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Abstract: Phase change materials (PCMs) can be thermally enhanced by reduced graphene oxide
(rGO)/expanded graphite (EG) aerogel with anisotropic microstructure. An rGO/EG aerogel with
anisotropic microstructure was prepared by directionally freezing aqueous suspensions of graphene
oxide (GO) and EG, followed by a freeze-drying process and thermal reduction at 250 ◦C. The
anisotropic microstructure of rGO/EG aerogel composite PCM was confirmed by scanning electron
microscopy (SEM), thermal conductivity tests and infrared images. The thermal conductivity of
PCMs increased remarkably with rGO/EG aerogel. Compared with the thermal conductivity of
pure paraffin, it increased by about 50~300% in the longitudinal direction and increased by about
25–150% in the transversal direction. The enhancement of thermal conductivity was attributed to
the improvement of the thermal pathway provided by rGO/EG aerogel and the decrease of the
interfacial thermal resistance between PCM and fillers. Meanwhile, rGO/EG aerogel was combined
with paraffin only by physical adsorption, and no chemical interaction occurs between them, leading
to no effect on the phase change behavior. In addition, the addition of rGO/EG aerogel led to a slight
increase in the latent heat of the paraffin in the composite PCM.

Keywords: phase change materials; graphene; aerogel; thermal conductivity; thermal storage
performance

1. Introduction

Alternative energy sources, such as solar energy, are more and more adopted to solve
problems caused by the consumption of fossil fuels [1]. Among these substitutes, the
emergence of thermal energy storage systems has attracted much attention. Because it not
only helps to reduce the dependence on fossil fuels but also contributes to the efficient
and benign use of energy. Similarly, phase change materials (PCMs) also has caught
attention in the field of thermal energy storage [2,3] and temperature control [4,5] because
of their high-energy density, stable chemical properties, non-corrosive, nontoxicity, low
price and repeatable utilization [6–8]. However, the major weakness of PCMs is their low
thermal conductivity [9,10]. To improve this weakness, thermally conductive fillers, such as
metallic and carbon-based materials [11], including mental foam [12], β-aluminum nitride
powder [13], carbon nanotubes [14–16], graphite powder [17] and expanded graphite
(EG) [18], are chosen to enhance the thermal conductivity of composite PCM.

Thermally conductive fillers are usually added to PCMs by means of mechanical
blending. Although this method is very convenient, agglomeration and precipitation of
fillers are apt to occur after multiple phase transitions. These problems can be avoided by
three-dimensional (3D) thermal conductive fillers [19], which own shape stability during
phase transition and can improve the thermal conductivity meanwhile retaining high
latent heat retention. In recent years, many efforts have been made in 3D thermal conduc-
tive filler materials. Hong et al. [20] made a 3D polypropylene reinforced phase change
composite with thermal conductivity of 0.534 W·m−1·K−1, which was twice that of pure
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paraffin. Xiao et al. [12] prepared paraffin/nickel foam composite PCM. The measure-
ment results show that the thermal conductivity of paraffin containing nickel foam is
about three times higher than that of pristine paraffin. Obviously, a well-arranged ther-
mally conductive network can provide a more efficient phonon transmission path and will
not deposit during the phase transition from these studies. In addition, PCMs with the
anisotropic 3D thermal conductive fillers have excellent thermal conductivity for the heat
transfer path along a specific direction and decreasing interfacial resistance between the
PCMs and the fillers. Li Qi et al. [21] reported that through the manufacture of multilayer
graphene that is vertically aligned and densely packed in the epoxy matrix, the thermal
conductivity of the multilayer graphene/epoxy composite has been significantly improved.
Haiyan et al. [22] found that magnetic field action during curing significantly improved
the thermal conductivity of epoxy resin/Fe3O4 modified graphene composites. Com-
pared with epoxy resin/non-directional graphene composites, the thermal conductivity of
epoxy resin/directional graphene composites prepared under an external magnetic field
increased by 41%.

