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Abstract

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common neurodegenerative diseases and have
been suggested to share common pathological and physiological links. Understanding the cross-talk between them
could reveal potentials for the development of new strategies for early diagnosis and therapeutic intervention thus
improving the quality of life of those affected. Here we have conducted a novel meta-analysis to identify differentially
expressed genes (DEGs) in PD microarray datasets comprising 69 PD and 57 control brain samples which is the biggest
cohort for such studies to date. Using identified DEGs, we performed pathway, upstream and protein-protein
interaction analysis. We identified 1046 DEGs, of which a majority (739/1046) were downregulated in PD. YWHAZ
and other genes coding 14–3-3 proteins are identified as important DEGs in signaling pathways and in protein-protein
interaction networks (PPIN). Perturbed pathways also include mitochondrial dysfunction and oxidative stress. There was
a significant overlap in DEGs between PD and AD, and over 99% of these were differentially expressed in the same up
or down direction across the diseases. REST was identified as an upstream regulator in both diseases. Our study
demonstrates that PD and AD share significant common DEGs and pathways, and identifies novel genes, pathways
and upstream regulators which may be important targets for therapy in both diseases.

Keywords: Systems analysis, Parkinson’s disease, Alzheimer’s disease, Meta-analysis, Gene expression, Transcriptome
analysis

Introduction
Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disease (ND) effecting approximately
145,000 people in the UK [1]. With an ageing popula-
tion, it is predicted that the number of PD patients in
the UK will increase by 18.1% between 2015 and 2065
[1]. In the US it is predicted that PD cases will increase
from 680,000 to 1,238,000 by 2030 [2]. PD primarily
affects motor systems of the central nervous system be-
cause of the death of dopamine generating cells in the
substantia nigra (SN) in the midbrain [3]. The main neu-
ropathologic hallmark of PD is the accumulation of
α-synuclein in neurons in the form of Lewy bodies [3].

Alzheimer’s disease (AD) is the most common ND ac-
counting for 60–80% of dementia cases, characterised
pathologically by deposits of intracellular tau neurofibril-
lary tangles and accumulation of extracellular amyloid β
(Aβ) plaques in the brain [4]. The most common clinical
symptom of AD is gradual progressive memory loss that
eventually affects other cognitive functions such as com-
munication and movement. There are currently many
promising advances in the understanding of AD, includ-
ing novel biomarkers [5, 6] and underlying biological
mechanisms [7].
There is increasing evidence that PD and AD both

have several common characteristics [8]. Around 80% of
PD patients develop dementia over time, with the aver-
age time from onset of PD to dementia being 10 years
[9]. PD and AD are both age-related diseases that have
hallmarks of protein aggregation, indeed α-synuclein is
found as a non-amyloid component within AD amyloid
plaques and over 60% of AD cases are accompanied by
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the formation of Lewy bodies [10]. There are certain
genetic variants that increase both PD and AD risk, for
example the strong risk factor for AD, APOE4, has been
shown to be related to cognitive decline in PD [11].
There is evidence that molecular pathways, including
mitochondrial function, oxidative stress and inflamma-
tion underlie the pathogenesis of both AD and PD, how-
ever, the pathogenic mechanisms of both diseases have
not been entirely explained [8]. There has been found a
co-occurrence of Aβ, tau and α-synuclein pathology
within neurons and oligodendrocytes from post-mortem
brain tissue derived from those with AD and PD [12].
Complex interactions between these proteins can seed
the aggregation of each another, though the underlying
cause of this is not yet understood [12].
The largest RNA sequencing (RNA-seq) study in the

