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Stearoyl CoA desaturase is a gatekeeper that protects human beta
cells against lipotoxicity and maintains their identity
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Abstract
Aims/hypothesis During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired
insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of
lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines.
Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-βH1 and
analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model
human beta cells in a type 2 diabetes environment.
Methods EndoC-βH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We
analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity.
Results EndoC-βH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl
CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-βH1 cells, as well as in human islets and human
induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum
stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic
reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and
HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS,MAFA
and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion.
Conclusions/interpretation The present study delineates an important role for SCD in the protection against lipotoxicity and in
the maintenance of human beta cell identity.
Data availability Microarray data and all experimental details that support the findings of this study have been deposited in in the
GEO database with the GSE130208 accession code.
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Abbreviations
βH1-SCDKD SCD knocked-down EndoC-βH1 (cells)
ER Endoplasmic reticulum
GSIS Glucose-stimulated insulin secretion
HG High glucose
IAPP Islet amyloid polypeptide
iPSC Induced pluripotent stem cell
PARP Poly-(ADP-ribose) polymerase
PI Propidium iodide
qRT-PCR quantitative real-time PCR
SCD Stearoyl CoA desaturase
siCTRL Control siRNA
SOX9 SRY-box transcription factor 9

Introduction

Type 2 diabetes develops as a consequence of a combination
of insulin resistance of peripheral tissues and progressive
decrease of functional pancreatic beta cell mass. This deficit
is manifested by inadequate and insufficient insulin secretion
in response to increased circulating glucose levels [1, 2].
Insulin resistance often precedes the development of type 2
diabetes, but it is now well established that pancreatic beta cell
failure is a sine qua non condition for hyperglycaemia and
type 2 diabetes to develop [1, 2].

NEFA represent an important source of energy for pancre-
atic beta cells in the normal state but can induce beta cell

dysfunction and death when present in excessive levels during
a prolonged period [1–3]. Chronic availability of fatty acids
causes cell death and dysfunction in rodent beta cell lines [4,
5], isolated rodent islets and primary beta cells [6, 7], and
animal models of diabetes [3, 8]. Several studies pointed out
that the degree of NEFA saturation is important since saturated
NEFA (e.g. palmitate or stearate) cause marked apoptosis,
whereas unsaturated NEFA (e.g. palmitoleate or oleate) are
much less cytotoxic and protect against saturated NEFA-
mediated toxicity [7, 9–11]. The chronic adverse effects of
saturated NEFA on beta cell function and viability are poten-
tiated by the presence of hyperglycaemia, a phenomenon that
is particularly seen in rodent beta cells and that has been
termed ‘glucolipotoxicity’ [12, 13]. Numerous studies have
suggested different mechanisms by which NEFAmediate beta
cell dysfunction and death such as endoplasmic reticulum
(ER) stress [14], increased intracellular triacylglycerol [15],
reactive oxygen species (ROS) [16, 17], inflammation [14]
and de novo synthesis of ceramide [15].

So far, the vast majority of data on the role of NEFA in beta
cells has been derived from rodent models, either primary
islets or rat and mouse beta cell lines [4, 18–20], with a more
limited number of investigations performed using primary
human islets [10, 14, 15, 21–26]. This is mainly due to the
limited access to human islet preparations, which not only
contain variable numbers of beta cells from one preparation
to the other, but are also contaminated with non-endocrine
cells such as exocrine tissue [27].

In this study, we sought to investigate lipotoxicity in a
recently engineered functional human beta cell line,
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EndoC-βH1 [28]. This line represents a precious tool to study
human beta cells in pathophysiological conditions [29]. As an
example, EndoC-βH1 cells react to cytokine exposure in a
similar manner to primary human beta cells [30]. Moreover,
this cell line is suitable for drug screening [31].

