as for H.

Proposition 5 implies that estimates of MICa follow from estimates of IC, and so we consider in some detail unbiased and consistent

estimation of IC. For normal distributions, such estimates can be derived from the model,

Y¼XBþ jμTY þEY , ð41Þ

where Y and X are identified as response and explanatory variables, respectively, B and μY contain regression coefficients, j is a vector of ones to

account for the intercept, and EY is a random matrix. Each row of EY is independently distributed as a multivariate normal with zero mean and

covariance matrix ΣYjX . The dimensions are

Y�ℝN�P, X�ℝN�MK , B�ℝMK�P, j�ℝN, μY �ℝP, EY �ℝN�P:

The total number of predictors including the intercept is M¼MK þ1. Sugiura (1978) and Hurvich and Tsai (1989) showed that if the candidate

model (41) includes the true model (and if other restrictions discussed below hold), then an unbiased estimate of (38) is

AICcðYjXÞ¼N logjΣ̂YjXjþNP logð2πÞþNPþN
2MPþPðPþ1Þ
N�M�P�1

, ð42Þ

where Σ̂YjX is the MLE of ΣYjX derived from ðX̂,ŶÞ. Estimates of ICðYÞ, ICðXÞ, ICðXYÞ may be derived by applying (42) to the models

Y¼ jμTY þEY , X¼ jμTX þEX , ½XY� ¼ j½μTXμTY �þEXY : ð43Þ

Let Σ̂YY , Σ̂XX , Σ̂ðXYÞ be the MLEs of the covariance matrices of EY,EX, EXY, respectively. These matrices are related through standard identities

Σ̂YjX ¼ Σ̂YY � Σ̂YXΣ̂
�1
XX Σ̂XY , ð44Þ

jΣ̂ðXYÞj ¼ jΣ̂XXjjΣ̂YjXj: ð45Þ

Evaluating AICc for each model in (43), noting that each model has only M¼1 explanatory variable (i.e., the intercept), and using the identity

NPþNð2MPþPðPþ1ÞÞ=ðN�M�P�1Þ¼PNðNþMÞ=ðN�M�P�1Þ, we obtain the criteria
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AICcðYÞ¼N logjΣ̂YY jþNP logð2πÞþNðNþ1Þ P
N�P�2

� �
, ð46Þ

AICcðXÞ¼N logjΣ̂XX jþNMK logð2πÞþNðNþ1Þ MK

N�MK �2

� �
, ð47Þ

AICcðXYÞ¼N logjΣ̂ðXYÞjþNðPþMKÞlogð2πÞþNðNþ1Þ MK þP
N�MK �P�2

� �
: ð48Þ

Conditional independence can be expressed in many different ways. A criterion for conditional independence should make consistent

decisions for equivalent formulations. While such consistency is guaranteed for population quantities like cross entropy, it is not guaranteed for

sample criteria. The following proposition gives the necessary condition for a sample criterion to give consistent decisions about conditional

independence.

Proposition 6. Let AICðYjXÞ¼N logjΣ̂YjXjþP be a sample criterion (note that AICc is of this form). Define the associated chain rule

to be AICðXYÞ¼AICðXÞþAICðYjXÞ. If AICðYjXÞ satisfies the chain rule, then it makes consistent decisions about Y⊥XR jXK. If it

violates the chain rule, then there exists a sample for which it makes contradictory decisions about Y⊥XR jXK.

Proof. Let ω denote the constraint Y ⊥ XR j XK. Therefore, the associated candidate PDF qω(�) satisfies (24)–(27). Based on these

identities, the positivity of the following quantities are equally valid criteria for deciding ω:

