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Abstract: The objective of this study was to examine cardio hypothalamic-pituitary coupling and
to better understand how the temporal relations between these systems are altered during rest and
exercise conditions. An intensive within subjects study design was used. Seven adult males completed
two visits, each consisting of either a 24 h period of complete rest or a 24 h period containing a high-
intensity exercise bout. An intravenous catheter was used to collect serum samples every 10 min
throughout the 24 h period (i.e., 145 samples/person/condition) to assess growth hormone (GH)
dynamics throughout the 24 h period. Cardiac dynamics were also collected throughout the 24 h
period and epoched into 3 min windows every 10 min, providing serial short-time measurements of
heart rate variability (HRV) concurrent to the GH sampling. The standard deviation of the normal
RR interval (SDNN), the root mean square of successive differences (rMSSD), and sample entropy
(SampEn) was calculated for each epoch and used to create new profiles. The dynamics of these
profiles were individually quantified using SampEn and recurrence quantification analysis (RQA). To
address our central question, the coupling between these profiles with GH was assessed using cross-
SampEn and cross-RQA (cRQA). A comparison between the epoched HRV profiles indicated a main
effect between profiles for sample entropy (p < 0.001) and several measures from RQA. An interaction
between profile and condition was observed for cross-SampEn (p = 0.04) and several measures from
cRQA. These findings highlight the potential application of epoched HRV to assess changes in cardiac
dynamics, with specific applications to assessing cardio hypothalamic-pituitary coupling.

Keywords: growth hormone; heart rate variability; nonlinear dynamics; physiologic coupling

1. Introduction

The inherently complex and intricately connected regulatory mechanisms associated
with physiologic control span biologic subsystems and often display fractal and multifractal
characteristics in structure and time. The fractal and multifractal time series from many of
these systems have been a focal point of research for several decades and include cardiac
dynamics [1–6], human locomotion [7–13], and postural control [14–18]. These efforts are
based on the seminal findings in this area that demonstrate variability and complexity of
physiologic phenomena representing the adaptability of the underlying systems [19–22]
and that traditional statistics, such as averages, may not accurately represent the continuum
from health to disease [19,23].

The normal heartbeat was one of the first physiologic phenomena to be described as a
fractal process [19,23] and since then, heart rate variability (HRV) has been a popular, and
informative, noninvasive tool to assess and quantify cardiac autonomic regulation. Heart
rate variability is defined as the time between consecutive RR intervals and can be analyzed
through a variety of statistics, providing insight into the physiological interplay between
the parasympathetic and sympathetic nervous systems [24,25]. Most commonly, HRV is
assessed through either 24 h or short-time (~3–5 min) measurements that are subsequently
used to compare groups and/or in response to some perturbation. Throughout the 24 h
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period, both parasympathetic and sympathetic inputs contribute to changes in the standard
deviation of the normal RR interval (SDNN), while the root mean square of successive
differences (rMSSD) primarily represents regulation from the parasympathetic nervous
system [25]. Short-time HRV measurements provide an assessment of cardiac autonomic
control within a specific window and provide different information about the overall status
of the system compared to a 24 h measurement. Within these short-time recordings, SDNN
is heavily influenced by the sympathetic nervous system and respiratory sinus arrhythmia
while rMSSD is predominantly representative of vagally mediated inputs [24,25].

During rest, depressed values of HRV are associated with an increase in sympathetic
activity whereas higher values of HRV (greater variability) typically represent an increase
in parasympathetic activity [24,25]. The addition of nonlinear dynamics in HRV research
has provided information about cardiac regulatory behavior that is both different and
unobtainable from traditional measures of variability (e.g., standard deviation) [19,23].
Importantly, most evidence suggests that too little or too much complexity within these
systems represents maladaption and reduced adaptability [19–22]. For instance, chronic
disease has been shown to reduce measures of nonlinear HRV while increased nonlinear
HRV following myocardial infarction is associated with increased mortality [26]. While
changes in the complexity within systems have been shown to represent the manifesta-
tion and presence of disease [19,23], disease also alters the coupling between biological
subsystems [27–29].

In addition to the heart, the autonomic nervous system innervates the hypothalamus at
the paraventricular nucleus. The hypothalamus is one of the key regulators of physiologic
control and the paraventricular nucleus is essential to this regulation [30]. Growth hormone-
releasing hormone (GHRH) and somatostatin are released from the hypothalamus and,
in combination with other peripheral feedback signals, these hormones regulate growth
hormone (GH) output from the anterior pituitary [31]. With a half-life of ~16–19 min [31–33]
and pulsatile secretory dynamics, changes in GH concentration occur rapidly. These rapid
changes in GH concentration provide information about the overall status of the system,
with differentiable effects of gender and age, as well as nutrition, sleep, body composition,
health, and fitness [31,32].

Changes in GH output and secretory dynamics [31] often mirror changes observed in
HRV indices [24,25,34] across the lifespan and with the progression of disease. Similarly,
both GH and heart rate react very specifically to various perturbations, including exercise.
Investigation into the autonomic nervous system and hypothalamic-pituitary axis, indepen-
dent of the other, are plentiful, but a direct exploration of how these two systems interact is
less common [35–38].

An obvious question is whether these observations are happenstance or if these
systems couple in more acute and immediate measures of time. A better understanding
of the relations between biologic subsystems, particularly the relations between markers
requiring noninvasive versus invasive measurement, have clinical and practical relevance
in exercise, sport, military operations, and clinical settings. For instance, understanding
how these systems couple during rest and in response to an acute perturbation may provide
a method of better-characterizing disease progression, quantifying risk, or the potential to
use the non-invasive measurements to estimate or predict underlying physiologic responses
that would otherwise require invasive and time prohibitive testing. An immediate challenge
is a discrepancy in the time scales of potential markers (e.g., GH and HRV).

The overall objective of this study is to examine cardio hypothalamic-pituitary cou-
pling and to better understand how the temporal relations between these systems are
altered during rest and exercise conditions. We first examine methods of processing a
continuous RR-recording into discrete short-time assessments of HRV (epoched HRV) to
address issues of timescale invariance and explore the physiological meaning of these
time series. We subsequently use these data to examine the time-dependent and temporal
relations between these measures of cardiac dynamics with growth hormone. We hypothe-
sized that each of the epoched HRV profiles would couple with GH output during rest and
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exercise, but that exercise would increase this coupling. Further, we considered that there
may be a difference in the degree of coupling between each of the epoched HRV profiles
and GH output, providing different information about the regulation of these systems with
implications for practical applications and future directions.

2. Materials and Methods

An intensive within subjects study design was used. The study design is provided in
Figure 1 and additional detail on the methods is provided in the respective sub sections.
Healthy adult males (N = 7) were included in this study. Each participant completed a
rest and exercise condition separated by a minimum of 8 weeks. A screening visit was
conducted prior to each of the rest and exercise conditions (profile visits). Demographic
information was collected during each screening visit and each profile visit consisted of a
24 h admission with serum collected every 10 min (Q10) and RR-intervals collected contin-
uously. The exercise condition consisted of a high-intensity interval workout completed on
the cycle ergometer.
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Figure 1. Study design. Each participant completed two profile visits, separated by a minimum of
8 weeks. Screening visits were performed no less than 48 h prior and no more than 14 days from the
profile visit.