In previous studies, graphene oxide (GO) aerogels can significantly improve the
electrical properties [11] and thermal properties of composites. Hydrothermal method [23],
auxiliary drying method [11] and directional freezing method are generally used in the
preparation of aerogel loaded with graphene oxide. Lee et al. [24] reported treating GO with
melamine resin (MR) monomers to avoid severe restacking between graphene individual
sheets, resulting in the carbonaceous composite with an exceptionally large surface area of
1040 m2/g. Highly thermally conductive and porous expanded graphite (EG) is well suited
for increasing the thermal conductivity of PCMs and adsorbing PCMs. The amphiphilic
structure of GO makes hydrophobic EG evenly dispersed in GO solution. Ren et al. [23]
prepared an isotropic rGO/EG aerogel composite PCMs by hydrothermal method, whose
thermal conductivity is enhanced equally in all directions. Moreover, graphene sheets
can be readily fabricated into anisotropic 3D interconnecting networks by directional
freezing [25], magnetic-induced method [26], layer-by-layer assembly method [25], in situ
polymerization method [27], etc. However, anisotropic aerogels consisting of graphene
and EG have not been reported.

Herein, anisotropic reduced graphene oxide (rGO)/EG aerogels are fabricated by
directionally freezing aqueous suspensions of GO and EG, followed by freeze-drying
process and thermal reduction at 250 ◦C. After impregnation with paraffin, the resulting
composite PCM exhibits anisotropic thermal conductivity. Anisotropic aerogel networks
could provide more efficient thermal transfer pathways and decrease thermal resistance.
The rGO/EG aerogels account for only 3–9% of the mass of the composite PCM, but the
longitudinal thermal conductivity of phase change composites is greatly increased. When
rGO/EG aerogel content is 8.7 wt.%, the longitudinal thermal conductivity of composite
PCM increase to 0.79 W·m−1·K −1, almost 4 times of pure paraffin (0.19 W·m−1·K−1). Com-
pared with the experimental results of Ren et al. [23], we can find that the anisotropic phase
change composite materials of the same composition have higher thermal conductivity
and have the function of directional heat conduction. At the same time, the low proportion
of rGO/EG aerogel also guarantees the energy storage capacity of the composite PCM.

2. Experiment
2.1. Materials

EG and the graphite flakes powder (200 meshes) were purchased from Baoding Lianx-
ing Cemented Carbide Co., Ltd. (Baoding, China). Sulfuric acid (H2SO4, 98%), potassium
permanganate (KMnO4, 99.9%), hydrochloric acid (HCl, 37%), hydrogen peroxide (H2O2,
30%), and paraffin were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shang-
hai, China).
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2.2. Preparation of rGO/EG Aerogel

GO was prepared by the modified Hummers method [28]. First, 80 mL of 10 mg/mL
GO aqueous was dispersed evenly in a beaker, and the mass ratio of EG in the GO/EG
mixture is 20%, 40%, 60%, and 80%. Second, the EG of the corresponding mass was
weighed into GO aqueous dispersion and stirred for 30 min. The GO/EG slurries were
frozen directionally by liquid nitrogen. In the process of directional freezing, liquid nitrogen
was placed in the stainless steel insulation container, and the stainless steel support was
placed in the liquid nitrogen so that the surface of the liquid nitrogen and the upper
surface of the support was flush. The GO/EG slurries were placed in the plastic container
on the stainless steel support and wrapped with insulating cotton. After freezing, the
samples were freeze-dried for 96 h to obtain the anisotropic GO/EG aerogel. Lastly, the
GO/EG aerogel was cut into pieces with a thickness of about 1 to 2 cm in the transversal or
longitudinal direction for reduction. When reducing the sample, the samples were placed
on an iron rack in the vacuum drying oven; the oven was turned on to heat it. The timer
was started after the temperature reached 250 ◦C. Samples were heated under vacuum at
250 ◦C for two hours. The preparation flow chart of rGO/EG aerogel is shown in Figure 1.
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Figure 1. Flow chart of anisotropic reduced graphene oxide (rGO)/expanded graphite (EG) aerogel produced by
directional freezing.

2.3. Preparation of Composite PCM

The composite PCM was prepared by paraffin and rGO/EG aerogel. The rGO/EG
aerogel was cut into a round cake of 1 to 2 cm in diameter and 2.5 mm in thickness. The
rGO/EG aerogel was immersed in the melted paraffin for 1 min to completely absorb the
paraffin. The aerogel slowly sank after gradually absorbing the paraffin but did not collapse.
The rGO/EG aerogel composite PCM was obtained after paraffin cooling and solidification.