δ̂1 ¼AICðYjXKXRÞ�AICωðYjXKXRÞ¼AICðYjXKXRÞ�AICðYjXKÞ, ð49Þ

δ̂2 ¼AICðXRjXKYÞ�AICωðXRjXKYÞ¼AICðXRjXKYÞ�AICðXRjXKÞ, ð50Þ

δ̂3 ¼AICðYXRjXKÞ�AICωðYXRjXKÞ¼AICðYXRjXKÞ� AICðYjXKÞþAICðXRjXKÞð Þ, ð51Þ

δ̂4 ¼AICðYXKXRÞ�AICωðYXKXRÞ¼AICðYXKXRÞ� AICðYXKÞþAICðXKXRÞ�AICðXKÞð Þ: ð52Þ

If AIC satisfies the chain rule, then a little algebra shows δ̂1 ¼ δ̂2 ¼ δ̂3 ¼ δ̂4; hence, AIC gives consistent decisions about

Y⊥XR jXK. Note that δ̂i is of the form

δ̂i ¼N logΛK þδP i,

where δP i is a positive, deterministic term that depends only on (N,MK,MR, P) and ΛK is independent of i because by (45)

ΛK ¼
jΣ̂YjXKXR

j
jΣ̂YjXK

j ¼ jΣ̂XR jXKY j
jΣ̂XR jXK

j ¼
jΣ̂ðYXRÞjXK

j
jΣ̂YjXK

jjΣ̂XR jXK
j ¼

jΣ̂ðYXÞjjΣ̂XKXK j
jΣ̂ðYXK ÞjjΣ̂XXj

: ð53Þ

In fact, ΛK is a likelihood ratio because δ̂1, δ̂2, δ̂3, δ̂4 are nested comparisons. Therefore, ΛK is a random variable on (0, 1]. Suppose

AIC violates the chain rule; hence, for some sample, δ̂i ≠ δ̂j. Then because ΛK does not depend on i, δP i ≠ δP j for the parameters

(N,MK,MR,P) of that sample. Because �logΛK is a continuous random variable with positive support on [0,∞), there is nonzero

probability that it lies between δP i and δP j. When this occurs, δ̂i and δ̂j have opposite signs and therefore AIC gives contradictory

decisions about Y⊥XR jXK.

Unfortunately, AICc does not satisfy the chain rule; that is, AICcðXYÞ≠AICcðXÞþAICcðYjXÞ. The reason AICc violates the chain rule is

because its derivation implicitly assumes X0 ¼ X̂ (DelSole & Tippett, 2021; Tian et al., 2020), which contradicts the assumption in (38) that ðX̂,ŶÞ
and (X0,Y0) are independent. Following Rosset and Tibshirani (2020), we define the following.

Definition 5. X0 and X̂ are said to be Same-X if X0 ¼ X̂.

Definition 6. X0 and X̂ are said to be Random-X if the rows of X0 and X̂ are independently and identically distributed as a joint

normal distribution.
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AICc is an unbiased estimate of IC for Same-X. An important special case of Same-X is the intercept-only models (43). In this

case, AICcðYÞ,AICcðXÞ,AICcðXYÞ still are the correct unbiased estimates of ICðYÞ,ICðXÞ,ICðXYÞ, because the only explanatory variable in

each model is the intercept, which is Same-X, and therefore consistent with the derivation of Hurvich and Tsai (1989). However, under

Random-X, AICcðYjXÞ violates the chain rule, and therefore, by Proposition 6, AICc can make contradictory decisions about Y⊥XR jXK. For these

reasons, AICc is unsuitable for selecting models under Random-X. The appropriate sample criterion for Random-X is given in the next

proposition.

Proposition 7. Assuming the candidate model (41) includes the true model, an unbiased estimate of ICðYjXÞ under Random-X is

AICrðYjXÞ¼N logjΣ̂YjXjþNP logð2πÞþNðNþ1Þ MK þP
N�MK �P�2

� MK

N�MK �2

� �
: ð54Þ

Proof. Under Random-X, IC satisfies the chain rule (39); therefore, ICðYjXÞ can be estimated as ICðXYÞ� ICðXÞ. Unbiased

estimates of the latter two matrices are (48) and (47), respectively. Taking the difference AICcðXYÞ�AICcðXÞ yields (54).