2.1. Sample

All individuals were healthy adult males who regularly participated in moderate-
vigorous exercise (≥4 days/week). All subjects were free of any known metabolic, cardio-
vascular, or pulmonary disease and had a body composition <18% fat. Exclusion criteria
included acute or chronic health conditions, medications for cardiovascular or metabolic
disease, mental health, endocrine, infectious conditions, a history of cancer, or additional
conditions that would have jeopardized participant safety were excluded from this study.

2.2. Screening Visit

Body composition was assessed with COSMED’s BOD POD (body fat, BF; fat-free
mass, FFM). Training history was assessed via questionnaire and used to ensure that activity
levels had not changed drastically between the two admissions. To conclude the screening
visit, participants completed a ramp test (100 W + 25 W/min) on a cycle ergometer to
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volitional fatigue (Lode Excalibur Sport). Breath-by-breath oxygen uptake was collected
(Parvo Medics TrueOne 2400) to assess maximal oxygen uptake (VO2max).

2.3. Profile Visit

The profile visits were completed no less than 48 h and no more than 14 days following
each of the screening visits. Each profile visit consisted of either a 24 h period of complete
rest or a 24 h period containing a high-intensity exercise bout. The order of the rest and
exercise conditions was randomly assigned and separated by a minimum of 8 weeks due
to limits on blood volume collection. Participants reported to the laboratory at ~05:30
to begin the 24 h admission at 06:00. An intravenous catheter was placed in either the
radial or antecubital vein and [3 mL] serum samples were collected every 10 min (Q10)
throughout the entire 24 h period (i.e., 145 samples/person/condition). A Polar HR monitor
(V800) was used to collect RR intervals continuously. Subjects were permitted to ambulate
in the laboratory but were not permitted to exercise except during the prescribed high-
intensity interval session. To standardize macronutrient intake prior to and immediately
following the exercise bout (at 10:00), subjects ate breakfast ~07:30 and were restricted to
water between 08:00–10:30. All subjects ate lunch ~13:00, and dinner ~20:00. All food and
beverages consumed by the participants were detailed in a dietary log and participants
were asked to consume foods of similar macronutrient composition during the second
profile visit. Participants were permitted to go to bed at their discretion, with mandatory
lights-out at 23:00.

2.4. Exercise Protocol

Following a 5 min warmup (≤50 watts), participants completed a high-intensity
exercise workout consisting of five 30 s maximal efforts on the cycle ergometer. Each
effort was separated by a 3 min active recovery period. Force applied to the flywheel was
standardized at 7.5% of body mass (kg) for each subject.

2.5. Biological Sample Collection and Analysis

The intravenous catheter was connected to a normal saline drip with a keep-vein-
open protocol to maintain line patency (20–30 mL/h). Blood was collected in a serum
separator tube through a closed system, and participants were volume-repleted with the
waste and a ~3 mL bolus of normal saline. Samples were allowed to clot for 20–40 min and
were then centrifuged for 12 min at 3000 rpm Serum was aliquoted into 1.5 mL storage
tubes and frozen at −80 ◦C until assayed. Growth hormone (GH) was assayed using
commercially available enzyme-linked immunosorbent assays (RayBiotech, Peachtree
Corners, GA, USA). Growth hormone output across the entire 24 h period, daytime hours
(06:00–06:00), nighttime hours (10:00–6:00), and exercise hours (10:00–12:00) were calculated.
Similarly, the peak exercise (10:00–12:00) and nighttime (22:00–06:00) GH concentrations
were measured. Nadir GH concentration across the entire 24 h was also assessed. An
example of the 24 h GH profile during rest and exercise conditions is provided in Figure 2.

2.6. RR-Recordings

The 24 h recordings were pre-processed following guidelines set forth by the 1996 Task
Force for HRV [24] using RHRV [39]. Measures of 24 h HRV included the standard devia-
tion of the normal RR-intervals (SDNN), the root mean square of successive differences
of the normal RR-interval (rMSSD), and sample entropy (SampEn). Sample entropy of
the 24 h recording was calculated using an embedding dimension, m, of m = 2 and a
tolerance/radius, r, of r = 0.2σ [denoting a percentage of the standard deviation of the
entire time series]. These parameters are commonly used for HRV analyses [40–44] and
were chosen for consistency to existing literature.
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2.7. Epoched RR-Recordings

A custom algorithm was used to process each of the cleaned 24 h RR recordings and
analyze various short-time epochs taken serially throughout the 24 h period. Based on
other assessments embedded into this protocol, all epochs reference a 10 min interval. For
example: before-3 (b3) refers to minutes 00:7:00–00:10:00, 00:17:00–00:20:00, etc.; split-3 (s3)
refers to minutes 00:08:30–00:11:30, 00:18:30–00:21:30, etc.; after-3 (a3) refers to minutes
00:10:00–00:13:00, 00:20:00–00:23:00, etc.; and split-5 (s5) refers to minutes 00:07:30–00:12:30,
00:17:30–00:22:30, etc. (in the format HH:MM:SS). The SDNN, rMSSD, and sample entropy
of each of these epochs were calculated and these values were used to create separate time
series (EPSDNN, EPrMSSD, and EPSampEn, respectively) that were used to assess changes in
short-time measures of HRV throughout the 24 h period. An example of each of these time
series, for a single individual, at rest and exercise is provided in Appendix A (Figure A1).
An example showing a comparison of the epoched HRV profiles from the a3 processing
method at rest and exercise is provided in Figure 2.
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Figure 2. Example data from a single participant. Growth hormone (GH) during rest and exercise fol-
lowed by the epoched HRV profiles (EPSDNN, EPrMSSD, and EPSampEn) from the after-3 (a3) sampling
method. These new data were generated by analyzing 3 min windows from the 24 h RR recording
every 10 min. Data are from subject 3.

2.8. State-Space Reconstruction

State space reconstruction for GH and each of the epoched HRV profiles was performed
based on considerations from data of all individuals. Time-delay, L, was determined
through average mutual information and selection was based on the first value to decay
below 1/e of the value at 0 lags. A time-delay of L = 2 was chosen for GH while L = 1
was selected for each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, EPSampEn). The
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embedding dimension was determined through the use of false nearest neighbors [45].
The false nearest neighbors algorithm is impacted by the presence of noise [45,46], and
data length [47]. In the presence of noise, the percent false nearest neighbors often does
not reach ~0% as it does in other systems [45]. Because there is no defined threshold for
false nearest neighbors to optimally define the embedding dimension in systems with
noise, we chose the lowest embedding dimension (m = 2) that balances a reduction in the
percentage of false nearest neighbors without overly estimating the dimension of the time
series. Examples of the false nearest neighbors estimations for a single individual are
provided in Figure 3. Growth hormone sampled Q10 for an entire 24 h period (n = 145) is a
relatively short dataset within the nonlinear dynamics literature, however, this is considered
a large amount of data within the endocrine literature. A final value of m = 2 was chosen
for GH, EPSDNN, EPrMSSD, and EPSampEn. Data length and computational limitations
around choosing higher embedding dimensions may be particularly relevant in the case
of EPSampEn where the percentage of nearest neighbors remained high at m = 2—although
there was a significant reduction from m = 1 (Figure 3, bottom row). An example of the false
nearest neighbors output from each of the epoched HRV processing methods is provided
in Appendix A (Figure A2).
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Figure 3. Example of the false nearest neighbors (FNN) calculations for the epoched HRV profiles
(i.e., EPSDNN, EPrMSSD, and EPSampEn) and growth hormone (GH) profiles and during fest and
exercise. These plots were generated for each subject and a single time-delay was chosen for each
time series for subsequent analyses. Values for GH (m = 2), EPSDNN (m = 2), EPrMSSD (m = 2), and
EPSampEn (m = 2) were chosen. Note: final values were chosen based on consideration of all data, not
solely from those presented above. Data are from subject 3.