Methods

Culture of EndoC-βH1 cells and treatment EndoC-βH1 cells
(Univercell Biosolutions, Toulouse, France [mycoplasma
negative]) were cultured as described [28]. They were treated
with 400 μmol/l of NEFA (palmitate, stearate, oleate and/or
palmitoleate), in the presence of 5.6 mmol/l (low glucose) or
30 mmol/l glucose (high glucose [HG]), for the indicated
periods (24 h to 72 h). NEFA was administered to the cells
as a conjugate with fatty acid-free BSA. NEFA/BSA complex
was prepared as described [12]. The molar ratio of NEFA to
BSA was 5:1. The NEFA stock solutions were diluted in
DMEM to obtain a 0.4 mmol/l final concentration at a fixed
concentration of 0.5% BSA (low glucose and HG plus or
minus NEFA). Unconjugated BSA was used as control. In
some experiments, EndoC-βH1 cells were treated for 24 h
with 500 μmol/l palmitate pre-complexed to NEFA-free
BSA (Roche, Neuilly-sur-Seine, France) in medium supple-
mented with 1% FBS. EndoC-βH1 cells were treated with
5 μmol/l thapsigargin for 24 h (Sigma-Aldrich, Saint
Quentin Fallavier, France). EndoC-βH1 cells were passaged
and transfected using Lipofectamine RNAiMAX (Life
Technologies, Saint Aubin, France) 24 h later as described
[32, 33]. SMARTpool siRNAs for human ELOVL6
(L-008861-01-0005), SCD (L-005061-00-0020), SCD5
(L-008416-00-0005) or SOX9 (M-021507-00-0020), or ON-
TARGETplus non-targeting control pool siRNA (siCTRL,
D-001810-01-20) were used (Dharmacon, GE Healthcare
Life Sciences, Velizy-Villacoublay, France) at a final concen-
tration of 80 nmol/l. In some experiments, EndoC-βH1 cells
were transfected as described [33] with 30 nmol/l control
siRNA (Qiagen, Antwerp, Belgium) or three different
siRNAs targeting SCD (siSCD; electronic supplementary
material [ESM] Table 1, ThermoFisher, Merelbeke,
Belgium). SCD knocked down EndoC-βH1 cells will be here-
after referred to asβH1-SCDKD.CPT1A-targeting siRNAwas
purchased from ThermoFisher and was also used at a final
concentration of 80 nmol/l (ThermoFisher, AM16708-
10564). Briefly, siRNA and Lipofectamine RNAiMAX were
combined in OptiMEM and applied to the cells. Medium was
changed 2.5 h later for fresh EndoC-βH1 culture medium.
Efficiency of gene knockdown was validated by qRT-PCR
(quantitative real-time qPCR) and protein level (for stearoyl
CoA desaturase [SCD] and SRY-box transcription factor 9
[SOX9]).

Human islet culture Pancreases were obtained with informed
written consent and processed with the approval of the local
ethics committee of the University of Pisa. Human islets were
isolated at the University of Pisa, Italy, using collagenase
digestion and density gradient purification from heart-
beating organ donors [34]. The organ donors (three men, five
women, age 67 ± 8 years [mean ± SD], BMI 27.3 ± 4.0 kg/m2,
cause of death cerebral haemorrhage in six, stroke in one and
post-anoxic encephalopathy in one) did not have a medical
history of diabetes. Human islets were cultured in Ham’s
F-10 medium as described [14]. Beta cell purity, evaluated
by insulin immunocytochemistry in dispersed islet cells, was
47 ± 10%. Information on human islets is available in the
Human Islets checklist in the ESM.

Human induced pluripotent stem cell culture and differenti-
ation into beta cells The previously described human induced
pluripotent stem cell (iPSC) line HEL115.6 [35] was differen-
tiated into beta cells using a seven-stage protocol that makes
use of monolayer culture on Matrigel-coated plates up to
pancreatic progenitor stage 4 and then moves the cells to
suspension culture until the last stage of beta cell differentia-
tion [35]. Stage 7 aggregates contained 41 ± 14% beta cells
(assessed by insulin immunocytochemistry).

Assessment of cell death Live/dead cells were counted follow-
ing Trypan Blue staining. Caspase 3/7 activity assays were
performed using the Promega Apo-ONE Homogenous
caspase-3/7 Assay kit as described [36] (Promega,
Charbonières-les-Bains, France). As another method for
apoptosis detection, cells were stained with the Hoechst
33342 (5 μg/ml, Sigma-Aldrich) and propidium iodide (PI,
5 μg/ml, Sigma-Aldrich) and counted by fluorescence micros-
copy [37]. The xCELLigence system (ACEA Biosciences,
San Diego, CA, USA), which is based on the continuous
real-time monitoring of cell adhesion, was used for real-time
and label-free monitoring of cell viability and growth [38].
Briefly, EndoC-βH1 cells were seeded into 96-well E-plates
coated with extracellular matrix and fibronectin (50,000 cells/
well), transfected with siRNA, treated with NEFA or BSA
72 h later and monitored for up to 72 h.