Alternatively, AICrðYjXÞ can be derived by exact integration, as shown in DelSole and Tippett (2021) (see also Fujikoshi, 1985;

Tian et al., 2020). AICr is written in the form (54), rather than in other forms in DelSole and Tippett (2021), to facilitate comparisons

discussed below.

AICr satisfies the chain rule AICrðXYÞ¼AICrðXÞþAICrðYjXÞ, and hence by Proposition 6, it gives consistent decisions for equivalent selection

problems. Since AICr also is an unbiased estimate of IC for Random-X, it is the natural basis for estimating Akaike's extension of MIC.

Proposition 8. Assuming the candidate PDF (41) includes the true PDF, an unbiased estimate of MICaðX;YÞ under Random-X is

MICðX;YÞ¼AICrðYjXÞ�AICrðYÞ ð55Þ

¼AICrðXjYÞ�AICrðXÞ ð56Þ

¼AICrðXYÞ�AICrðXÞ�AICrðYÞ: ð57Þ

In terms of the regression model (41),

MICðX;YÞ¼N logjΣ̂YjXj�N logjΣ̂YY jþPðN,MK ,PÞ, ð58Þ

where

PðN,MK ,PÞ¼NðNþ1Þ MK þP
N�MK �P�2

� MK

N�MK �2
� P
N�P�2

� �
: ð59Þ

Proof. Equation (55) follows from Proposition 5 after replacing IC with the estimate AICr. Equations (56) and (57) follow from (55)

because AICr satisfies the chain rule. Equation (58) follows from (55) and (54).

Proposition 9 Sample criterion for X-selection. Under ω : Y ⊥ XR j XK, (27) implies that

AICrωðYXRXKÞ¼AICrðYXKÞþAICrðXRXKÞ�AICrðXKÞ, ð60Þ

and therefore, a criterion for ω is ΔX < 0, where

ΔX ¼MICðXKXR;YÞ�MICðXK ;YÞ¼AICrðYXKXRÞ�AICrωðYXKXRÞ: ð61Þ

10 of 17 DELSOLE AND TIPPETT



Proposition 10 Sample criterion for simultaneous selection. Under ψ :YK ⊥XRjXKandYR ⊥XKXRjYK, (35) implies that

AICrψ ðXK ,XR,YK ,YRÞ¼AICrðYRjYKÞþAICrðYK jXKÞþAICrðXK ,XRÞ, ð62Þ

and therefore, a criterion for ψ is ΔXY < 0, where

ΔXY ¼MICðXKXR;YKYRÞ�MICðXK ;YKÞ¼AICrðYRXRYKXKÞ�AICrψ ðYRXRYKXKÞ: ð63Þ

Proposition 11. Partition the matrices in (41) as X¼ ½XKXR� and Y¼ ½YKYR�, where XK,XR,YK,YR are each full column rank matrices

of rank MK,MR,PK,PR, respectively, with M¼MK þMR and P¼PK þPM. Then ΔX ¼N logΛK þPðN,MK þMR,PÞ�PðN,MK ,PÞ, or

ΔX ¼N logΛK þNðNþ1Þ MK þMRþP
N�MK �MR�P�2

� MK þMR

N�MK �MR�2
� MK þP
N�MK �P�2

þ MK

N�MK �2

� �
:

Similarly, ΔXY ¼N logjΣ̂ðYRXRÞjðYKXK Þj�N logjΣ̂XR jXK
j�N logjΣ̂YR jYK

jþPðN,MK þMR,PK þPRÞ�PðN,MK ,PKÞ, or equivalently

ΔXY ¼N logjΣ̂ðYRXRÞjðYKXK Þj�N logjΣ̂XR jXK
j�N logjΣ̂YRjYK

j

þNðNþ1Þ MþP
N�P�M�2

� M
N�M�2

� P
N�P�2

� MK þPK
N�MK �PK �2

þ MK

N�MK �2
þ PK
N�PK �2

� �
:

ð64Þ

Remark 1. Many standard texts recommend using AICc for X-selection (e.g., Burnham & Anderson, 2002). We argue that AICc is

not suitable for deciding conditional independence because it gives inconsistent decisions for equivalent formulations of conditional

independence. Another issue can be seen by comparing ΔX to Δ0
X ¼AICcðYjXKXRÞ�AICcðYjXKÞ. The latter criterion imposes less

penalty per each extra predictor than does (61). The reason for this is that AICc assumes Same-X while AICr assumes Random-X

(as discussed earlier in this section). As a result, AICc neglects a source of uncertainty and therefore underestimates the cross

entropy.