2.4. Characterization

The morphology of the samples was investigated by scanning electron microscope
(Jeol, Tokyo, Japan). The chemical structure was measured by Fourier-transform infrared
(FTIR, Bruker EQUINOXSS) (Bruker, Madison, WI, USA) and X-ray photoelectron spec-
troscopy (XPS, PHI-500 ◦C ESCA) (Thermo Elemental, Waltham, MA, USA), the X-ray
source power was set to 150 W, and the incident photon energy was 20 eV. Raman spectra
were obtained from a Raman microprobe (H Evolution, Horiba Jobin Yvon, Paris, France).
The phase transition properties of the samples were characterized by a differential scan-
ning calorimeter (DSC, TA Instruments, Q100) (TA Instruments, Delaware, DE, USA). An
infrared thermal imager (FLIR, ETS320) (FLIR Systems, OR, USA) was used to observe
the temperature variation of the samples during temperature changes. The temperature
was measured by a thermocouple (CENTER-309) (Center Technology, New Taipei City,
Taiwan). Thermal conductivity λ (W·m−1·K−1) was measured using the steady-state plate
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method [29]. Surface area and porosity characterization were obtained by N2 adsorption–
desorption at 77 K with NOVA 2200e surface area and a pore size analyzer.

3. Results and Discussion
3.1. Microstructure and Chemical Structure of rGO/EG Aerogel

Figure 2 displays SEM photos of rGO/EG aerogel with EG content of 20%. Many
rGO sheets can be observed from the SEM photos, and the rGO sheets show an orderly
arrangement to some extent. Especially in the longitudinal section SEM photos, it can be
seen that rGO sheets grow vertically and appear to be fence-like. Aligned rGO sheets are
connected by shorter rGO sheets. This is due to the directional freezing with gradient
temperature distribution. When the sample was directionally frozen, the ice crystals grew
in an orderly upward direction along the temperature gradient. Because GO sheets have
good hydrophilicity, they adhered easily to the ice template. After freeze-drying and
reduction, the rGO sheets exhibited the structure of the original ice template, which had
ordered fence shape. Hence, rGO/EG aerogel exhibited an aligned microstructure.
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Figure 2. SEM photos of transversal section of rGO/EG aerogel with EG content of 20% (A,B), SEM photos of longitudinal
section rGO/EG aerogel with EG content of 20% (C,D).

Figure 3 displays SEM photos of the transversal section of rGO/EG aerogel with
increasing EG. As we can see, EG appears worm-like, and rGO is sheet-like from Figure 3.
The dashed blue line circles part of EG. The more EG that was added, the greater the
proportion of worm-like objects appeared, as shown in Figure 3A,D. The GO and EG
always showed good uniformity no matter how much EG was added. Moreover, the
sheet-like graphene covered the expanded graphite. At the same time, the sheet-like
graphene overlapped with each other to form a three-dimensional structure. It could be
clearly observed that the overlapping graphene EG was embedded in the sheet. This
shows that the combination of EG and graphene sheet is relatively uniform, and the
graphene sheet constituted a bridge between the EG, which was beneficial to improve the
thermal conductivity. At the same time, it can be seen that the three-dimensional structure
contained a large number of voids, which was beneficial for the aerogel material to adsorb
more PCMs.