Insulin content and glucose-stimulated insulin secretion
Insulin content and glucose-stimulated insulin secretion
(GSIS) were measured as described [39].

RNA isolation, reverse transcription, qRT-PCR and
transcriptomic analyses qRT-PCR was performed as
described [32]. ACTB or PPIA transcript levels were used as
housekeeping genes for normalisation. Primer sequences are
listed in ESM Table 2. Global transcriptomic analyses were
performed using the Affymetrix 2.0ST gene chip as described
[32] (Affymetrix-Thermofisher, Courtaboeuf, France).
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Microarray data and all experimental details are available in
the Gene Expression Omnibus (GEO) database (accession
GSE130208). Heatmap analyses were generated using web-
based Morpheus tool (https://software.broadinstitute.org/
morpheus/; access date: 3 January 2019).

Human IAPP promoter analysis The 797 bp upstream
sequence of the IAPP gene, which encodes islet amyloid poly-
peptide (IAPP), was extracted from NCBI Map viewer/Ace
view, and scanned for the presence of SOX9 binding motifs
using MatInspector (Genomatix software, https://www.
genomatix.de/, access date: 3 January 2019; [40]). Results
are presented in ESM Table 3.

Measurement of NEFA levels by GC-MS Cellular saturated and
unsaturated NEFA levels were determined by GC-MS as
described [41]. Briefly, cells were mixed with BF3 (14%)/
methanol and heated (100°C; 40 min). Then, NEFA were
extracted using heptane/distilled water (1∶2). NEFA present
in the supernatant were evaporated and solubilised in heptane.
NEFA methyl esters (1μl) were analysed on GC-MS instru-
ment (Shimadzu interfaced with a GC2010 mass selective
detector). Heptadecanoic acid was used as internal standard.
The mass spectra and retention indices registered in the Fatty
Acid Methyl Esters (FAMEs) GC/MS Library were obtained
using the Shimadzu GCMS-QP2010 (Shimadzu, Marne-la-
Vallée, France, https://www.shimadzu.fr, GCMSsolution Ver.
2) .

Immunoblotting Western blots were performed as described
[32] using the following antibodies diluted in TBS 3% BSA
0.1% Tween-20 (Sigma-Aldrich): poly-(ADP-ribose) poly-
merase (PARP) (1/1000; 5625S; Cell Signaling, Saint-Cyr-
L’École, France), SCD (1/500; M38; Cell Signaling), MafA
(1/500; gift from A. Rezania, BetaLogics, Cambridge, MA,
USA), SOX9 (1/500; ab5535; Millipore, Molsheim, France),
DDIT3 (1/1000; 5554 Cell Signaling), tubulin (1/2000;
T9026; Sigma-Aldrich) and actin (1/2000; A5441; Sigma-
Aldrich). Antibodies were validated by knockdown experi-
ments (SCD, SOX9, MAFA) or have passed application-
specific testing standards (PARP, DDIT3, actin, tubulin).
Species-specific HRP-linked secondary antibodies (1/1000;
7074 and 7076; Cell Signaling) were used.

Statistical analyses Graphs were constructed by using
PRISM6 software (GraphPad, San Diego, CA, USA).
Quantitative data are presented as the mean ± SD from three
independent experiments. Results were analysed by one-
way ANOVA with post hoc Tukey testing for multiple
conditions or by t test if only two conditions were being
tested (two-tailed). Randomisation and blinding were not
carried out. A p value less than 0.05 was considered
significant.

Results

EndoC-βH1 cells are resistant to palmitate toxicity We first
analysed the effect of palmitate on EndoC-βH1 cell viability.
We did not observe lipotoxicity associated with morphologi-
cal changes or obvious cell death (characterised by floating
cells or debris) in EndoC-βH1 cells treated with 0.4 mmol/l
palmitate (C16:0). The concept of glucolipotoxicity, i.e. the
deleterious effects of combined elevated glucose and NEFA
concentrations, prompted us to study EndoC-βH1 cell viabil-
ity following both high glucose and NEFA exposure. The
efficiency of HG (30 mmol/l) treatment was validated by
TXNIP mRNA upregulation ([39] and data not shown).
Remarkably, we did not observe cell toxicity after palmitate
incubation at low glucose (5.6 mmol/l) or HG (Fig. 1a). To
strengthen our investigation, we measured caspase 3/7 cleavage
as another marker of cells undergoing apoptosis. Accordingly,
we did not observe changes in caspase 3/7 cleavage activity upon
palmitate exposure (Fig. 1b).We then quantified PARP cleavage,
another apoptosis-related measurement. Thapsigargin induced
cell apoptosis as determined by increased PARP cleavage, but
this was not the case with palmitate (Fig. 1c, d). Finally, to survey
the effects of palmitate over a prolonged period of time (up to
72 h) in real time, we used the xCELLigence system. Palmitate
treatment did not decrease cell proliferation/survival, but, in fact,
it increased it in a time-dependent manner (Fig. 1e).