Remark 2. Under normality, deciding Y ⊥ XR j XK is equivalent to deciding

BR ¼0 in Y¼XKBK þXRBRþ jμTY þEY : ð65Þ

The likelihood ratio test (LRT Johnson & Wichern, 2002) for this hypothesis is to decide BR ¼0 when ΔLRT ¼ logΛK � logΛC >0,

where ΛK is defined in (53), and ΛC is the critical value from Wilks' lambda distribution with parameters (P,MR,N�M). Both ΔLRT to

ΔX depend on sample values only through the likelihood ratio and therefore differ only by the critical value. However, the LRT is lim-

ited to nested models.

Remark 3. Conditional independence ω : Y ⊥ XR j XK also can be expressed as (26), which under normal distributions is equivalent to

Σω
YXR jXK

¼0 , Σω
YXR

¼ΣYXKΣ
�1
XKXK

ΣXKXR :

This is precisely the covariance constraint used by Fujikoshi et al. (2010) to derive a criterion for selecting one set of variables in CCA (see their

sec. 11.5). The fact that this selection problem is equivalent to deciding ω indicates that a separate derivation is unnecessary.

Remark 4. Conditional independence ω : Y ⊥ XR j XK also can be expressed as (25), which under normal distributions is equivalent

to the hypothesis BY ¼0 in the model

BY ¼0 inXR ¼YBY þXKBK þE:
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Because this hypothesis is equivalent to ω, the criterion also is the same, as also can be seen from the following identity:

MICðXR;YXKÞ�MICðXR;XKÞ¼AICrðXRjYXKÞ�AICrðXRjXKÞ¼AICrðYjXKXRÞ�AICrðYjXKÞ:

Remark 5. Turning to an apparently different selection problem, Fujikoshi (1989) proposed a criterion for selecting Y variables on

the basis that yR, after removing the effects of yK, does not depend on x. This criterion can be framed as the hypothesis

BX ¼0 in YR ¼YKBK þXKBX þ jμTRþER: ð66Þ

Under normality, the selection problem (66) is equivalent to deciding

XK ⊥YRjYK, ð67Þ

which is merely (23), except with X and Y labels switched. We call this Y-selection. Thus, all of the above results for X-selection

can be applied immediately to Y -selection, after swapping variable labels. In particular, the criterion for Y -selection is

MICðXK ;YKYRÞ�MICðXK ;YKÞ¼N log
jΣ̂YKYR jXK

j
jΣ̂YKYR j

 !
�N log

jΣ̂YK jXK
j

jΣ̂YK j

 !
þPðN,MK ,PK þPRÞ�PðN,MK ,PKÞ: ð68Þ

This small-sample criterion is asymptotically equivalent to the criterion derived by Fujikoshi (1989). Because MIC is symmetric,

the criterion is identical to regression model selection but with the usual roles of X and Y swapped; namely, X is response and Y is

explanatory. In this sense, selecting response variables is fundamentally equivalent to selecting explanatory variables—once a crite-

rion for X-selection exists, one can swap X and Y labels and apply it to select response variables. In this sense, a separate derivation

of a criterion for Y -selection is unnecessary.

5 | MAXIMIZING THE LIKELIHOOD UNDER CONDITIONAL INDEPENDENCE CONSTRAINTS

It should be recognized that the criteria stated in Propositions 9 and 10 were obtained merely by evaluating MIC. In particular, no constrained

maximum likelihood problem needed to be solved. Nevertheless, (61) and (63) assert that the criteria are equivalent to the AICr of the joint PDFs

constrained by the relevant form of conditional independence. These assertions can be verified because the associated constrained optimization

problems have in fact been solved in the literature, though this fact seems not to be widely recognized. First, Fujikoshi (1985) derived the

corrected AIC criterion for X-selection under Random-X. The result is his eq. 5.17, which is identical to our �ΔX. This serves as a check on our der-

ivation of (61). Also, this equivalence implies that Fujikoshi (1985) derived the small-sample correction to AIC under Random-X nearly

40 years ago!