These parameters were used in the state space reconstruction for each of these profiles
(Figure 4). State space reconstruction was performed to provide a visual reference of
the dynamics of GH and each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, and
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EPSampEn) during rest and exercise conditions. An example of the state space reconstruction
for each of the epoched HRV processing methods is provided in Appendix A (Figure A3).
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Figure 4. State space reconstruction for growth hormone (GH) and each of the epoched HRV profiles
(i.e., EPSDNN, EPrMSSD, and EPSampEn). Data are from subject 3.

2.9. Surrogate Data

Surrogate data [48] were used to establish nonlinear and complex structure of the
original time series. Shuffle and Gaussian surrogate data were generated for GH and
each epoched HRV profile to examine whether these time series differ from random noise.
Shuffle surrogate data were generated by randomly shuffling the data from each time series
and Gaussian surrogate data were generated through random sampling of values from a
normal distribution determined from the mean and standard of the original time series.
The Hurst exponent [49,50], which provides a measure of long-term memory in a time
series, was calculated for GH and each epoched HRV profile, and surrogate data, across all
processing methods (i.e., b3, s3, a3, s5) to examine whether these data contain complex or
nonlinear structure. An example of the surrogate data is provided in Figure 5.
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Figure 5. Example of surrogate data. Shuffle surrogate data were generated by randomly shuffling
the data from each time series while Gaussian surrogate data were generated through the random
sampling of values from a normal distribution with the mean and standard of the original time series.
Consistent with previous figures, these data are from subject 3.

2.10. Individual Dynamics

The individual dynamics and behaviors of GH and each of the epoched HRV profiles
were examined using sample entropy and recurrence quantification analysis (RQA). For
sample entropy, m = 2 and r = [0.02, 0.04, 0.06, . . . , 0.50]σ were examined prior to making a
final decision to use m = 2 and r = 0.20σ in the formal analyses. Changes in sample entropy
with respect to increases in the radius are provided in Figure 6. Sample entropy calculations
for each of the epoched HRV processing methods between rest and exercise are provided
in Appendix A (Figure A4).

Values of m = 2 and r = [0.02, 0.04, 0.06, . . . , 0.50]σ were investigated for RQA. For
GH, final parameters of m = 2, L = 2, r = 0.04σ were chosen. Parameters were standardized
across each of the epoched HRV profiles with values of m = 2, L = 1, r = 0.20σ. These
parameters were chosen following visual inspection for a sparse matrix and comparing
percent recurrence values from each of the examined radii [51]. Parameters were stan-
dardized across each of the epoched HRV profiles to permit a direct comparison between
these time series. From the recurrence plots, recurrence (%REC), determinism (%DET), the
average line length (LL), the total number of lines (NRLINE), laminarity (the proportion
of points forming vertical lines; LAM), trapping time (TT), and Shannon entropy (ENTR)
were calculated.
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Figure 6. Sample entropy & recurrence analysis (RQA) optimization. Sample entropy was calculated
with an embedding dimension, m = 2, and the radius, r, parameter was incremented in steps of 0.02σ
from 0.02σ to 0.5σ. Recurrence quantification analysis was performed using m = 2, a time lag, L = 1,
and r was incremented in steps of 0.02 from 0.02σ to 0.5σ.

2.11. Coupling

Cross sample entropy (cross-SampEn) and cross recurrence quantification analysis
(cRQA) were used to examine cardio hypothalamic-pituitary coupling. Cross sample
entropy was calculated using a custom script and cRQA was performed using the “Cross-
recurrence quantification analysis of categorical and continuous time series” package [52].
Specific pairings of GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn were examined. A key
consideration with these analyses is that these data overlay appropriately as any shift can
remove the recurrences. To account for the 20-to-40-fold increase in GH concentration in
response to exercise relative to the half-fold change in the epoched HRV measures, GH was
log transformed and inverted. All data were subsequently mean-centered and scaled to a
standard deviation of one for cross-SampEn and cRQA.

The time-delay was determined from the cross-correlation function and set at L = 1
for each of the three pairings. Cross-SampEn is an adaptation to the sample entropy
statistic [53] and provides a measure of coupling between two time series. Values of
m = 2 and r = [0.10, 0.12, 0.14, . . . , 0.50] were examined and the effect of an increasing
tolerance/radius is provided in Figure 7. Based on these data and consideration of the total
length of these time series, values of m = 2 and r = 0.20σ were chosen for the formal analysis.
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Figure 7. Cross sample entropy (cross-SampEn) and cross recurrence analysis (cRQA) between
growth hormone (GH) and each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn).
Cross-SampEn was calculated with an embedding dimension, m = 2, and the radius, r, parameter
was incremented in steps of 0.02 from 0.02σ to 0.5σ. Cross-recurrence quantification analysis was
performed using m = 2, a time lag, L = 1, and r was incremented in steps of 0.02 from 0.02σ to 0.5σ.

Cross recurrence quantification analysis permits the visualization and quantification
of the patterns between two time series without making assumptions about their statistical
structure [54] and provides a highly sensitive method of assessing coupled oscillators in
biology and physiology [55]. Values of m = 2, L = 1, and r = [0.10, 0.12, 0.14, . . . , 0.50]σ
were examined before selecting values of m = 2, L = 1, and r = 0.20σ for the formal statistical
analysis. As with RQA, the radius for cRQA was chosen following visual inspection for a
sparse matrix and comparisons between percent recurrence values [51]. Parameters were
standardized across all cRQA analyses to provide a direct comparison between GH and
each of the epoched HRV profiles. Precent recurrence (%REC), %DET, LL, max line length
(LLmax), NRLINE, LAM, TT, and ENTR were calculated and compared for cRQA.

Percent recurrence (%REC) is the percentage of recurrent points within a recurrence
plot and is often used as a measure to determine the optimal parameters for analysis.
Percent determinism (%DET) is the proportion of recurrent points on diagonal lines and
represents when a system, or two systems, occupy the same state space. In cRQA, a higher
%DET value suggests a higher degree of coupling. Diagonal lines on the RQA and cRQA
plots represent parallel paths/trajectories of a system, or between two systems. The total
number of lines (NRLINE) provides a quantitative assessment of how often a system, or
any two systems, occupy the same state space. Thus, the average line length (LL) indicates,
on average, how long a system, or two systems, spend along similar paths within the
reconstructed state space. Within cRQA, a higher average line length (LL) suggests a higher
degree of coupling between two systems. Laminarity (LAM) is the percentage of points
forming vertical (or horizontal) lines and represents a trapping of the system. Trapping time
(TT) is defined as the average length of vertical lines and represents how many sequential
data points/observations come back to a previously observed location. Shannon entropy
from the RQA and cRQA plots is based on the distribution of the diagonal line lengths,
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determining probability that the length of a line will be repeated. Lower values represent
a lower probability of observing more patterns while higher values represent a greater
number of possible combinations and provide context to the total amount of information
embedded within the plot.