PD brain was performed using prefrontal cortex tissue,
and subset of these samples were tested using proteo-
mics [13]. This study gives excellent insight into the
transcriptomic and proteomic changes that occur within
the frontal cortex of PD patients highlighting disruptions
in protein folding, mitochondrial pathways and ubiquitin
conjugation pathway, reflecting processes that are char-
acteristic of PD. However, as the prefrontal cortex is not
the primary brain region effected in PD, in some cases
the PD could have had a minimal effect [14].
A recent review has highlighted the previous tran-

scriptomics studies published about PD [15]. This review
highlights the limitation of small samples sizes in many
transcriptomic studies of PD even when not restricted to
the SN, demonstrating the need for meta-analysis to in-
crease the power of these previous studies. In addition,
it has been shown that there are low similarities between
results of previous PD microarray studies in both human
and animal tissues, due to the small sample sizes and
differing microarray platforms used across studies [16].
Use of meta-analysis methods to increase the statistical
power of studies as a result of increasing sample size has
been successful in the past in identifying PGC-1α as a
potential therapeutic target in PD [17]. Other previous
brain microarray meta-analyses have used data from all
brain regions available, ignoring region differences in the
brain. Making the data used independent to a brain re-
gion is important as processes involved in PD can occur
dependent on region. However, several previous meta-
analysis studies have included repeated samples from pa-
tients being analysed using multiple different platforms
[18] or multiple areas of the SN being analysed in the
same patients. Including these, as previous meta-ana-
lyses have done [19–21], may introduce bias of results
towards these individuals.
In this study we carry out an integrated study to give

insight into the genomics, genetics and molecular mech-
anisms that underlie the features of PD, and reveal the

relationship with AD. Here we apply a novel meta-ana-
lysis approach we proposed [7] to discover differentially
expressed genes (DEGs) in PD and then make compari-
son to AD. The data of the SN was chosen for this
meta-analysis as degeneration of neurons in the SN is a
hallmark of the disease [8] and has the largest amount
of microarray data available. Our meta-analysis approach
avoids relying exclusively on the genes that have expres-
sion data for each constituent study, as previous PD SN
meta-analysis have done [22, 23], therefore may lead to
novel discovery.

Materials and methods
Data collection and pre-processing
We searched arrayExpress (https://www.ebi.ac.uk/arraye
xpress/) and NCBI GEO (Gene Expression Omnibus)
(http://www.ncbi.nlm.nih.gov/geo/) databases using the
keywords “Parkinson AND substantia nigra” to find
mRNA expression studies of human post-mortem brain
tissue from the SN related to PD. Studies were included
if they: (1) used clinically diagnosed idiopathic PD pa-
tients; (2) used brain tissue samples and (3) had cohorts
with more than three samples in either disease or con-
trol conditions. If a patient had duplicate samples ana-
lysed using different platforms or multiple samples from
within the SN, only one of them was used.
Data processing is shown in Fig. 1. All work was done

in the R programming language [24]. The identified
datasets were downloaded and raw CEL file data were
loaded into R using the affy package available on biocon-
ductor (http://www.bioconductor.org) [25]. Boxplots and
density plots were used to identify any outlier samples
that were subsequently removed. The datasets were then
normalized using the Robust Multi-array Average
(RMA) approach in the affy R package. Probesets were
first mapped to Entrez Gene IDs using manufacturer-
supplied annotation files. Probesets that mapped to mul-
tiple genes were removed, and for any genes that
mapped to multiple probesets only the probeset that had
the largest absolute estimated effect size was kept [7].
The first step of pre-filtering was using detection

(Present/Absent) call generated by the affy microarray
suite version 5 (MAS5) algorithm to remove data that
was not reliably detected. For each study, probesets with
absent calls across a chosen percentage of samples were
removed. This was repeated in 5% intervals removing
probesets with 5% up to 95% of samples absent. The
percentage absent cut-off used was set to minimize the
p-value of the Anderson-Darling normality test using
the nortest R package [26] and give optimum Quantile-
Quantile (Q-Q) plots of the meta-analysis z-score re-
sults. This was done to reduce how arbitrary the selected
filtering parameters are. After this, the bottom 5% of
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average expression values across samples was removed
to reduce low expression data noise.
The Genotype-Tissue Expression (GTEx) database [27]

contains RNA-seq data for SN tissue which were used to
test robustness of our control data. The RNA-seq Gene
transcripts per kilobase million (TPM) from GTEx ana-
lysis v7 were downloaded (available at https://gtexportal.
org/home/datasets). Genes that mapped to more than
one gene symbol and any duplicated gene symbols were
removed. All RMA normalized microarray control data
were merged using the ComBat function [28] from the
sva R package [29]. The Pearson correlation coefficient
between the average expression levels for the microarray
and the average log2 TPM of the RNA-seq was then
calculated.