These data indicate that long chain saturated NEFA such as
palmitate, with or without HG, do not induce glucolipotoxicity
in EndoC-βH1 cells.

SCD is involved in EndoC-βH1 protection against lipotoxicity
Real-time monitoring using xCELLigence suggested that palmi-
tate may in fact increase cell proliferation/survival (Fig. 1).
Palmitate can either enter the mitochondrial NEFA β-oxidation
pathway, or be elongated and then desaturated to be incorporated
into neutral lipids, two pathways known to be protective to cells
(Fig. 2a, [13, 14]). We tested whether altering the enzymes
involved in palmitate metabolism modifies the effects of NEFA
on EndoC-βH1 cells. We performed knockdown using siRNA
against: CPT1A, the rate-limiting-step enzyme of NEFA β-
oxidation; ELOVL6, which elongates palmitate into stearate;
and SCD and SCD5, which desaturate palmitate or stearate into
palmitoleate (C16:1) or oleate (C18:1), respectively. Each siRNA
was specific and efficient (>50% downregulation in the mRNA
target) (ESMFig. 1a). siRNA-transfected EndoC-βH1 cells were
next treated with palmitate ± HG. Upon CPT1A and ELOVL6
knockdown, palmitate did not induce caspase 3/7 cleavage (Fig.
2b). But upon SCD knockdown (Fig. 2c,d, ESM Fig. 1a), palmi-
tate treatment increased caspase 3/7 cleavage in EndoC-βH1
cells (Fig. 2b). To rule out off-target effects, we used three other
siRNAs targeting different regions of the SCD mRNA (ESM
Table 1, ESM Fig. 1b), and these consistently sensitised
EndoC-βH1 cells to palmitate-induced apoptosis measured by
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Hoechst 33342 and PI staining (ESM Fig. 1c). Of note, upon
SCD5 knockdown, another SCD isoform expressed by human
beta cells, palmitate ± HG did not induce toxicity (Fig. 2b).
Moreover, palmitate ± HG treatment of βH1-SCDKD cells
decreased cell survival as measured by cell morphology, cell
counts and xCELLigence (Fig. 2e, g). Similar results were
obtained with stearate (C18:0), another long chain saturated
NEFA (ESM Fig. 2a, b). Of note, real-time qPCR quantification
indicated that, in EndoC-βH1 cells, SCDmRNA expression was
high (Ct ~19) when compared with other enzymes implicated in
saturated NEFAmetabolism (CPT1A: Ct ~26; ELOVL6: Ct ~24;
SCD5: Ct ~25). Its expression was also high in human islets and
in iPSC-derived beta cells, with an increase in the last stage of
human beta cell maturation in this in vitro model of pancreatic
endocrine cell development (ESM Fig. 3).

Thus, SCD, an enzyme that catalyses a rate-limiting step in
the synthesis of unsaturated NEFA, is involved in
EndoC-βH1 cell protection against (gluco)lipotoxicity
induced by palmitate and stearate.