2.12. Statistics

Paired samples t-tests were used to test for differences in body mass, body fat, fat mass,
and maximal oxygen uptake, as well as measures of GH output and 24 h HRV between
rest and exercise conditions. Significance was set at p ≤ 0.05 for all tests. All analyses were
performed using R Statistics version 4.0.4 [56].

Analysis of epoching methods. The Hurst exponents calculated on the original, shuffle
surrogate, and Gaussian surrogate data from each of the epoched HRV processing methods
(i.e., b3, s3, a3, s5) were visually inspected and compared. A within subjects analysis of
variance (ANOVA) was used to test for differences in the sample entropy of each of the
epoched HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn) across processing methods
and between conditions. The primary objective of this comparison was to determine
whether there were statistically significant differences between each of the processing
methods (i.e., b3, s3, a3, s5). Although this test does not determine statistical similarity,
these findings were used to help determine which of the processing methods would be
used for subsequent analyses.

Dynamics of and between profiles. Paired samples t-tests were used to test for differences
in the sample entropy and RQA of GH between rest and exercise conditions. A within
subjects ANOVA was used to test for differences in sample entropy between epoched
HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn) and conditions (i.e., rest and exercise).
Follow up comparisons were performed using Tukey’s Honest Significant Difference test.

Cross-dynamics. Statistical comparisons for cross-SampEn and each of the measures
from cRQA were also performed using within subjects ANOVA, examining differences
between crossed-profiles (i.e., GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn) and condition.
Follow up comparisons were performed using Tukey’s Honest Significant Difference test.

Missingness. An average of 1% of GH samples were missing per profile and a maxi-
mum of 2.8% of samples were missing in a single subject. Growth hormone output was
upsampled by a factor of 3 through cubic regression splines and the interpolated value
most closely associated with the missing value[s] (in time) were used for replacement.
The beginning and end of each time series were padded with three values equal to the
median GH concentration of each profile to reduce overfitting at the tails. A mean of 0.2%
of the epoched HRV data was missing and the largest amount of missingness associated
with a single subject was 1%. Missing data associated with the epoched HRV profiles
were replaced using random sampling from the observed values within each profile. This
method does not retain any complex or nonlinear structure within these data; however,
this was determined to be a more conservative approach to handling missingness for the
purposes of these analyses.

3. Results

Subject characteristics during rest and exercise conditions are shown in Table 1. Con-
sistent with previous literature [57,58], we observed a transiently higher, though non
significant, total GH output over the course of the 24 h period following a single bout
of aerobic exercise (t(6) = l.83, p = 0.12), an increase in daytime GH output in response to
exercise (daytime, t(6) = 3.72, p < 0.01; exercise hours, t(6) = 3.64, p < 0.01), and no significant
differences in nighttime GH output (t(6) = 0.66, p = 0.54). It should be noted that others have
observed significant increases in 24 h GH output from both continuous and intermittent
aerobic exercise [59], although, these exercise stimuli were also longer in duration than
what was utilized in this study.
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Table 1. Subject demographics, growth hormone (GH) output, and 24 h measures of heart rate
variability (HRV) during rest and exercise conditions.

Rest Exercise

Age (years) 25.4 (±2.6) -
Height (cm) 174.7 (±7.8) -

Body mass (kg) 72.5 (±13.7) 74.3 (±13.2)
Body fat (%) 9.46 (±2.88) 10.59 (±3.8)
Fat mass (kg) 6.98 (±2.7) 8.05 (±3.8)

VO2max (mL/kg/min) 66.9 (±8.7) 70.1 (±10.8)

GH Total (24 h) (ng) 1083.3 (±152.5) 1596.7 (±276.9)
Daytime (ng) 307.0 (±77.5) * 735.1 (±108.1)

Nighttime (ng) 679.4 (±85.8) 785.9 (±166.9)
Exercise (ng) 73.1 (±39.4) * 458.1 (±91.2)

Nighttime peak (ng/mL) 5.5 (±0.9) 5.5 (±1.4)
Exercise peak (ng/mL) 0.8 (±0.4) * 7.8 (±1.6)

Nadir (ng/mL) 0.1 (±0.03) 0.1 (±0.03)

24 h HRV SDNN 181.5 (±49.4) * 210.9 (±42.6)
rMSSD 76.2 (±35.3) 75.9 (±36.8)

SampEn 1.61 (±0.22) * 0.75 (±0.07)
* p < 0.05. Demographic information is presented as mean (±SD); GH data are presented as mean (±SEM);
HRV data are presented as mean (±SD). Maximal oxygen uptake (VO2max); standard deviation of the normal
RR-interval (SDNN); the root mean square of successive differences (rMSSD); sample entropy (SampEn).

The estimated Hurst exponent from the original, shuffle surrogate, and Gaussian
surrogate data are presented in Table 2. The Hurst exponent can range from values between
[0, 1] with values of 0.5 representing white noise. The original data for GH, as well as each
of the epoched HRV profiles, have an estimated Hurst exponent >0.5 with the shuffle and
Gaussian surrogate data resulting in values ≈0.5, indicating that each of the original time
series contains complex or nonlinear structure.

Table 2. Hurst exponents for the original, shuffle surrogate, and gaussian surrogate data for growth
hormone (GH) and each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn) during
the rest and exercise conditions.

Rest Exercise

Method Observed Shuffle Gaussian Observed Shuffle Gaussian

GH - 0.73 (±0.03) 0.50 (±0.05) 0.51 (±0.06) 0.68 (±0.03) 0.53 (±0.05) 0.53 (±0.04)

EPSDNN

b3 0.68 (±0.08) 0.52 (±0.05) 0.53 (±0.06) 0.68 (±0.06) 0.48 (±0.03) 0.53 (±0.06)
s3 0.65 (±0.09) 0.52 (±0.04) 0.53 (±0.04) 0.65 (±0.07) 0.52 (±0.05) 0.52 (±0.06)
a3 0.66 (±0.07) 0.53 (±0.06) 0.51 (±0.04) 0.65 (±0.06) 0.52 (±0.05) 0.52 (±0.07)
s5 0.67 (±0.09) 0.52 (±0.04) 0.52 (±0.05) 0.67 (±0.06) 0.54 (±0.04) 0.51 (±0.04)

EPrMSSD

b3 0.71 (±0.09) 0.52 (±0.04) 0.51 (±0.05) 0.74 (±0.05) 0.52 (±0.04) 0.53 (±0.03)
s3 0.71 (±0.1) 0.52 (±0.05) 0.52 (±0.06) 0.73 (±0.05) 0.49 (±0.04) 0.53 (±0.03)
a3 0.71 (±0.09) 0.52 (±0.06) 0.53 (±0.06) 0.73 (±0.04) 0.51 (±0.04) 0.51 (±0.05)
s5 0.72 (±0.09) 0.49 (±0.04) 0.55 (±0.04) 0.74 (±0.05) 0.52 (±0.05) 0.53 (±0.06)

EPSampEn

b3 0.60 (±0.06) 0.57 (±0.02) 0.51 (±0.05) 0.64 (±0.05) 0.54 (±0.05) 0.52 (±0.03)
s3 0.59 (±0.08) 0.50 (±0.04) 0.52 (±0.04) 0.62 (±0.05) 0.54 (±0.03) 0.53 (±0.05)
a3 0.61 (±0.08) 0.54 (±0.03) 0.52 (±0.04) 0.63 (±0.05) 0.53 (±0.04) 0.51 (±0.05)
s5 0.60 (±0.08) 0.53 (±0.05) 0.48 (±0.05) 0.64 (±0.03) 0.52 (±0.06) 0.50 (±0.06)

Data presented as mean (±SD).