In regards to Proposition 10, the verification is somewhat more complicated because the small-sample corrected AIC for simultaneous selec-

tion does not appear in the literature. However, Fujikoshi et al. (2010) derived a criterion based on Distance Information Criterion, which is closely

related to AIC (see sec. 10.6.1 of Fujikoshi et al., 2010). The small-sample corrected version of this criterion is called CDIC and appears in sec.

11.5.2 of Fujikoshi et al. (2010). To remove the slight inconsistency with AIC, we adjust CDIC as follows: replace the overall factor of “n” by “N,”
and replace “n” in the numerator of each penalty term by “N + 1,” which yields the following modified criterion CDIC*:

CDIC� ¼�N logjΣ̂ðYRXRÞjðYKXK ÞjþN logjΣ̂XR jXK
jþN logjΣ̂YRjYK

j

þN
ðNþ1ÞðMK þPKÞ
N�MK �PK �2

þðNþ1ÞðMK þMRÞ
N�MK �MR�2

þðNþ1ÞðPK þPRÞ
N�PK �PR�2

�ðNþ1ÞðMKÞ
N�MK �2

�ðNþ1ÞðPKÞ
N�PK �2

�ðPþM�1Þ
� �

:

Comparison with (64) shows that CDIC� and �ΔXY agree, except for additive terms that depend only on N and P+M. It is not clear why

there exist differing terms, but Fujikoshi et al. (2010) applied their criterion to situations in which N and P+M were constant; hence, these terms

do not affect model selection. We interpret this agreement as confirming that both ΔX and ΔXY are the correct small-sample criteria for condi-

tional independence.

Importantly, Fujikoshi (1985) and Fujikoshi et al. (2010) derived the above criteria by explicitly maximizing the likelihood function subject to a

constraint associated with conditional independence. The solution to such constrained optimization problems requires intricate matrix manipula-

tions. In contrast, the criteria in Proposition 11 were obtained simply by taking differences in MIC. The simplicity in the latter approach derives
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from the fact that certain forms of conditional independence allow structured PDFs to be expressed in terms of criteria for unstructured PDFs.

Specifically, the left-hand sides of (60) and (62) require solving a constrained ML problem whereas the right-hand side requires solving

unconstrained ML problems. A remarkable fact is that MIC gives this decomposition directly simply by computing differences in MIC of appropri-

ate variable subsets.

6 | CANONICAL CORRELATION ANALYSIS

MIC is a natural criterion for CCA because, in addition to the above reasons, it depends on sample values only through the canonical

correlations.

Proposition 12. Let the canonical correlations between X and Y in (41) be ρ̂1, ρ̂2,…. Then

MICðY;XÞ¼N
X
i

logð1� ρ̂2i ÞþPðN,MK ,PÞ: ð69Þ

Proof. Recall that canonical correlations are derived from the eigenvalues of

Σ̂YXΣ̂
�1
XX Σ̂XYwY ¼ ρ̂2Σ̂YYwY , Σ̂YjXwY ¼ 1� ρ̂2

� �
Σ̂YYwY ,

where (44) has been used. Since the determinant of a matrix equals the product of eigenvalues,

Σ̂
�1
YY Σ̂YjX

��� ���¼Y
i

ð1� ρ̂2i Þ:

Taking the log of both sides and substituting the result into (58) yields (69).

For normal distributions, a sample estimate of mutual information is (Soofi et al., 2010),

MðX;YÞGaussian ≈ �1
2

X
i

logð1� ρ̂2i Þ: ð70Þ

Thus, minimizing MIC strikes a balance between maximizing mutual information while minimizing the number of parameters being estimated.