Meta-analysis
Meta-analysis was performed using the novel metaU-
nion R package previously proposed by us [7] (avail-
able at https://github.com/chingtoe365/metaUnion).
This meta-analysis method calculates the combined
effect size across studies to identify DEGs with the
assumption of a normal distribution of the data. Our
approach works on the combined gene sets from all
the studies included in the meta-analysis, rather than
the genes that are common between all datasets as
other approaches have done [22, 23]. The metaUnion
package is adapted to include age and gender as co-
variates in the model, implemented using limma [30].

Identification of activated transcriptional regulators,
pathway analysis and protein-protein interaction network
analysis
The QIAGEN Ingenuity® Pathway Analysis (IPA®, QIAGEN
Redwood City, www.qiagen.com/ingenuity) software was
used to analyse canonical pathways and upstream regulator
analysis (URA) [31] of the DEGs. The canonical pathways
with Benjamini-Hochberg corrected p-values below 0.05
and upstream regulators with p-values below 0.01 are con-
sidered significant.
A protein-protein interaction network (PPIN) is used

to analyse the interaction of DEGs at the protein level.
The PPIN from the Human Protein Reference Database
(HPRD, release 9) is downloaded and visualized in
Cytoscape v.3.6.1 [32] to create a whole human PPIN
with 9617 unique protein entries (nodes) and 39,240
unique undirected interactions (edges). We then mapped
the DEGs and known risk loci for PD identified by a re-
cent GWAS meta-analysis to build a subnetwork [33].

Comparison to Alzheimer’s data
Our results were compared to our previous study using
similar methodology on AD frontal cortex microarray
data [7]. The significance of the DEGs shared between
AD and PD was determined using a two-tailed Fisher’s
exact test and DEGs in common are tested for significant
distribution up or down regulation using a Sign test. We
identified pathways perturbed in both PD and AD in
addition to those unique to each disease. In addition,

Fig. 1 Workflow of data processing. Outlier samples were removed, and data normalized before the detection (Present/Absent) call algorithm
was used to remove data that was not reliably detected. For each study, probesets with absent calls across a chosen percentage of samples were
removed. This was repeated in 5% intervals removing probesets with 5% up to 95% of samples absent. The percentage absent cut-off used was
set to optimize the normal distribution of the data. After this, the bottom 5% of average expression values across samples was removed and
meta-analysis performed
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pathway analysis was done on DEGs unique to each dis-
ease and DEGs shared between diseases.

Results
Data sets collected for this study
Our search criteria found 7 Affymetrix chip datasets
which included 69 PD and 57 control samples. Informa-
tion about the datasets is shown in Additional file 1:
Table S1. After several rounds of calculation with differ-
ent filtering threshold (see methods), we identified the
optimal detection call threshold of 15% absent to give
data closest to normal distribution (shown in Additional
file 1: Figure S1).

Meta-analysis
Meta-analysis identified 1046 DEGs from the initial pool
of 10,362 genes after false discovery rate (FDR) correc-
tion (FDR p-value < 0.05), of which 307 were upregu-
lated and 739 were downregulated. A full list of the 1046
DEGs are shown in Additional file 2 (also available at
https://figshare.com/s/508c83677f885ced28dc). Table 1
lists the top 30 most significant DEGs, sorted by FDR
adjusted p-value, of which only three are up-regulated.
A recent meta-analysis of GWAS data identified 69

risk genes for PD [33] only 49 of which were present in
our initial gene pool and 9 were identified as DEGs, in-
cluding SNCA, ANK2 and MAPT (shown in Additional
file 1: Table S2). We found that DEGs were more likely
to contain disease associated variants than non-DEGs,
however the significance of this is not very strong (OR =
2.25, 95% CI 0.96 ~ 4.72, p-value = 0.041, Fisher Exact test).