Differences in sample entropy for each of these processing methods, rest and exercise
conditions, and epoched HRV profiles were examined. No effect for the processing method
was observed (F(3, 160) = 1.02, p = 0.38) and the after-3 (i.e., a3) processing method was
subsequently chosen for the formal comparisons between conditions and profiles. All
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models were re-run with only the a3 processing method. Table 3 provides the estimates
of sample entropy and each of the measures from RQA for GH, EPSDNN, EPrMSSD, and
EPSampEn. Sample entropy (t(6) = 2.8, p = 0.03) of GH was increased during the exercise
condition compared to rest.

Table 3. Sample entropy (SampEn) and recurrence quantification analysis (RQA) for growth hormone
(GH) and each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, EPSampEn) during the rest and
exercise conditions.

Rest Exercise

GH

SampEn 0.10 (±0.03) * 0.18 (±0.09)
%REC 15.8 (±5.0) 14.9 (±5.5)
%DET 64.1 (±8.7) 65.8 (±21.7)

NRLINE 715.3 (±292.3) 554.7 (±236.6)
LL 3.0 (±0.2) 3.9 (±1.2)

LAM (%) 73.1 (±7.1) 70.7 (±22.6)
TT 3.3 (±0.5) 4.6 (±2.2)

ENTR 1.22 (±0.18) 1.44 (±0.70)

EPSDNN

SampEn b 1.78 (±0.20) 1.78 (±0.18)
%REC 15.9 (±2.3) * 14.2 (±1.1)

%DET a 35.2 (±3.0) 33.2 (±2.1)
NRLINE b 468.4 (±101.6) 382.1 (±58.6)

LL a 2.5 (±0.1) 2.6 (±0.1)
LAM (%) b 44.9 (±4.1) 39.7 (±4.8)

TT 2.5 (±0.1) 2.4 (±0.1)
ENTR a 0.57 (±0.08) 0.59 (±0.04)

EPrMSSD

SampEn c 1.60 (±0.52) 1.60 (±0.26)
%REC c 16.0 (±2.8) * 14.3 (±0.7)

%DET a,c 41.5 (±13.8) 40.0 (±6.5)
NRLINE c 536.4 (±240.9) 456.4 (±82.2)

LL a 2.7 (±0.2) 2.7 (±0.1)
LAM (%) c 47.9 (±17.9) 49.6 (±6.9)

TT c 2.6 (±0.5) 2.5 (±0.2)
ENTR a,c 0.74 (±0.31) 0.73 (±0.14)

EPSampEn

SampEn b,c 2.06 (±0.34) 2.16 (±0.43)
%REC c 13.6 (±0.4) 13.6 (±0.5)
%DET c 28.9 (±1.9) 29.5 (±3.2)

NRLINE b,c 317.3 (±27.3) 325.3 (±49.5)
LL 2.6 (±0.1) 2.61 (±0.1)

LAM (%) b,c 32.7 (±6.6) 33.6 (±5.0)
TT c 2.3 (±0.1) 2.3 (±0.1)

ENTR c 0.46 (±0.08) 0.48 (±0.11)
SampEn parameters: GH, m = 2 and r = 0.20σ; epoched HRV, m = 2 and r = 0.20σ. RQA parameters: GH, m = 2,
L = 2, and r = 0.04σ; epoched HRV, m = 2, L = 1, and r = 0.20σ. Pairwise comparisons (p < 0.05) of sample entropy
a EPSDNN vs. EPrMSSD; b EPSDNN vs. EPSampEn; c EPrMSSD vs. EPSampEn. Pairwise comparisons between rest and
exercise conditions are denoted: *, p < 0.05.

While there are some qualitative differences observed in the RQA plots (Figure 8),
none of the measures from RQA were different between conditions: %REC (t(6) = 0.6,
p = 0.60), %DET (t(6) = 0.2, p = 0.85), NRLINE (t(6) = 1.5, p = 0.17), LL (t(6) = 1.8, p = 0.13),
LAM (t(6) = 0.3, p = 0.80), TT (t(6) = 1.4, p = 0.21), ENTR (t(6) = 0.8, p = 0.43). These p-values
have not been adjusted for multiple comparisons which may increase the family-wise
error rate.
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HRV, m = 2, L = 1, and r = 0.20σ. Consistent with previous figures, these data are from subject 3. 

Table 2. Hurst exponents for the original, shuffle surrogate, and gaussian surrogate data for growth 
hormone (GH) and each of the epoched HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn) during the 
rest and exercise conditions. 
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Data presented as mean (±SD). 
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Figure 8. Example of recurrence analysis (RQA) for growth hormone (GH) and each of the epoched
HRV profiles (i.e., EPSDNN, EPrMSSD, and EPSampEn). Parameters: GH, m = 2, L = 2, and r = 0.04σ;
epoched HRV, m = 2, L = 1, and r = 0.20σ. Consistent with previous figures, these data are from
subject 3.

Parameters for sample entropy and RQA were standardized across the epoched HRV
profiles, providing a direct comparison in the regularity and dynamic behaviors of these
profiles relative to the others. Main effects for profile were observed for sample entropy
(F(2, 30) = 9.8, p < 0.001), %REC (F(2, 30) = 4.8, p = 0.02), %DET (F(2, 30) = 11.5, p < 0.001),
NRLINE (F(2, 30) = 9.0, p < 0.001), LL (F(2, 30) = 4.7, p = 0.02), LAM (F(2, 30) = 11.3, p < 0.001),
TT (F(2, 30) = 5.9, p < 0.01), and ENTR (F(2, 30) = 12.4, p < 0.001). Additionally, a main effect
for condition was observed within the analysis of %REC (F(1, 30) = 6.3, p < 0.05). Pairwise
comparisons are provided in Table 3. Figure 8 provides an example of the RQA plots for a
single subject.

Cardio hypothalamic-pituitary coupling was assessed through the pairings of GH
with each of the epoched HRV profiles (i.e., GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn).
Results from the analysis of cross-SampEn and cRQA are provided in Table 4 and an
example of the cRQA plots for a single subject is provided in Figure 9. An interaction
between profile and condition was observed for cross-SampEn (F(2, 30) = 3.5, p = 0.04);
pairwise comparisons are provided in Table 4.
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Table 4. Cross sample entropy (cross-SampEn) and cross-recurrence analysis (cRQA) between GH
and each of the epoched HRV profiles (i.e., GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn) during the
rest and exercise conditions.

