
Agarwal and Przeworski. eLife 2021;10:e71513. DOI: https:// doi. org/ 10. 7554/ eLife. 71513  1 of 23

Mutation saturation for fitness effects at 
human CpG sites
Ipsita Agarwal1*, Molly Przeworski1,2*

1Department of Biological Sciences, Columbia University, New York, United States; 
2Department of Systems Biology, Columbia University, New York, United States

Abstract Whole exome sequences have now been collected for millions of humans, with the 
related goals of identifying pathogenic mutations in patients and establishing reference repositories 
of data from unaffected individuals. As a result, we are approaching an important limit, in which 
datasets are large enough that, in the absence of natural selection, every highly mutable site will 
have experienced at least one mutation in the genealogical history of the sample. Here, we focus 
on CpG sites that are methylated in the germline and experience mutations to T at an elevated rate 
of ~10-7 per site per generation; considering synonymous mutations in a sample of 390,000 individ-
uals, ~ 99 % of such CpG sites harbor a C/T polymorphism. Methylated CpG sites provide a natural 
mutation saturation experiment for fitness effects: as we show, at current sample sizes, not seeing 
a non- synonymous polymorphism is indicative of strong selection against that mutation. We rely on 
this idea in order to directly identify a subset of CpG transitions that are likely to be highly delete-
rious, including ~27 % of possible loss- of- function mutations, and up to 20 % of possible missense 
mutations, depending on the type of functional site in which they occur. Unlike methylated CpGs, 
most mutation types, with rates on the order of 10-8 or 10-9, remain very far from saturation. We 
discuss what these findings imply for interpreting the potential clinical relevance of mutations from 
their presence or absence in reference databases and for inferences about the fitness effects of new 
mutations.

Introduction
A central goal of human genetics is to identify pathogenic mutations and predict how likely they are 
to cause disease. To this end, exome sequencing in cases and controls is often used to help identify 
variants with potentially large effects on disease risk (Rauch et al., 2012; Sanders et al., 2012; Need 
et al., 2012; Akbari et al., 2021). Even where this approach yields an enrichment of variants in cases, 
however, the specific subset of mutations that contributes to disease often remains unknown; similarly, 
in individual patients, sequencing habitually yields candidate mutations of which the significance is 
unclear (Richards et al., 2015; Harrison et al., 2021).

Numerous scores have therefore been developed to help prioritize among candidate mutations, 
based on protein structure, functional annotations, evolutionary patterns, or other features (Cooper 
et al., 2005; Adzhubei et al., 2010; Pollard et al., 2010; McLaren et al., 2016; Ioannidis et al., 
2016; Rentzsch et  al., 2019). In particular, a common approach to pinpoint sites at which muta-
tions are likely to be pathogenic is to examine whether they appear to be under purifying selec-
tion. For instance, comparisons of sequences across species have been widely used to identify highly 
conserved genomic regions maintained by selection over millions of years, presumably because of 
their functional importance (Cooper et al., 2005; Pollard et al., 2010; Boffelli et al., 2003; Siepel 
et al., 2005).

The same general approach is also useful when applied within humans, where information about 
purifying selection is contained in whether or not a site is segregating a mutation and at what frequency 
(Sawyer and Hartl, 1992; Eyre- Walker and Keightley, 2007; Boyko et al., 2008; Williamson et al., 
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2005; Lek et al., 2016; Karczewski et al., 2020; Yi et al., 2010). For this application, however, the 
low diversity levels in the genome pose a major difficulty, as a site may be monomorphic simply by 
chance, that is when mutations at that site have no fitness consequences at all or, at the other extreme, 
because the mutations are embryonically lethal. In particular, because most sites are monomorphic in 
samples of hundreds or even thousands of humans, there is little information to distinguish sites under 
strong selection from those at which mutations are only weakly deleterious.