To illustrate the application of MIC for selecting variables in CCA, consider data generated by the model

y¼Axþϵ, ð71Þ

where MK ¼10, P¼10, A¼ ρvvT , v¼ 1 2 2 1 0 0 0 0 0 0ð ÞT=
ffiffiffiffiffiffi
10

p
, x�Nð0, IÞ, ϵ�Nð0,QÞ, Q¼ I�ρvvT , ρ¼0:7. When all 10 X and

Y variables are included, population CCA yields one nonzero canonical correlation, namely, ρ1 ¼0:7. However, only the first four X and first four

Y variables are relevant; additional variables beyond this add no information about the X–Y relation and are therefore redundant. We consider a

selection problem in which the candidate variables are included in a sequentially nested fashion; that is, the candidate model with MK X variables

consists of X1,X2,…,XMK , and the candidate model with MY Y variables consists of Y1,Y2,…,YMY .

Figure 1 shows MIC for a particular realization of samples for N¼50. The minimum MIC occurs when three X and three Y variables are used.

Repeating this procedure 100 times and counting the number of times a particular model is selected leads to the top left panel of Figure 2. For

reference, the population mutual information is indicated by the shading. The most common selection is for three X and three Y variables.

For comparison, we define an “uncorrected MIC” using (58) but with the uncorrected penalty limN!∞PðN,MK ,PÞ¼2MKP. Selections based on

uncorrected MIC, shown in the bottom left panel, show much larger tendency to overfit, which illustrates the importance of using the corrected

criterion. For a larger sample size, N¼200 (right column), MIC overwhelmingly selects four X and four Y variables, the correct choice for large N.

The uncorrected MIC still shows a larger tendency to overfit. Even for N¼ 20,000 (not shown), MIC overwhelming selects four X and four

Y variables and shows little tendency to overfit.
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7 | GRAPHICAL MODELS

We now consider using MIC to select graphical models. Graphical models express conditional dependencies by a graph comprising nodes and

edges, where the absence of an edge between two nodes indicates that those two variables are conditionally independent given all other

variables. More precisely, the two nodes Z1 and Z2 have no edge if

ω12 : Z1 ⊥Z2jZ=12, ð72Þ

where Z/12 means “all Z-variables except Z1 and Z2.” Graphical models corresponding to X-selection, Y-selection, and simultaneous selection are

illustrated in Figure 3. The graph for simultaneous selection follows from the fact that

YR ⊥XKXRjYK ) YR ⊥XKjðYKXRÞ
YR ⊥XRjðYKXKÞ



, ð73Þ

(which follows from the converse of Lemma 4.3 in Dawid, 1979). The associated structures have a simple expression in terms of the precision

matrix (i.e., the inverse of the covariance matrix). Specifically, (72) implies that the (Z1, Z2) element of the precision matrix vanishes. Accordingly,

the precision matrices corresponding to X-selection, Y-selection, and simultaneous selection have, respectively, the following forms

YK

XK

XR

YK XK XR
� � 0
� � �
0 � �

0
@

1
A ,

YR

YK

XK

YR YK XK
� � 0
� � �
0 � �

0
@

1
A ,

YR

YK

XK

XR

YR YK XK XR
� � 0 0
� � � 0
0 � � �
0 0 � �

0
BB@

1
CCA ,

A standard result in information theory is that if ω12 is true, then conditional mutual information vanishes; that is, MðZ1;Z2jZ=12Þ¼0. As

remarked in (20), a conditional MIC may be defined that behaves analogously to conditional mutual information, except it varies in the opposite

way (i.e., large MIC corresponds to weak conditional independence). By suitable redefinition of variable labels in previous sections, conditional

MIC is

MICðZ1;Z2jZ=12Þ¼MICðZ1;Z=1Þ�MICðZ1;Z=12Þ¼HðZ1jZ=1Þ�HðZ1jZ=12Þ¼HðZÞ�Hω12 ðZÞ: ð74Þ

F IGURE 1 Contours of MIC for a particular realization from the model (71). The minimum MIC is indicated by a dot and is labelled
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The Akaike-based sample estimate of conditional MIC is

MICðZ1;Z2jZ=12Þ¼MICðZ=1;Z1Þ�MICðZ=12;Z1Þ:

The decision rule is to accept ω12 if MICðZ1;Z2jZ=12Þ>0. This criterion can be evaluated for any Z1 and Z2, even if the graph is nondecomposable.