Identification of activated transcriptional regulator, pathway
analysis and protein-protein interaction network analysis
After Benjamini-Hochberg correction IPA identified 54
canonical pathways that were significant for the 1046
DEGs (Additional file 1: Table S3). Pathways identified
include Sirtuin Signalling pathway (adjusted p-value =
2.18E-07, ratio = 34/283) and 14–3-3 mediated Signalling
(adjusted p-value = 9.56E-07, ratio = 21/130). Using the
downregulated DEGs 81 significant pathways were found
(Additional file 1: Table S4). The top ten pathways iden-
tified by the downregulated DEGs are shown in Fig. 2.
Using the upregulated DEGs, no significantly perturbed
pathways were identified by applying multiple testing.
Using less stringent nominal p-value, ten pathways were
identified (p-value< 0.01), including Adipogenesis pathway
(p-value = 2.04E-04, ratio = 9/132) and STAT3 pathway
(p-value = 7.41E-04, ratio = 7/97). Using down-regulated
DEGs IPA identified 17 upstream regulators (Additional
file 1: Table S5) including transcription factor (TF) REST
(p-value = 2.91E-04), which regulates six down regulated
genes (GAP43, INA, SCG2, SNAP25, TUBB3, UCHL1).
Using up-regulated DEGs IPA identified 25 upstream

regulators including HSF1 (p-value = 1.57E-04) which reg-
ulates 8 upregulated DEGs.
A PPIN was created to understand relationships

among top DEGs at a protein level. From the top 30
DEGs, 21 were mapped to the PPIN and first neighbour
nodes (FNN) extracted. This subnetwork contains 248
nodes and 912 edges, and included 2 GWAS genes,
SNCA and MAPT. The top 10 hubs, which have the
greatest number of first neighbour connections, are
shown in Additional file 1: Table S6. Of the top ten
hubs, 6 belonged to the 14–3-3 family of proteins, in-
cluding 14–3-3 zeta (YWHAZ) which is connected to
122 other genes in the subnetwork including 6 down
and 4 upregulated DEGs. Figure 3 shows a subnetwork
created using the FNN of the 14–3-3 protein family in
the top 30 DEG PPIN.
Of the 69 GWAS genes previously identified, 37

mapped to the PPIN created. The subnetwork created
had 331 nodes and 1245 edges that included 45 DEGs,
including SNCA, YWHAZ and MAPT. DEGs were
over-represented in the GWAS PPI sub-network (hyper-
geometric test, p-value = 1.05E-06). The largest hub of
the GWAS gene PPI subnetwork was MAPT which had
46 mapped genes, followed by DLG4 and SNCA.

Comparison to Alzheimer’s disease
The PD DEGs identified in this study were compared to
the 3124 AD DEGs previously found [7]. Between PD
and AD, there were 436 DEGs in common (shown in
Additional file 2), an overlapping analysis showed that is
not just a chance event (OR = 4.32, 95%CI 3.79 ~ 4.93,
p-value = < 2.2e-16, Fisher Exact test). This means
around 42% of PD DEGs were found in AD and around
14% of AD DEGs were found in PD. Over 99% (432) of
the shared DEGs were differentially expressed in the
same up or down direction. PIK3R3, LIMK2, CD55 and
MAPT were the only genes not dysregulated in the same
direction between diseases. It is interesting that the ma-
jority of DEGs in common between AD and PD were
significantly distributed towards downregulation (two-
tailed sign test p-value < 2.2E-16) (see Additional file 1:
Table S7).
IPA identified 54 affected pathways in PD and 107