With a view to capturing natural variation at a larger number of sites in the genome and identi-
fying more mutations with large effects on disease risk, there have been extensive efforts to collate 
available exome sequences from hundreds of thousands of individuals (Lek et al., 2016; Karczewski 
et al., 2020; Dewey et al., 2016; Szustakowski, 2020; Van Hout et al., 2020; Taliun et al., 2021). 
These efforts were also motivated by the idea that public repositories composed of relatively healthy 
adults not ascertained for a specific severe disease can serve as reference datasets, such that seeing a 
variant of unknown function in these datasets is indicative of it being benign (Lek et al., 2016; Clauss-
nitzer et al., 2020; Ghouse et al., 2018). The validity of that assumption remains to be evaluated, 
however, especially as the repositories grow in size.

Beyond their utility in human genetics, these datasets provide an unprecedented opportunity to 
learn about the fitness effects of new mutations. Modeling the distribution of fitness effects (DFE) 
has a long history in population genetics (Sawyer and Hartl, 1992; Eyre- Walker and Keightley, 
2007; Otto, 2000), but until recently, inferences were based on genetic variation in samples of at 
most a couple of thousand chromosomes (Eyre- Walker and Keightley, 2007; Boyko et al., 2008; 
Williamson et al., 2005; Eyre- Walker et al., 2006; Kim et al., 2017). As is well appreciated, the 
fitness effects at the few sites segregating at such sample sizes are a small and biased draw from the 
DFE and thus the inferred distribution of fitness effects is unlikely to recapitulate the true DFE in the 
genome. Moreover, for lack of sufficient information with which to distinguish weakly from strongly 
selected mutations, a number of approaches have relied on a specific and arbitrary parametric form 
for the distribution of fitness effects across sites. In that regard, not only do inferences based on small 
samples result in relatively noisy parameter estimates, the results can be misleading, especially about 
the fraction of sites under strong selection (Kim et al., 2017). Current samples in humans may allow 
for these limitations to start to be overcome.

Motivated by these considerations, we focus on a class of mutations known to experience muta-
tions an order of magnitude more frequently than other types of sites in the human genome: CpG 
sites that are methylated in the germline (Duncan and Miller, 1980; Nachman and Crowell, 2000; 
Kong et al., 2012; Figure 1—figure supplement 1). We use these sites as a test case for what can 
be learned about selection when neutral sites are saturated, i.e., have all experienced at least one 
mutation in the history of the sample, and draw out implications for the interpretation of mutations as 
pathogenic and for inferences about fitness effects.

Results
Mutation saturation at CpGs
An attractive feature of methylated CpG (mCpG) sites is that a single mechanism, the spontaneous 
deamination of methyl- cytosine, is believed to underlie the uniquely high rate of C > T mutations at 
these sites (Duncan and Miller, 1980); thus, germline methylation at CpG sites is strongly predictive 
of their mutability (Kong et al., 2012; Jónsson et al., 2017; Gao et al., 2019; Figure 1—figure 
supplement 2). Here, we define ‘methylated’ CpG sites in exons as those that are methylated ≥65 % 
of the time in both testes and ovaries. For these ~1.1 million sites (of 1.8 million total CpG sites in 
sequenced exons), we calculate a mean haploid, autosomal C > T mutation rate of 1.17 × 10–7 per 
generation using de novo mutations (DNMs) in a sample of ~2900 sequenced parent- offspring trios 
(Materials and methods, Figure 1—figure supplements 1–2, Halldorsson et al., 2019).