For completeness, we note that the analogous criterion for deciding Z1⊥ Z2 is MICðZ1;Z2Þ¼HðZ1jZ2Þ�HðZ1Þ>0.

Proposition 13. For scalar Z1 and Z2, conditional MIC is

MICðZ1;Z2jZ=12Þ ¼ log
jΣZ1Z2 jZ=12

j
jΣZ1 jZ=12

jjΣZ2 jZ=12
j

 !
þPðN,1,D�1Þ�PðN,1,D�2Þ

¼ log 1� ρ̂212jZ=12

� �
þPðN,1,D�1Þ�PðN,1,D�2Þ,

ð75Þ

where D is the total number of Z-variables and ρ̂12jZ=12
is the partial correlation between Z1 and Z2 after regressing out Z/12.

F IGURE 2 Number of times MIC selects the number of X and Y variables for CCA for 100 independent realizations from the model (71).
Results are shown for samples sizes N¼50 (left column) and N¼200 (right column), and using MIC (top row) and uncorrected MIC (bottom row).
The shading shows the population mutual information (it is the same in all panels)
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One of the most popular algorithms for identifying graphical models is the PC Algorithm (Spirtes et al., 2001). This algorithm requires a crite-

rion for deciding conditional independence. A standard criterion is based on statistical significance of the partial correlation. However, significance

depends on the arbitrary significance level α and is not guaranteed to be a proper score. In contrast, the criterion MICðZ1;Z2jZ=12Þ>0 does not

depend on the arbitrary α and is a proper score. To illustrate its application, we consider a simple four-variable model governed by

YR ¼AYK þE1, YK ¼BXK þE2, XR ¼CXK þE3, XK ¼ E4, ð76Þ
which corresponds to the right-most graph in Figure 3 for simultaneous selection. Our goal here is not to derive a new algorithm for exploring the

space of all graphs but rather to illustrate the impact of using a different criterion for deciding conditional independence. Accordingly, we have

used the pcalg package in R to select the graph from samples generated by model (76). The values of A, B, C were generated randomly from

Nð2,1Þ. Then, for the selected A, B, C, we generated N samples from (76), where E1, E2, E3, E4 are independently drawn from Nð0,1Þ. Then, this
whole procedure (including resampling A, B, C) was repeated 1000 times, and the number of times the PC algorithm identified the correct graph

was recorded. We have performed two different experiments: one that decides conditional independence based on significance of the partial cor-

relation using α¼5%, and one based on MIC in (75). The results are shown in Figure 4. The figure shows that for this choice of α and for a small

F IGURE 3 Graphical models associated with X-selection, Y-selection, and simultaneous selection

F IGURE 4 Fraction of times the PC Algorithm selects the correct graph from model (76), whose graph is the right-most graph in Figure 3
corresponding to simultaneous selection, as a function of sample size N. The PC algorithm is run in two modes, one usingM(Z1; Z2 j Z/12) > 0 from (75)
(black), and one using significance of the partial correlation at the 5% level (red). The error bars show 95% confidence intervals based on 1000 trials
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sample size (N < 100), the PC algorithm selects the correct graph more frequently using MIC than using the significance of the partial correlation.

This result should not be interpreted as general, since it depends on the choice of α, which is a tuning parameter in the PC algorithm. In contrast,

the criterion MICðZ1;Z2jZ=12Þ>0 does not involve tunable parameters. The parameter α could be tuned to produce better results, but this tuning

is not generally possible when the true graph is unknown. We emphasize that the criterion for conditional independence (74) is not restricted for

univariate Z1 and Z2; hence, this criterion may open new approaches to graphical model selection.
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