Rest Exercise

GH-EPSDNN

Cross-SampEn 1.80 (±0.25) † 1.61 (±0.22) a

%REC 4.3 (0.8) b 4.6 (0.7) a

%DET 43.4 (6.0) 48.4 (6.3) a

NRLINE 169.6 (46.5) b 196.6 (43.5) a

LLMax
a 4.9 (0.9) 5.3 (1)

LL a 2.3 (0.1) 2.4 (0.1)
LAM a 35.5 (7.6) 40.7 (10.7)

TT a 2.3 (0.2) 2.4 (0.2)
ENTR a 0.66 (0.15) 0.79 (0.15)

GH-EPrMSSD

Cross-SampEn 1.67 (±0.27) * 1.23 (±0.25) a,c

%REC 4.5 (1.0) c,* 6.8 (1.5) a

%DET 47.8 (7.5) * 59.7 (9.4) a,c

NRLINE 180.7 (55.7) c,* 316.3 (82.4) a,c

LLMax
a 6.1 (0.7) * 8.0 (1.6)

LL a,c 2.5 (0.1) 2.7 (0.3)
LAM a 39.5 (11.2) * 55.5 (10.1)
TT a,c 2.5 (0.1) 2.8 (0.4)

ENTR a,c 0.91 (0.15) 1.05 (0.25)

GH-EPSampEn

Cross-SampEn 1.58 (±0.20) 1.52 (±0.13) c

%REC 6.3 (1.3) 5.9 (0.5)
%DET 47.9 (6.6) 47.9 (5.5) c

NRLINE 269.6 (88.5) b,c 239.4 (40.2) c

LLmax 6 (1.5) 6.3 (1)
LL c 2.4 (0.1) 2.4 (0.1)
LAM 38.3 (12.5) 40.8 (8.6)
TT c 2.3 (0.2) 2.4 (0.1)

ENTR c 0.77 (0.16) 0.87 (0.1)
Cross sampEn parameters: m = 2 and r = 0.20. cRQA parameters: m = 2, L = 1, and r = 0.20. Pairwise comparisons
(p < 0.05) of cross-SampEn and cRQA values between profiles are denoted: a GH-EPSDNN vs. GH-EPrMSSD;
b GH-EPSDNN vs. GH-EPSampEn; c GH-EPrMSSD vs. GH-EPSampEn. Pairwise comparisons between rest and exercise
conditions are denoted: *, p < 0.05; †, p < 0.1.

In addition to some qualitative differences between coupled profiles observed in the
cRQA plots, several main effects and interactions were observed from the analysis of
quantitative features of cRQA: %REC (interaction, F(2, 30) = 8.1, p < 0.01); %DET (interaction,
F(2, 30) = 3.6, p = 0.04); NRLINE (interaction, F(2, 30) = 8.2, p < 0.01); LLmax (condition,
F(1, 30) = 5.7, p = 0.02; profile, F(2, 30) = 10.4, p < 0.001); LL (condition, F(1, 30) = 4.5, p = 0.04;
profile, F(2, 30) = 7.6, p < 0.01), LAM (condition, F(1, 30) = 9.6, p < 0.01; profile F(2, 30) = 5.3,
p = 0.01), TT (condition, F(1, 30) = 4.4, p = 0.04; profile, F(2, 30) = 5.9, p < 0.01); and ENTR
(condition, F(1, 30) = 5.7, p = 0.02; profile F(2, 30) = 8.4, p < 0.01).
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a highly deterministic system coupled with random noise. Parameters: m = 2, L = 1, and r = 0.20. 
Consistent with previous figures, these data are from subject 3. 
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Figure 9. Example of cross recurrence analysis (cRQA) for growth hormone (GH) and each of
the epoched HRV profiles (i.e., GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn) to assess cardio
hypothalamic-pituitary coupling. Simulated data aim to provide visual context of two coupled
systems and a highly deterministic system coupled with random noise. Parameters: m = 2, L = 1, and
r = 0.20. Consistent with previous figures, these data are from subject 3.

4. Discussion

The objective of this study was to examine cardio hypothalamic-pituitary coupling
and to better understand how the temporal relations between these systems are altered
during rest and exercise conditions. To address issues of timescale invariance between GH
and HRV, we first examined methods of processing a continuous RR-recording into discrete
short-time assessments of HRV (epoched HRV) to explore the physiological meaning of
these time series. We subsequently examined the time-dependent and temporal relations
between these measures of cardiac dynamics with growth hormone. In general, our
hypotheses were supported as we did observe coupling between the epoched HRV profiles
and GH during rest and exercise. However, the coupling between the epoched HRV profiles
and GH was differentially impacted by the exercise stimulus which does have practical
implications for future work and future directions.

The effects of exercise on GH output are well established and the present findings are
consistent with previous literature [57,58]. In addition to measures of GH output, previous
works have also examined the effects of exercise, aging, pharmacological intervention, and
disease, on the regularity of GH output [31,58]. The effects of the high-intensity exercise
bout on GH output can clearly be observed in Figure 2 (top right) and the corresponding
state space reconstruction can be observed in Figure 4. The notable, but non significant, in-
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crease in 24 h GH output following exercise was coupled with an increase in the irregularity
of GH output, indicating altered hypothalamic-pituitary dynamics.

Heart rate variability of 24 h RR-recordings are a gold standard in clinical settings and
have been linked to several cardiovascular and cardiometabolic diseases [24,25]. Through-
out the 24 h period, both parasympathetic and sympathetic inputs contribute to changes
in SDNN, while rMSSD primarily represents vagally mediated inputs [25]. In the present
study, 24 h SDNN was elevated during the exercise condition while 24 h rMSSD was
unchanged, suggesting that vagally mediated inputs (across the entire 24 h period) were
not impacted by the exercise stimulus and that the observed changes in the 24 h SDNN
measures are attributable to altered sympathetic and neurohumoral inputs; consistent with
what would be expected from a high-intensity exercise bout. We also observed a significant
reduction in the sample entropy of the 24 h RR-recording with exercise, representing a
more regular pattern within the RR-intervals.

Generally, the loss of variability and complexity within a system represents a reduced
capacity of that system to respond to a perturbation [19–22] and chronic adaptations,
such as the manifestation of disease, have been shown to alter the dynamics between
subsystems [27–29,60]. In more dynamic environments, such as those that may include an
exercise bout, changes in the variability or complexity of a time series may be the result
of the perturbation itself and not a robust representation of the adaptability of the system.
Such biases may be particularly relevant depending on the scale of the data, the underlying
trends, and how these trends are handled within the analysis [61].

4.1. Heart Rate Variability

In addition to 24 h measurements of SDNN, rMSSD, and SampEn, we examined the
dynamics of autonomic control on the heart throughout the 24 h period through serial
short-time measurements of HRV. Short-time HRV measurements provide an assessment
of cardiac autonomic control within a specific window and provide different information
about the overall status of the system compared to a 24 h measurement [25]. These short-
time HRV measurements are driven by changes in autonomic control, respiratory sinus
arrhythmia, and the baroreceptor-reflex [25]. As such, these serially assessed short-time
HRV measurements (i.e., epoched HRV) provided information regarding changes in acute
regulatory inputs to cardiac dynamics throughout the course of a 24 h period compared
to an average across the entire 24 h period. Previously, serial measurement of short-time
HRV has been used to examine diurnal patterns of cardiac autonomic regulation between
genders and across age groups [62], as well as to investigate compounding physical stress
on the autonomic nervous system [63]. However, to the best of our knowledge, there have
been no prior works examining the dynamics of these serial short-time HRV measurements
(i.e., epoched HRV).