pathways in AD, with 27 shared between these two
(Additional file 1: Table S3). Interestingly, many of the
top pathways in PD were also dysregulated in AD, in-
cluding Sirtuin Signalling pathway (AD adjusted p-value
= 3.39E-04) and 14–3-3-mediated Signalling (AD ad-
justed p-value = 5.13E-03). The top five pathways identi-
fied using DEGs unique to PD were all among the
common pathways between AD and PD. In contrast,
only two of the top ten pathways identified by AD
unique DEGs were also perturbed in PD, i.e., HIPPO
Signalling and Sirtuin Signalling pathway. It is interesting
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that, of the top five perturbed pathways for the 2688 AD
unique DEGs, neuroinflammation signalling pathway,
complement system and NF-kB signalling were not per-
turbed in PD.

Discussion
By integrating 126 brain samples from seven microarray
gene expression datasets, we identified 1046 DEGs in
PD. To our knowledge this is the largest meta-analysis
study on microarray SN data about PD. Our approach
allows inclusion of all the genes across all datasets in-
cluded in this study. Only 267 out of the 1046 identified
DEGs were included in all datasets. If only the common
genes were used for meta-analysis, as applied in other

previous gene expression meta-analysis about PD [23],
we will have introduced many false negative results. This
is because potentially interesting genes would not be
identified when they are not common between studies.
For instance, out of the top 30 identified DEGs, 14
would not have been identified, including GBE1 [23] and
OPA1 [34] which have been associated with PD revealed
in previous studies.
The gene YWHAZ, coding for the 14–3-3 zeta protein,

was the top DEG and six 14–3-3 family proteins were
important hubs in PPIN. Previously 14–3-3 proteins
have been implicated in interactions with several pro-
teins associated with PD including α-synuclein, Parkin
and LRRK2 [35] and targeting 14–3-3 PPI using small

Table 1 Top 30 most significant differentially expressed genes found in out meta-analysis

Gene name Entrez ID Average FCa metaZscore Effectb FDR corrected Pval

YWHAZ 7534 0.52 −6.26 – 4.09E-06

SNCA 6622 0.57 − 6.00 – 1.03E-05

DCLK1 9201 0.52 −5.91 – 1.08E-05

GBE1 2632 0.43 −5.88 -?----- 1.08E-05

PAIP1 10,605 0.53 −5.61 ------? 4.06E-05

TMEM255A 55,026 0.39 −5.58 -??---? 4.06E-05

OLFM1 10,439 0.48 −5.33 --?---? 1.31E-04

OPA1 4976 0.59 −5.32 ------? 1.31E-04

HPRT1 3251 0.45 −5.30 – 1.31E-04

PPP3CB 5532 0.54 − 5.25 – 1.41E-04

PDXK 8566 0.67 −5.24 – 1.41E-04

SLC18A2 6571 0.31 −5.24 -?-?--- 1.41E-04

MDH2 4191 0.60 −5.21 – 1.50E-04

CHN1 1123 0.54 − 5.17 – 1.77E-04

RAB2A 5862 0.62 −5.10 – 2.37E-04

RUFY1 80,230 1.27 5.04 ++?+++? 3.01E-04

CDH8 1006 0.47 −5.00 -????-? 3.47E-04

UBE2N 7334 0.66 −4.93 – 4.55E-04

ENSA 2029 0.67 −4.93 – 4.55E-04

SERINC3 10,955 0.63 − 4.89 – 4.86E-04

FGF13 2258 0.41 −4.88 – 4.86E-04

ATP6V1D 51,382 0.57 −4.87 – 4.86E-04

FRRS1L 23,732 0.54 −4.87 --?---? 4.86E-04

CDK14 5218 0.67 −4.86 --?---- 4.86E-04

LHPP 64,077 1.43 4.86 ++?++++ 4.86E-04

AASDHPPT 60,496 0.60 −4.81 – 5.97E-04

SH3BP4 23,677 1.34 4.80 ++?+++− 6.08E-04

REEP1 65,055 0.45 −4.75 --?---? 7.41E-04

FBXO9 26,268 0.65 −4.74 ------? 7.47E-04

APLP2 334 0.72 −4.72 – 8.04E-04
aAverage Fold Change
b”+/−/?” indicates up/down and missing in each individual study
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Fig. 2 Top 10 most significant pathways identified using the downregulated DEGs