Long chain saturated NEFAmodulate the expression of stress-
related genes in βH1-SCDKD cells We next analysed in βH1-
SCDKD cells the effects of palmitate (± HG) treatments on the
expression of genes previously found to be upregulated by
palmitate in human islets, such as genes related to ER stress
(ATF3, DDIT3, spliced variant of XBP1) and inflammation
(IL8, TNF) and also IAPP [14]. When EndoC-βH1 cells were
transfected with a control siRNA, we did not observe upreg-
ulation of the aforementioned genes upon palmitate treatment
(± HG), confirming the lack of lipotoxicity. However, palmi-
tate treatment of βH1-SCDKD cells induced ATF3, DDIT3,
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death. EndoC-βH1 cells were
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400 μmol/l palmitate (PAL),
30 mmol/l glucose (HG) or HG+
PAL for 24 h. (a) Cell
morphology. Representative
images of cellular aspects after
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spliced XBP1, IL8, TNF and IAPP mRNAs (Fig. 3a–d, f–h).
Similar inductions were observed with stearate (C18:0) treat-
ment (ESMFig. 4). ER stress marker DDIT3 was also induced
at the protein level (Fig. 3e). Of note, ER stress- and
inflammation-related gene expression was already induced
upon SCD knockdown by itself, suggesting that the inhibition
of endogenous NEFA desaturation is sufficient to elicit mild
ER and inflammatory stress; exogenous palmitate or stearate
treatment further enhanced these inductions (Fig. 3b–d, f–g,
ESM Fig. 4) [23].

These data indicate that following SCD knockdown,
EndoC-βH1 cells respond to palmitate and stearate in a way
similar to that observed in human islets.

Palmitate-induced IAPP upregulation in βH1-SCDKD cells
requires SOX9 IAPP is upregulated in several dysfunctional
beta cell models. Genomatix analysis suggested eight potent
SOX9 binding sites in the human IAPP promoter (Fig. 4a and
ESM Table 3). SOX9 is a transcription factor expressed in
pancreatic progenitors and in duct cells in the adult pancreas
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but also in beta cells upon dedifferentiation [32, 42–44].
Here, we observed that SOX9 expression was signifi-
cantly upregulated in palmitate-treated βH1-SCDKD

cells at the mRNA and protein levels (Fig. 4b, c). To
study SOX9 involvement in IAPP induction, we
prevented SOX9 induction using siRNA in βH1-

SCDKD cells (Fig. 4c–e) and then treated these cells
with palmitate + HG. Under this setting, IAPP induction
by palmitate + HG was abolished (Fig. 4f).

Our data thus demonstrate that upregulation of IAPP by
palmitate + HG requires the induction of the beta cell dedif-
ferentiation marker SOX9.
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Fig. 3 Palmitate modulates gene expression in βH1-SCDKD cells.
EndoC-βH1 cells were transfected with siCTRL or siSCD and treated
72 h later with BSA (control), 400 μmol/l palmitate (PAL), 30 mmol/l
glucose (HG) or HG+PAL for 24 h. qRT-PCR data show mRNA expres-
sion of (a) SCD, and (b–d) the ER stress-related genes DDIT3 (b), ATF3
(c) and the spliced variant of XBP1 (d). (e) Western blot of DDIT3 (repre-
sentative western blot of three independent experiments). (f–h) qRT-PCR

data show mRNA expression of the proinflammatory genes IL8 (f), TNF
(g) and IAPP (h). mRNA expression is relative to housekeeping genes
(HKG). The key in (a) is also applicable to (b–d) and (f–h). Data repre-
sent the means ± SD of three independent experiments. *p < 0.05,
**p < 0.01 and ***p < 0.001 relative to control as indicated on the graph
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Dedifferentiation is observed upon SCD knockdown We next
investigated other described beta cell dedifferentiation
markers [32, 42]. We observed HES1 and MYC upreg-
ulation in palmitate-treated βH1-SCDKD cells (Fig.
5a, b). At the same time, the expression of the beta
cell-specific markers INS, MAFA and SLC30A8 sharply
decreased (Fig. 5c–e). Surprisingly, their expression was

already downregulated in βH1-SCDKD cells alone (with-
out palmitate treatment) (Fig. 5c–f), suggesting that
SCD depletion is sufficient to induce EndoC-βH1 cell
dedifferentiation. RNA microarray analysis indicated the
downregulation of additional beta cell markers such as
G6PC2, SLC2A2 and FOXO1 in βH1-SCDKD cells (Fig.
5g), further supporting beta cell dedifferentiation [32,
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dent on SOX9. (a) Schematic representation of the IAPP promoter show-
ing potential SOX9 binding sites identified with MatInspector
(Genomatix software). The numbers refer to the nucleotide position
upstream of the transcription start site (+1). SOX9 binding motifs are
shown in upper case letters. (b) EndoC-βH1 cells were transfected with
either siCTRL or siSCD and treated 72 h later with BSA (control),
400 μmol/l palmitate (PAL), 30 mmol/l glucose (HG) or HG+PAL for
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42, 45]. We did not observe any upregulation of non-
beta cell endocrine cell markers such as GCG or SST or
exocrine markers such as HNF1B and PTF1A (ESM
Fig. 5). Finally, insulin content decreased following
SCD downregulation (Fig. 5h). Moreover, GSIS was
reduced by 38% in βH1-SCDKD cells (Fig. 5i).