We assessed four separate processing methods to determine the robustness of epoched
HRV at varying sampling periods and window lengths. Regardless of the method, each
epoch was initiated on a 10 min increment (from start to start). A variety of timing intervals
(e.g., 15, 20, or 30-min) could have been chosen but these 10 min intervals were selected to
coincide with the GH sampling. Shuffle and Gaussian surrogate data were generated to
examine whether these epoched profiles differed from random noise. The Hurst exponent
from the raw data ranged from ~0.6 to ~0.7 and fell to values of ~0.5 for each of the surrogate
data, highlighting the existence of a nonlinear or complex structure. Epoched HRV data
(Figure 2) and the state space reconstructions of these data (Figures 4 and A3) provide
some visual context to these observations. While there are some qualitative signs within
the state space reconstruction of the epoched HRV profiles, the stochastic nature of these
data creates noisy visuals and as a result, we have relied heavily on the entirety of these
analyses to support the existence of nonlinear structure within these epoched HRV profiles.

With four processing methods to choose from, we first examined whether there were
differences in the sample entropy of each of these processing methods. While this did not
establish statistical similarity, it did indicate that the regularity of each of these time series
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was not different across processing methods and as a result, subsequent analyses were
performed using the after-3 (a3) processing method. In contrast to the increase in SDNN
and decrease in SampEn observed in the 24 h measurements, exercise did not alter the
sample entropy of the epoched HRV profiles. However, a higher degree of regularity (lower
sample entropy) in EPSDNN and EPrMSSD compared to EPSampEn was observed, suggesting
that these epoched profiles likely represent different information regarding the physiologic
regulatory inputs on the heart compared to the 24 h measurements. More specifically,
these serially assessed short-time measurements of SDNN and rMSSD (i.e., EPSDNN and
EPrMSSD) reflect acute changes in cardiac control related to autonomic control, respiratory
sinus arrhythmia, and the baroreceptor-reflex while EPSampEn provides an assessment of
acute changes in cardiac complexity across the 24 h period. Thus, the sample entropy
statistic calculated on the epoched HRV profiles represents a measure of regularity within
changes of short-time measurements of cardiac control and regularity (i.e., regularity of
short-time regularity) whereas the 24 h measurements represent a global shift across the
entire period.

Visually, there are clear differences in the recurrent patterns of EPSDNN, EPrMSSD,
and EPSampEn (example provided in Figure 8). One of the largest visual differences ob-
served between the epoched HRV profiles can be seen in the transition into the nighttime
hours (particularly during rest and especially for EPrMSSD). This shift represents a trend
within the data, which can also be observed in Figure 2, and as is commonly observed in
raw 24 h RR recordings. During the exercise condition, this nighttime trend is reduced.
Quantitatively, the total number of lines, and laminarity (percent of the plot made up of
vertical and/horizontal lines), were lower for EPSampEn compared to both EPSDNN and
EPrMSSD. This difference in the total number of points indicates fewer recurrent points
for the EPSampEn profiles while the reduced laminarity suggests that the EPSampEn profiles
spent less time trapped within the same state space. These quantitative measures from
the RQA plots provide important information regarding the dynamics of each system,
as well as a comparison between systems. However, despite the lack of statistical sig-
nificance in these differences, the visual interpretation of these plots suggests important
information is represented by these differences and thus, their interpretation should not
be underestimated.

4.2. Cardio-Hypothalamic-Pituitary Coupling

Interdependence, or coupling, between physiologic systems is an interesting and
important phenomenon with clear importance in physiology. There are two primary
categories of coupling, including the instance where one system directly regulates the
other, and generalized coupling where two systems progress through time and state space
with similar responses to internal and external perturbations. While there are no singular
measures to determine the coupling between systems, there are a variety of tools that can
help provide insight. When dealing with deterministic systems, being able to forecast the
values of one system from another would suggest a functional relationship between them.
In some cases, these predictions may be reciprocal while in other instances, prediction
performance may be unidirectional. In either case, this would provide evidence of coupling
between these two systems. Alternatively, topological mapping between the systems would
also suggest that the attractors of these systems are connected through a nonlinear function.

Due to the stochastic nature of the epoched HRV profiles, we have not taken on the task
of mutual forecasting to establish interdependence and instead, our efforts have focused
on the use and application of cross-SampEn and cRQA. Both cross-SampEn and cRQA are
proven and useful tools to examine the relations between one or two stochastic signals.
Just as we would interpret the sample entropy statistic of an individual time series, higher
values of cross-SampEn represent more irregularity within the two signals or less coupling
between the two systems. Within the cRQA plots, each recurrence (dot on the cRQA plot)
represents when the two systems occupy similar spaces in the state space. Thus, each line
represents an occasion where the trajectory of these two systems is close in proximity and
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the line lengths represent the duration that these systems share that trajectory. To examine
cardio hypothalamic-pituitary coupling, we have assessed the relations between GH and
each of the epoched HRV profiles (i.e., GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn).

Overall, the cross-SampEn of GH-EPSDNN, GH-EPrMSSD, and GH-EPSampEn were
differentially affected by the condition. During rest, the cross-SampEn of these three
pairings were not different, indicating a similar degree of regularity in the coupling of these
systems. However, the cross-SampEn of GH-EPrMSSD was reduced during the exercise
condition and notably, the reduction in cross-SampEn of GH-EPSDNN during the exercise
condition approached significance. In both cases, this suggests that exercise altered the
relations between GH and each of the epoched HRV profiles (i.e., EPSDNN and EPrMSSD)
by establishing tighter coupling between the two systems. Quantitative analysis from
cRQA supported these findings, though, the statistical analysis only indicated significant
changes for GH-EPrMSSD and not GH-EPSDNN. For GH-EPrMSSD, exercise resulted in a
larger number of recurrences (NRLINE) and an increase in the maximal time spent along
similar trajectories (LLmax), leading to an increase in the overall determinism between the
two systems. This increase in determinism following the exercise condition was coupled
with an increase in laminarity (% of recurrences forming vertical or horizontal lines).
While trapping time (TT-average length of vertical or horizontal lines) was not different
between conditions, trapping time for GH-EPrMSSD was higher than both GH-EPSDNN
and GH-EPSampEn.

Shannon entropy of cRQA plots is based on the distribution of diagonal line lengths
and establishes the probability that any given line length will be repeated. Thus, the
elevated Shannon entropy in GH-EPrMSSD suggests a higher number of possible patterns
shared between the two systems compared to both GH-EPSDNN and GH-EPSampEn. This
can be loosely visualized in Figure 9 where the density and types of line structures in the
GH-EPrMSSD plot are somewhat different from those observed in the plots of GH-EPSDNN
and GH-EPSampEn.

Short-time measures of rMSSD are more heavily influenced by the parasympathetic
nervous system and predominantly represent changes in vagally mediated inputs [25],
while short-time measures of SDNN are not only influenced by sympathetic and parasym-
pathetic inputs, but are also dependent on other measurement conditions and the impact
of parasympathetically mediated respiratory sinus arrhythmia [25]. As such, the pairing of
GH-EPrMSSD provides a representation of the coupling between GH and vagally mediated
inputs while GH-EPSDNN provides a more global representation of GH and inputs on car-
diac control. Further, the increased coupling in GH-EPrMSSD during the exercise condition,
compared to the non significant increase in coupling between GH-EPSDNN, emphasize the
potential application for each of these measures in different circumstances. Qualitatively,
there is a clear shift in the coupling between GH-EPrMSSD during the exercise condition
with afternoon and nighttime measurements of rMSSD occupying a similar state space
as the GH response immediately following exercise (Figure 9, second row). This pattern
is, somewhat, observed with GH-EPSDNN (Figure 9, first row) but not with GH-EPSampEn
(Figure 9, third row).