Fig. 3 Protein-protein interaction subnetwork created using the first neighbour nodes of the 14–3-3 protein family in the DEG PPIN. Six 14–3-3
family genes, YWHAZ, YWHAB, YWHAG, YWHAE, YWHAQ and YWHAH, were in the top 10 hubs for the subnetwork created from the top 30 DEGs
found in our PD meta-analysis. A subnetwork of these 14–3-3 family members and their first neighbours were created. There were 18 DEGs that
mapped to this, with red nodes indicating upregulated genes and green nodes indicating downregulated genes. Blue nodes indicate 14–3-3 family
members that are not PD DEGs. Octagons denote genes that were in the top 30 DEGs. This first neighbour network contains 139 nodes and 539 edges
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molecules offers a promising strategy for PD and other
neurodegenerative diseases [36]. 14–3-3 theta phosphor-
ylation at S232 is observed in human PD brains to be
pathogenic and contributes to the neurodegenerative
process [37]. In Creutzfeldt-Jakob Disease (CJD) phos-
phorylation levels of 14–3-3 proteins have been used as
a diagnostic biomarker clinically [35]. As we have found
dysregulation of various 14–3-3 proteins in the post-
mortem brain, further investigation into the potential of
14–3-3 protein dysregulation and phosphorylation levels
as PD biomarkers in CSF and plasma is warranted.
Neuroinflammation is a typical part of the aging

process [38] and it is accepted that the extent of neuro-
inflammation is greater in PD and AD patients [39]. We
previously identified NF-kB as a TF in AD and LPS, a
key regulator of reactive oxygen species (ROS) produc-
tion, as a potential upstream regulator [7]. All of these
can trigger a pro-inflammatory response. In our present
study, inflammation pathways and upstream TFs that
are pro-inflammatory are not perturbed in PD, suggest-
ing a reduced importance of inflammation in the brain
of patients with developed PD in comparison to AD.
Degradation of dopamine is a major source of ROS in
nigral tissue in PD brains, and late into PD development
a lot of the dopamine producing cells are lost, potentially
reducing inflammation levels [40]. Previously it has been
shown that particular inflammation markers are not
present in Parkinson’s disease dementia when compared
to AD, suggesting that the neuroinflammatory mecha-
nisms in PD and AD differ [41].
Although the DEGs between the two diseases were

significantly overlapped, PD had a higher proportion that
are also perturbed in AD. In addition, of the top five
pathways perturbed in PD all were also perturbed in AD,
however of the top 5 pathways perturbed in AD, only
one was in PD. This suggests that processes underlying
the two diseases are similar, however this it is more ap-
parent with PD. Interestingly, the shared DEGs between
PD and AD are almost always differentially expressed in
the same up or down direction between diseases. This
suggests that these genes could represent the crosstalk
that is apparent between PD and AD. MAPT is one of
four genes not differentially expressed in the same direc-
tion between the two diseases, being downregulated in
AD and upregulated in PD. MAPT encodes the tau pro-
tein, and tau pathologies are important in both diseases
[4, 42]. It has been shown that in three brain regions of
AD patients there is a reduction in MAPT expression
[43], however for PD it has been proposed that brain re-
gions expressing greater levels of MAPT are more sus-
ceptible to tau mediated neurodegeneration [44]. This
difference in MAPT and the role of tau pathology in
both diseases warrants further investigation as these pro-
cesses are not greatly understood.