Induction of inflammation and ER stress in βH1-SCDKD cells is
reduced by oleate and palmitoleate treatment SCD is the
rate-limiting enzyme that catalyses the production of
palmitoleate/oleate from palmitate/stearate. MS analysis indi-
cated that SCD knockdown in EndoC-βH1 cells decreased
basal oleate concentrations with a significant decrease in the
oleate/stearate ratio (Table 1). Of note, we did not observe a
decrease in basal palmitoleate concentrations after SCD
knockdown compared with siCTRL (Table 1), suggesting that
SCD is primarily transforming stearate into oleate in
EndoC-βH1 cells. Moreover, elongation of C16 into C18
NEFA by ELOVL6 might be an important step for long chain
fatty acid metabolism in EndoC-βH1 cells. Remarkably,
ELOVL6 is slightly upregulated upon SCD knockdown
(ESM Fig. 1). However, co-transfection of SCD and
ELOVL6 siRNAs did not reverse dedifferentiation, inflamma-
tion and ER stress, suggesting that the degree of NEFA satu-
ration is more important than length in conferring toxicity
(data not shown).

We next asked whether oleate or palmitoleate supplemen-
tation could reverse some phenotypic traits observed in βH1-
SCDKD cells. Treatment of βH1-SCDKD cells with oleate and
palmitoleate reduced the effects of palmitate/HG on caspase
3/7 cleavage activity that was paralleled by an absence of
induction of IL8 and ATF3 (Fig. 6a–c). Finally, in the absence
of palmitate/HG, while oleate and palmitatoleate did not
reverse the INS,MAFA or SLC30A8 downregulation observed
upon SCD knockdown (Fig. 6d–f), the induction of inflam-
mation (IL8, TNF) and ER stress (spliced XBP1, ATF3)
markers was reduced (Fig. 6g–j).

Discussion

Chronically elevated saturated NEFA levels can impair the
function of pancreatic beta cells. The mechanisms involved
in beta cell lipotoxicity induced by saturated NEFA are the
subject of active investigations because of its association with
the development of type 2 diabetes [2, 3]. However, our
knowledge of how saturated NEFA act on human beta cells
and induce diabetes is limited. Defining these mechanisms
could help to develop new strategies to prevent beta cell
dysfunction and death in type 2 diabetes. Rodent models have
been useful to better understand the mechanisms of NEFA-
induced beta cell dysfunction. However, differences exist
between human and rodent beta cells in response to NEFA

[21, 46, 47]. For example, palmitate differentially affects
protein acetylation in rodent and human beta cells [47].
Remarkably, human islets appear to be more resistant to
apoptosis than rodent RIN1046-38, INS-1 or Min6 cell lines
[21, 46, 48, 49]. It is thus of major importance to develop
human beta cell models of lipotoxicity. As access to primary
human islet preparations is limited and variability exists from
one human islet preparation to the other [27], we recently
developed functional human beta cell lines [28, 50] and tested
here their use in modelling human beta cell lipotoxicity.