Figure 4A shows the FTIR spectra of GO/EG aerogel and rGO/EG aerogel. Peaks
at 1050, 1000 to 1300 and 1734 cm−1 in the FTIR spectrum of GO/EG aerogel correspond
to the vibrations of C–O, C–O–C, and C=O [30]. The peak at 1383 cm−1 indicates the
deformation vibration of the C–O–C group [30]. GO/EG aerogel had a significant peak
at 1620 cm−1, which was the skeleton vibration of C=C. The double bond vibration in
rGO/EG aerogel almost disappeared, but the peak of the benzene ring skeleton appeared
at 1580 cm−1, and the peak of the long-chain carbon chain appeared at 739 cm−1. The
structure and properties of the hydrocarbons changed from hydrophilic to hydrophobic.
The double bonds transformed to benzene rings and single bonds, which also proved that
the sample did undergo a reduction reaction. Compared to GO/EG aerogel, the peaks in
the FTIR spectrum of rGO/EG aerogels were significantly reduced but did not completely
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disappear. This indicated that a fraction of the oxygen-containing functional groups still
existed in the rGO/EG aerogel.
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Figure 4B shows the Raman spectra of EG, GO, GO/EG aerogel and rGO/EG aerogel.
From the picture, we can see that the peaks at 1350 and 1596 cm−1 in the Raman spectrum
of carbon material correspond to the vibrations of the D bond and G bond, respectively. The
G band was produced by the stretching motion of all sp2 atomic pairs in the carbon ring
or long-chain. Defects and disorder in carbon atoms induced the D band [31]. Generally,
the intensity ratio of D band to G band (ID/IG) indicated the disorder degree of the carbon
materials [32]. The ID/IG of EG, GO, GO/EG aerogel, and rGO/EG aerogel were 0.38, 1.04,
0.89, 0.95, respectively. The oxygen-containing functional groups on the GO were the main
reasons for the high ID/IG of GO, compared to EG. Although most oxygen-containing
functional groups were removed after thermal reduction, ID/IG of GO/EG increased from
0.89 to 0.95 of rGO/EG instead of decreasing, which means that the thermal reduction
process caused additional lattice distortion in the aerogel.
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Figure 4C,D shows the XPS spectra of GO/EG aerogel and rGO/EG aerogel. In the
spectrum of GO/EG aerogel, the binding energy peaks of 284.6 eV, 287.2 eV, 285.4 eV,
288.2 eV, and 289.2 eV represent the five chemical groups of C–C, C–O–C, C–OH, C=O and
COOH, respectively [33,34]. In the spectrum of rGO/EG aerogel, the peak of C–O–C and
COOH binding energy almost disappears, the peaks of C–OH and C=O binding energy
cannot be ignored, indicating that there was still a part of oxygen-containing groups present
on the carbon chain structure. On the other hand, the peak value of the binding energy of
C–C was greatly increased, indicating that the functional group of rGO/EG aerogel existed
in a branched form and did not affect the main chain structure of the carbon chain. At the
same time, the atomic ratio of C/O could also quantitatively characterize the reduction
effect. After reduction, the C/O atomic ratio of the sample increased from 2.125 to 4.0. This
aspect reflects most of the oxygen-containing groups were reduced, which was consistent
with FTIR characterization.

The N2 adsorption–desorption isotherms for rGO/EG aerogel with EG content of 80%
is shown in Figure 5. The BET surface area of rGO/EG aerogel was 420 m2/g, which was a
big improvement over previous graphene aerogels with a surface area of 199.3 m2/g [35].
A multimodal pore size distribution (Barrett–Joyner–Halenda (BJH)) pore distribution) was
centered at 4.1, 6.1, 7.9 and 11.5 nm. Most of the pores in rGO/EG aerogel were mesoporous.

3.2. Microstructure and Chemical Structure of Composite PCM

Figure 6A–D displays SEM image of rGO/EG aerogel composite PCM with EG content
of 20%. It could be observed that the composite PCM section was smooth, indicating that
the paraffin adsorption was relatively sufficient. A similar structure could be observed
by comparing the SEM photos of the aerogel. In the transversal sectional image, the
upright rGO sheets could be seen and completely covered with paraffin wax; the flat
areas were large pieces of EG, which become smooth after adsorption of paraffin. In the
longitudinal sectional image, a shallow fence type structure could be observed, and EG was
attached thereto. This shows that the 3D structure of the aerogel, especially the anisotropic
properties, was preserved during the adsorption of paraffin.
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Figure 5. N2 adsorption–desorption isotherm of rGO/EG aerogel (A), Barrett–Joyner–Halenda (BJH)
pore size distribution of rGO/EG aerogel (B).

Figure 6E shows the FTIR spectra of paraffin, rGO/EG aerogels, and composite PCM.
The main peaks of paraffin were 705 cm−1, 938 cm−1, 1285 cm−1, 1443 cm−1 and 1692 cm−1,
which were related to the vibration of –CH2, C–O, C–O–C, –CH3 and C=O groups [33]. In
the FTIR spectra of composite PCM, the peak structure was almost the same as paraffin,
and there was no other obvious peak and significant peak shift. On one hand, it showed
that aerogels account for very little in the composite PCM, and their absorption peaks were
almost not reflected in the infrared spectrum. On the other hand, there was no obvious
peak shift, indicating that there was no obvious chemical bond between the aerogels and
paraffin. Aerogels were combined with paraffin only by physical adsorption, and no
chemical reaction occurs. Consistent with SEM analysis, the structure of aerogel did not
change when compounded with paraffin.
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3.3. Phase Change Properties of Composite PCM