Repressor element 1-silencing transcription factor
(REST) has been implicated as an important regulator of
neurons in the normal aging brain, closely correlating with
cognitive longevity [45]. In AD and other dementias,
REST is lost from the nucleus and is found with misfolded
proteins in autophagosomes. REST was identified as an
upstream regulator of down-regulated PD DEGs, as it has
been in AD previously [7]. In cell models of PD, abnormal
levels of the REST neuronal splice form REST4 have been
implicated in pathology of PD [46]. It has been suggested
that overexpression of α-synuclein affects the histone
maker distribution on REST complex associated genes and
results in repression of the SNAP25 and L1CAM genes in
both Drosophila and cell line models [47]. Reduction in
these genes has been implicated in contributing to synap-
tic dysfunction in PD [47]. Here both genes have shown to
be downregulated DEGs in PD supporting this mechanism
underlying human PD pathogenesis.
The Sirtuin Signalling pathway was revealed to be per-

turbed in AD and PD and modulating their activities can
alter the course of both diseases in both cell and animal
models [48]. In PD SIRT1 and SIRT3 have protective
effects against degeneration of SN neurons by neuro-
toxins, whereas activity of SIRT2 worsens the degener-
ation [48]. It is likely that SIRT1 and SIRT3 modulate
homeostasis of mitochondria and anti-oxidative mecha-
nisms, whereas activity of SIRT2 could result in adverse
microtubule dynamics that disrupt clearance of toxic
waste including Lewy bodies. In AD, the pan-sirtuin
activator resveratrol has been shown to be safe,
well-tolerated, and alter the trajectory of some bio-
markers in a clinical trial [49]. Further research is
needed to understand the therapeutic potential of
sirtuins [48].
The SN was chosen as the brain region of interest in

this study as neuron degeneration in this region is a hall-
mark of PD and it is the region with the most data for
the meta-analysis [8]. We have excluded the SN micro-
array study GSE54282 from this meta-analysis due to
low sample size and E-MEXP-1416 due to high variance
in the data. There are also many studies using SN dopa-
minergic neurons, however including a number of these
could lead the gene expression data to reflect these
neuron types instead of the whole SN.
Although RNA-seq has demonstrated itself as a su-

perior approach [50], there is not much data available
for PD, although there is likely going to be further
applications in the future. Microarrays are still very
useful tools for measuring the gene expression and
their power is further increased by using meta-
analysis. Our microarray data has correlated gene
expression values to the healthy SN RNA-seq data in
the GTEx database [27], demonstrating that the micro-
array expression data used in this study has the similar
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quality to that of previous RNA-seq data (Additional
file 1: Figure S2).
For PD there has been a limited application of

RNA-seq to identify DEGs, in fact for the analysis of the
SN only one RNA-seq study has been completed [51].
There are minimal similarities between the results of this
RNA-seq analysis and our meta-analysis results. Only 70
of their 2961 identified DEGs are identified in our re-
sults, and only three of our top 30 DEGs (SLC18A2,
FGF13, AASDHPPT) are identified in their results. How-
ever, pathways associated with oxidative phosphoryl-
ation, cardiac hypertrophy and the cytoskeleton were
shared. A possible explanation for this is the very low
power of the RNA-seq study, which only used three
control and three PD samples and the fact that these
samples were not age and gender matched. This is par-
ticularly important as age and gender are some of the
largest risk factors for PD. The control samples had an
average age of 87.3 (+/− 5.5) and were all females, and
the PD samples had an average age of 79.0 (+/− 5.6) and
only one sample was female.
A limitation of this study is that the SN is affected