Rat and mouse beta cells are highly sensitive to palmitate
treatment that induces dysfunction and apoptosis [3]. On the
other hand, previous data indicated that treatment of
EndoC-βH1 cells with palmitate does not induce lipotoxicity
under standard culture conditions [51, 52]. Our current data
further confirm this. By investigating saturated NEFA metab-
olism and its related enzymes through knockdown using
siRNA, we identified SCD as the main brake on palmitate
toxicity. SCD is highly expressed in primary human beta cells
([50, 51] and the present study). Interestingly, elevated SCD
levels have been shown to protect against saturated NEFA in a
number of cell types, including the mouse beta cell line MIN6
cells and human islets [21, 48, 49]. The working hypothesis is
that SCD rapidly desaturates palmitate/stearate into
palmitoleate/oleate, and thus decreases their toxicity. Five
different SCDs (SCD1–5) have been described in the mouse
while there are only two in humans (SCD and SCD5) [53]. It
is noteworthy that SCD5 is predominantly expressed in the
human brain and pancreatic islets (beta and delta cells), human
beta cell lines and pancreatic ductal cells ([53, 54] and the
present study). Even though SCD5 has been shown to
desaturate NEFA [55], our data indicate that, while SCD
knockdown induces lipotoxicity in EndoC-βH1 cells upon
palmitate treatment, this is not the case upon SCD5 knock-
down. This suggests that, in human beta cells, SCD plays the
dominant role in the desaturation of long chain saturated
NEFA. Another possibility is that products of SCD and
SCD5 are used for differential lipogenic reactions. Indeed,
SCD is known to play a central role in the synthesis of neutral
lipids such as triacylglycerol, which are protective for beta
cells [11]. In contrast, in neuronal cells overexpressing
SCD5, triacylglycerol and phosphatidylethanolamine forma-
tion was reduced whereas de novo synthesis of phosphatidyl-
choline and cholesteryl esters was increased [55]. Additional
analyses are needed to unravel SCD5 function in human beta
cells. Interestingly, SCD5 is involved in neuronal cell prolif-
eration and differentiation [55] and in survival ofMCF-7 cells,
in which cancer-associated fibroblasts induced the expression
of SCD5 [56].

Our study further shows that palmitate treatment of βH1-
SCDKD cells induced the expression of genes related to
inflammation (IL8, TNF) and ER stress (ATF3, DDIT3,
spliced XBP1). Increased phospholipid saturation upon
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inhibition of SCD could contribute to enhance ER stress in the
presence of palmitate, as observed in HeLa cells [57]. These

saturated lipids reduce ER membrane fluidity, which may
secondarily lead to ER Ca2+ depletion, reduced protein
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folding and ER stress [37]. Palmitate also induced the expres-
sion of IAPPmRNA levels in βH1-SCDKD cells, as previous-
ly observed in human islets treated with palmitate [14].
Remarkably, we found that the expression of SOX9, a beta
cell dedifferentiation marker [32, 42, 44], was induced by
palmitate in βH1-SCDKD cells, as were HES1 and MYC.
SOX9 activation was necessary for the induction of IAPP by
palmitate. Of note, amyloid deposits were recently described
surrounding dedifferentiated beta cells in individuals with
type 2 diabetes [58]. We propose that beta cell dedifferentia-
tion and induction of SOX9 expression represents an early
step that enhances IAPP expression. Human IAPP is co-
expressed and co-secreted with insulin. In type 2 diabetes
patients, IAPP forms cytotoxic ‘amyloid’ plaques within islets
[59, 60]. This phenomenon is difficult to study in mice as
rodent IAPP does not form amyloid fibres [59, 60].
Palmitate-treated βH1-SCDKD cells may thus represent a
new model to understand the regulation of IAPP expression
and its potential to form deleterious amyloid fibres [60].

We observed that SCD knockdown by itself was sufficient
to give rise to major phenotypes. It decreased the expression
of central beta cell markers such as INS,MAFA and SLC30A8.
These observations underline a new role for SCD in maintain-
ing mature beta cell identity. It is noteworthy that SCD is also
upregulated during beta cell maturation suggesting an impor-
tant role in adult beta cell function and identity ([61, 62] and
the present study). SCD knockdown reduced GSIS in
EndoC-βH1 cells. Interestingly, it has been shown that extrac-
tion of NEFA with NEFA-free BSA from the plasma
membrane of MIN6 cells reduced insulin secretion [63].
There, oleate was one of the most extracted NEFA, suggesting
that its endogenous synthesis through SCD plays a central role
in the regulation of insulin secretion in beta cells. SCD knock-
down also induced markers of inflammation and ER stress in
EndoC-βH1 cells. The beneficial effects of oleate compared
with palmitic acid on insulin resistance and type 2 diabetes is
well established [64]. In the present study, SCD knockdown
decreased the ratio oleate/palmitate by 30%, suggesting that
this reduction could contribute to the deleterious effect of
palmitate in βH1-SCDKD cells. In keeping with this, the
induction of inflammatory (IL8, TNF) and ER stress (spliced
XBP1, ATF3) markers was rescued upon addition of oleate
and palmitoleate, the products of SCD enzyme reactions. On
the other hand, treatment with oleate and palmitoleate did not
rescue the expression of beta cell differentiation markers.
Future experiments will test whether other conditions of treat-
ment with oleate or palmitoleate (different concentrations,
longer exposure time) will reverse the dedifferentiation
phenotype observed upon SCD knockdown. Taken together,
we propose that SCD is a gatekeeper in human beta cells that
protects against dedifferentiation, dysfunction, inflammation
and ER stress. βH1-SCDKD cells thus represent an innovative
model to discover pathways and molecules that maintain high
levels of SCD and protect against such deleterious effects.