The dynamics of GH-EPSampEn were not different between rest and exercise conditions,
nor did the cross-SampEn or quantitative measures from cRQA trend in that direction.
Interestingly, compared to both GH-EPSDNN and GH-EPrMSSD, the pairing of GH-EPSampEn
contained a larger number of overall recurrences (NRLINE) during the rest condition.
However, the exercise condition resulted in an increase in the number of lines for both GH-
EPSDNN and GH-EPrMSSD. For GH-EPSDNN, the total number of lines became more alike
to GH-EPSampEn while the total number of lines for GH-EPrMSSD increased drastically and
became significantly more than for GH-EPSampEn. The Shannon entropy of these pairings
followed a similar trend, with that of GH-EPrMSSD being higher than both GH-EPSDNN and
GH-EPSampEn while the observed increase in Shannon entropy of GH-EPSampEn was not
different from that of GH-EPSDNN.



Entropy 2022, 24, 1045 20 of 26

Overall, these findings provide interesting insights regarding cardio hypothalamic-
pituitary coupling and how any of these epoched HRV profiles might be used to examine
these phenomena. However, these findings also pose interesting questions regarding the
underlying regulatory dynamics of these systems—primarily those of the epoched HRV
profiles. The EPSDNN profiles, in theory, represent a more global measure of acute changes
in parasympathetic, sympathetic, respiratory, and other humoral inputs while the EPrMSSD
profiles primarily represent vagally mediated inputs. Conversely, the EPSampEn profiles
represent acute changes in cardiac dynamics, representative of more complex regulatory
dynamics and indicative of the overall adaptability of the system. Further assessing the
dynamics of these time series with GH through cross-SampEn and cRQA provides a
means of assessing how changes in cardiac control similarly, or differentially, couple with
hypothalamic-pituitary regulation.

The reduction in cross-SampEn and overall increase in the determinism of GH-EPrMSSD
in response to exercise suggests that the EPrMSSD profile may not provide a robust means
to examine cardio hypothalamic-pituitary coupling. More specifically, although the cou-
pling between GH and short-time assessments of [predominantly] vagally mediated in-
puts increased during the exercise condition, this also suggests that the dynamics of
vagally mediated inputs on cardiac control (i.e., through EPrMSSD) are not associated with
hypothalamic-pituitary regulation at rest. Although measures from cRQA were not differ-
ent for GH-EPSDNN, several of these measures trended higher during the exercise condition.
These observations were coupled with a noticeable reduction in cross-SampEn (of GH-
EPSDNN) during the exercise condition, further suggesting that cardiac dynamics, assessed
through EPrMSSD, are more tightly coupled with hypothalamic-pituitary regulation follow-
ing exercise compared to rest. The percent recurrence and percent determinism were similar
across all pairings of GH and the epoched HRV profiles. However, a higher total number
of recurrent points for GH-EPSampEn during the rest condition (compared to GH-EPSDNN
and GH-EPrMSSD) and a similar number of recurrent points during the exercise condition,
suggest that the EPSampEn profile may be more tightly coupled with hypothalamic-pituitary
regulation compared to EPSDNN and EPrMSSD.

4.3. Limitations

The current sample includes a homogenous sample of seven subjects and although we
utilized a robust within subject design, the generalizability of these findings is limited, and
future works should examine the reproducibility of these data, as well as explore cardio
hypothalamic-pituitary coupling in other healthy and diseased populations. Additionally,
future works should consider longer periods of sampling. The false nearest neighbors
algorithm used to estimate the proper embedding dimension has been shown to be affected
by noise [45,46] and data length [47]. Thus, these longer sampling periods would permit
additional power in estimating the embedding dimension.

A variety of factors, including age, body fat, fat-free mass, and maximal oxygen
uptake are known to impact GH output and secretory dynamics [59,64–67]. Similarly,
HRV has been shown to change across the lifespan and with the manifestation of dis-
ease [24,25]. As part of the effort to understand how the shared dynamics between the
hypothalamic-pituitary axis and cardiac control might differ in response to various pertur-
bations, as well as chronic adaptations, these factors should be considered and explored
in future works with a more diverse sample. Additionally, future works targeting spe-
cific mechanisms that either up-regulate or inhibit GH and/or cardiac autonomic control
through pharmacological intervention may reveal important information regarding car-
dio hypothalamic-pituitary coupling. Further, the assessment of biomarkers that have
dual-regulatory roles between cardiac control and hypothalamic-pituitary regulation may
provide context to the temporal organization and regulation between these systems. Poten-
tial markers might include galanin and/or nucleobindin-2/nesfatin-1. Similar to GH and
HRV, both galanin [68–73] and nesfatin-1 [74–77] are altered with disease and have been
previously linked to hypothalamic-pituitary-adrenal axis functioning [70,71,78–80].
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5. Concluding Remarks and Future Directions

The study of cardio hypothalamic-pituitary coupling poses several challenges with
specific issues related to timescale invariance. The use of epoched HRV provides a method
of examining the temporal changes in cardiac control with hypothalamic-pituitary regu-
lation using short-time measures of HRV. We have outlined some key differences in the
physiological interpretation of these data relative to more traditional 24 h measurements
and subsequently examined how these time series couple with GH output during rest and
exercise conditions. These epoched HRV profiles are not necessarily better, or worse, than
the 24 h measurement—merely different—and may provide opportunities for technological
and analytical developments in exercise, sport, military, and clinical settings.

The coupling between each of these epoched HRV profiles with GH provides context to
the dynamics between the cardiac and hypothalamic-pituitary regulation. Increases in the
coupling between EPSDNN and EPrMSSD with GH during the exercise condition highlight
the association between the autonomic nervous system with cardiac and hypothalamic-
pituitary regulation. For the purposes of examining dynamics associated with autonomic
function, the EPSDNN and EPrMSSD profiles may provide a means of understanding how car-
dio hypothalamic-pituitary coupling is altered through the manifestation of cardiovascular
and cardiometabolic diseases. Conversely, GH-EPSampEn coupling appears relatively robust
to the exercise stimulus and may provide a method for integrating these data into other
analytical frameworks. One example may be the estimation of underlying hypothalamic-
pituitary regulatory dynamics through the noninvasive assessment of cardiac dynamics.
Nevertheless, as future work builds on these findings and potential applications are con-
templated, such considerations should be carefully paired with project objectives.
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Figure A1. Heart rate variability (HRV) profiles for a single subject across each of the epoching
methods and during rest and exercise conditions.
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Figure A2. False Nearest Neighbors (FNN, top row), shuffle surrogate data (middle row), and
Gaussian surrogate data (bottom row) for EPSDNN, EPrMSSD, and EPSampEn during rest (first three
columns) and exercise (second three columns).
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Figure A3. State space reconstruction for each epoched HRV profile (i.e., EPSDNN, EPrMSSD, EPSampEn),
across each epoching method (i.e., before-3, b3; split-3, s3; after-3, a3; and split-5, s5) during rest
(first three columns) and exercise (second three columns) conditions. Data are produced from a
single subject.
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Figure A4. Sample entropy (SampEn) at m = 2 and r = [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]σ for each
epoched HRV profile (i.e., EPSDNN, EPrMSSD, EPSampEn) across each epoching method (i.e., before-3,
b3; split-3, s3; after-3, a3; and split-5, s5) during rest (first column) and exercise (second column)
conditions. Data presented as mean ±SD.
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