early in PD development, and by the time symptoms
manifest much of the SN can be lost. This means our re-
sults reflect the perturbed genes and pathways present
once the disease has been established, and not the
changes that take place that lead to PD. To investigate
early changes in disease more accessible tissues, such as
blood and cerebrospinal fluid, would have to be investi-
gated. Currently, there is no reliable way of diagnosing
PD before it has had a substantial effect. As a result, in-
vestigating the perturbed pathways at this point in the
disease would be difficult without development of effect-
ive early diagnosis biomarkers. Nonetheless identifying
genes and pathways perturbed in the later stages of the
disease can still help identify therapeutically important
information and compare to similarly late stages of AD.
A large limitation in this meta-analysis is the limited
number of PD samples. As only 69 PD and 57 control
samples are included in this study, the statistical power
would be lower than that of our previous meta-analysis
for AD which included 450 AD and 212 control samples
[7]. This relatively low sample size could also introduce
false positive and false negative DEGs and pathways,
nevertheless, meta-analysis will outperform individual
microarray studies. Moreover, our PPI networks would
be best enriched by proteomics data of PD if such data-
sets are publicly available.
In conclusion, our meta-analysis strategy is the largest

study of its type in PD SN tissue to date. We highlight
REST as an important upstream regulator in PD and AD
through the perturbation of Wnt signalling [45]. Our re-
sults reveal the importance of YWHAZ and 14–3-3 pro-
teins in PD, through their down regulation, involvement

in perturbed pathways and as hubs in PPIN. We demon-
strate that PD and AD share significant number of DEGs
that are differentially expressed in the same direction
and perturbed pathways that indicate some novel shared
pathogenesis between the two diseases. These insights
suggest several new areas for mechanistic research into
PD and cross-talk between AD and PD.
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Additional file 1: Table S1. Information about each study used in our
meta-analysis after removal of outlier samples. Table S2. Differentially
expressed genes identified in our meta-analysis that have been identified
as PD risk genes in a recent GWAS meta-analysis [33]. Table S3. IPA
canonical pathway analysis for significant pathways identified using all
PD DEGs, included with the information for pathways shared with those
identified as significant using all AD DEGs. Table S4. IPA canonical pathway
analysis for significant pathways identified using down-regulated PD DEGs.
Table S5. IPA upstream regulator analysis for up and down regulated PD
DEGs analysed separately. Table S6. Top 10 hubs found in the protein-
protein interaction network (PPIN) analysis subnetwork created using the
top 30 PD DEGs. Table S7. The direction of differential expression between
the common DEGs found between AD and PD. Figure S1. Selecting filtering
threshold for microarray data. The percentage of studies called absent in a
mas5 present absent call for each probe was calculated, and threshold
determined by minimizing Anderson-Darling normality tests and giving
optimal Q-Q plot of the Z-scores after meta-analysis. The Q-Q plot for (A)
5%, (B) 10%, (C) 15%, (D) 20% and (E) 30% filtering. After 15% filtering A-D
p-values were minimized (F) and the 15% Q-Q plot gave closest values to
normality. A-D is Anderson-Darling normality test. Figure S2. RNAseq data
vs. microarray gene expression data. Average absolute expression level of
RNA-seq log2(TPM) of SN tissue from GTEx database plotted against RMA
normalised and filtered intensity of microarray control and PD data used in
this meta-analysis. The Pearson correlation coefficient between the control
microarray data and healthy RNA-seq data (A) is 0.70 (pvalue < 2.2e-16)
showing that the expression values of genes between microarray and RNA-
seq are correlated and expression data distribution is similar. The Pearson
correlation between the healthy RNA-seq and PD microarray data (B) is
actually higher than between RNA-seq and control microarray at 0.73
(pvalue < 2.2e-16), when it would be expected to be lower due to some
genes being differentially expressed. When using only DEGs, correlation
between healthy RNA-seq and control microarray (C) and PD microarray (D)
data this difference in correlation is minimised to 0.65 (pvalue < 2.2e-16) and
0.66 (pvalue < 2.2e-16) respectively, suggesting that the difference in correlation
could be due to the larger sample size of the PD data. (DOCX 1024 kb)

Additional file 2: DEGs identified in this study. A full list of the 1046
DEGs identified in this meta-analysis in an Excel file. (XLSX 120 kb)
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