Many observations suggest that SCD is important for beta
cell adaptation and compensation during type 2 diabetes
development in rodents. Scd1 and Scd2 mRNA expression is
induced in islets from prediabetic hyperinsulinaemic Zucker
Diabetic Fatty rats and their expression decreases when diabe-
tes develops [49]. Consistent with this observation, diet-
induced obesity reduces Scd1 mRNA expression in rodent
islets [65]. Moreover, while global knockout of Scd1 in mice
improves insulin sensitivity, when introduced on the ob/ob
background with leptin-deficiency, Scd1 deletion leads to a
worsening of diabetes [66]. Importantly, SCD gene expression
was lower in beta cell enriched tissue (obtained by laser
capture microdissection) from individuals with type 2 diabetes
compared with healthy donors [67]. We propose that, over
time, in the course of type 2 diabetes progression, SCD
expression by beta cells is first induced during compensation
in response to insulin resistance, and as the duration of diabe-
tes increases, SCD expression decreases leading to a decline in

Table 1 Lipid content in whole EndoC-βH1 cell lysates following
siCTRL or siSCD transfection

Fatty acids (μg/106 cells) EndoCβH1-siCTRL βH1-SCDKD

Palmitate 3.084 ± 0.156 2.788 ± 0.110

Palmitoleate 2.088 ± 0.184 2.236 ± 0.146

Stearate 1.351 ± 0.069 1.522 ± 0.036

Oleate 5.766 ± 0.209 3.703 ± 0.006***

Linoleate 0.411 ± 0.018 0.331 ± 0.001*

α-Linolenate 0.106 ± 0.041 0.168 ± 0.022

Arachidonic acid 0.095 ± 0.002 0.189 ± 0.027*

Eicosapentaenoic acid 0.076 ± 0.053 0.124 ± 0.008

Docosapentaenoic 0.027 ± 0.002 0.090 ± 0.044

Docosahexaenoic acid 3.682 ± 0.179 3.500 ± 0.528

Palmitoleate/palmitate 0.675 ± 0.030 0.801 ± 0.029

Oleate/stearate 4.275 ± 0.089 2.436 ± 0.055***

Data are means ± SD

*p < 0.05 and ***p < 0.001 relative to siCTRL

�Fig. 5 Palmitate exacerbates dedifferentiation of βH1-SCDKD cells.
EndoC-βH1 cells were transfected with siCTRL or siSCD and treated
72 h later with BSA, 400 μmol/l palmitate (PAL), 30 mmol/l glucose
(HG) or HG+PAL for 24 h. (a–b) qRT-PCR data show mRNA
expression of the dedifferentiation markers MYC (a) and HES1 (b) (n =
3). (c–e) qRT-PCR data show mRNA expression of the beta cell markers
INS (c), MAFA (d) and SLC30A8 (e) (n = 3). (f) Western blot analysis of
MafA expression (representative western blot of three independent
experiments) . (g) Heatmap of beta cel l genes upon SCD
downregulation (three separate samples for each siRNA). (h, i) Effects
of SCD knockdown on GSIS in EndoC-βH1 cells. EndoC-βH1 cells
were transfected with siCTRL or siSCD. Insulin content (h; n = 6) and
secretion (i; n = 3) were assessed 6 days later by stimulation of EndoC-
βH1 cells with 0 mmol/l or 20mmol/l glucose. The key in (a) also applies
to (b–e) and (h, i). Data represent the means ± SD. *p < 0.05, **p < 0.01
and ***p < 0.001 relative to control as indicated on the graph
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beta cell function. Characterising the factors that influence
SCD expression or activity, such as liver X receptor (LXR)/

peroxisome proliferator-activated receptor α (PPARα), sterol
regulatory element-binding protein 1c (SREBP-1c) and/or
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cholesterol [68, 69], will help us define new strategies to over-
come beta cell dedifferentiation, dysfunction and death in type
2 diabetes. Our results described above will enable progress
on this important topic using βH1-SCDKD as a human beta
cell model.
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