Figure 7A shows the DSC heating and cooling curves of composite PCM and paraffin.
The latent heat and melting temperature of composite PCM and paraffin were calculated
from DSC curves in Figure 7A and shown in Figure 7B. It can be seen from the line chart
that the melting temperature (Tm) of pure paraffin was 45.75 ◦C Tm of the composite PCM
was slightly higher by 1–2 ◦C than that of paraffin. This indicates that the rGO/EG aerogel
with a 3D structure did not have a major impact on the phase transition process of paraffin.
The latent heat of paraffin in composite PCM was calculated as follows:

∆H =
the average of ∆Hm and ∆Hc of composite PCM

the mass ratio of paraffin in composite PCM
(1)

where ∆Hm and ∆Hc are melting and freezing latent heat, respectively. The latent heat (∆H)
of pure paraffin is 223.5 kJ/kg. Compared with paraffin, the ∆H of paraffin in composite
PCM increased by about 1 to 8.4%. There were many reasons that affect the latent heat of
paraffin in composite PCMs [23], such as the thermal conductivity, mass and crystallization
rate of samples.
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3.4. Thermal Conductivity of Composite PCM

Figure 8 shows the thermal conductivity of composite PCM in different directions.
Since the sample owns an anisotropic structure, the thermal conductivity varies in different
directions. The longitudinal direction was parallel to the direction in which the rGO sheets
were arranged. The transversal direction was perpendicular to the direction in which the
rGO sheets were arranged. With increasing rGO/EG aerogel ratio, thermal conductivity
in the longitudinal direction increased more significantly than that in the transversal
direction. It can be seen that the thermal conductivity in the longitudinal direction increased
greatly with the increase of the rGO/EG aerogel ratio, most of which was between 0.3 and
0.8 W·m−1·K−1 and the highest set of samples was close to 0.8 W·m−1·K−1. Compared with
0.19 W·m−1·K−1 of pure paraffin, it increased by about 50~300%. However, the thermal
conductivity of PCMs in the transversal direction differed from that in the longitudinal
direction, which was only about 0.25~0.5 W·m−1·K−1. In the longitudinal direction, the
heat was transmitted along the fence-like rGO sheet with low resistance due to the high
thermal conductivity of the rGO. However, in the transversal direction, the lower thermal
conductivity along the transverse direction should have been mainly due to the lack of
continuous high thermal conductivity pathways formed by rGO. Hence, the anisotropic
structure of rGO/EG aerogel had a differential influence on heat conduction. Moreover, the
more rGO/EG aerogel was added, the higher the thermal conductivity of the composite
PCM and the larger the thermal conductivity difference between the transversal and
longitudinal directions.

The infrared images of composite PCM during heating and cooling are shown in
Figure 9. During heating, the temperature rise rate of the longitudinal section of composite
PCM with 3.4% rGO/EG aerogel was faster than that of the longitudinal section of compos-
ite PCM with 2.3% rGO/EG aerogel. A similar phenomenon is also observed in Figure 9B.
During the cooling process, it was not surprising that the longitudinal section of composite
PCM with 3.4% rGO/EG aerogel descends faster than the longitudinal section of composite
PCM with 2.3% rGO/EG aerogel. The same findings can be found in Figure 9B. The
results show that rGO/EG aerogel could enhance the thermal conductivity of composite
PCM again. The longitudinal section of composite PCM with 8.7% rGO/EG aerogel had a
faster heating and cooling rate than the transversal section of composite PCM with 8.7%
rGO/EG aerogel (shown in Figure 9C). This also confirms that PCM had an anisotropic
structure and had a better thermal conductivity in the longitudinal direction than in the
transversal direction.
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PCM with 8.7% rGO/EG aerogel during heating and cooling (C).
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4. Conclusions

In this work, we prepared anisotropic rGO/EG aerogel composite PCMs by directional
freezing. Moreover, the thermal conductivity of paraffin was greatly improved. Due to the
high porosity and high specific surface area of the carbon material aerogel, a fully filled
aerogel composite phase change material was obtained after impregnation. Tests consisting
of thermal conductivity and infrared thermal imager showed an ideal anisotropic thermal
conductivity. Such high thermal conductivity could be attributed to the anisotropic aerogel
acting as a thermally conductive skeleton in the phase change material and having an
efficient thermal path. In the next future, we will apply these rGO/EG composite PCMs
with directional thermal conductivity to construction, temperature control and other fields.
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