Although methylation levels are the dominant predictor of mutation rates at CpG sites, they are 
not the only influence. Notably, CpG transitions differ somewhat in their mutation rates based on 
their trinucleotide context (Figure 1—figure supplement 3a; Aggarwala and Voight, 2016); even 
so, they are consistently an order of magnitude higher than the genome average (Kong et al., 2012). 
Broader scale features, such as replication timing, have also been reported to shape mutation rates 
(Stamatoyannopoulos et al., 2009; Smith et al., 2018). Nonetheless, considering methylated CpGs 
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inside and outside exons, which differ in a number of these features, there is no appreciable difference 
in average DNM rates (Fisher Exact Test (FET) p- value = 0.1, Figure 1—figure supplement 4a). Simi-
larly, the rate at which two DNMs occur at the same site, a summary statistic that reflects the variance 
in mutation rates, is not significantly different for methylated CpGs inside versus outside exons (FET 
p- value = 0.35; Figure 1—figure supplement 4b). Thus, while there is some variation in mutability 
per site among methylated CpGs, it appears to be small relative to the mean mutation rate across all 
methylated CpGs.

Considering all such CpG sites therefore, we ask what fraction are segregating at existing sample 
sizes. To this end, we collate polymorphism data made public by gnomAD (Karczewski et al., 2020), 
the UK Biobank (Szustakowski, 2020), and the DiscovEHR collaboration between the Regeneron 
Genetics Center and Geisinger Health System (Dewey et al., 2016) in order to ascertain whether both 
C and T alleles are present in a sample of ~390K individuals (Materials and methods).

To focus on the subset of genic changes most likely to be neutrally- evolving, we consider 
the ~350,000 methylated CpG sites at which C > T mutations do not change the amino acid. At these 
sites, 94.7 % of all possible synonymous CpG transitions are observed in the gnomAD data alone, and 
98.8 % in the combined sample including all three datasets (Figure 1). In other words, nearly every 
methylated CpG site where a mutation to T is putatively neutral has experienced at least one such 
mutation in the history of the sample of 390K individuals. Even in the least mutable CpG trinucleotide 
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Figure 1. Fraction of methylated CpG sites that are polymorphic for a transition, by sample size. The combined dataset encompasses three non- 
overlapping data sources: gnomAD (v2.1), the UK Biobank (UKB), and the DiscovEHR cohort. ‘European’ samples include the populations designated as 
‘EUR’ in 1000 Genomes, ‘Non- Finnish European’ subsets of exome and whole genome datasets in gnomAD, as well as the UK Biobank and DiscovEHR, 
which have >90% samples labeled as of European ancestry.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Exonic de novo mutation rates per generation per site estimated from a sample of 2976 parent- offspring trios data from 
Halldorsson et al., 2019, by mutation type.

Figure supplement 2. De novo mutation rate in exons in a sample of 2976 parent- offspring trios, by average methylation levels.

Figure supplement 3. Effect of trinucleotide context on mutation rate and mutation saturation at methylated CpG sites.

Figure supplement 4. Comparing the distribution of CpG transition rates at methylated sites within and ouside exons.
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context, 98 % of putatively neutral sites are segregating in current samples (Figure 1—figure supple-
ment 3b). These observations imply that in the absence of selection, almost every methylated CpG 
site would be segregating a T at current sample sizes--and further that not seeing a T provides strong 
evidence it was removed by selection.

Testing a neutral model for individual sites
The mutation saturation at methylated CpG sites provides a robust approach to identify individual 
sites that are not neutrally- evolving. One way to view it is in terms of a p- value: under a null model 
with no selection, from which we assume that synonymous sites are drawn, all but 1.2 % of neutral 
sites are segregating in a sample of 390K individuals. Therefore, if a given non- synonymous site, say, is 
invariant in a sample of ≥390K individuals, we can reject the neutral null model for this site at a signifi-
cance level of 0.012. Similarly, we can ask about the probability that an invariant non- synonymous site 
is neutral, using a false discovery rate (FDR) approach: given that 1.2 % of neutral sites are invariant, 
whereas 7.4 % of non- synonymous sites are, the FDR is 1.2/7.4 = 16%. Thus, at current sample sizes, 
there is a substantial amount of information about whether individual CpG transitions are deleterious. 
By contrast, in a smaller sample with only 10 % of putatively neutral sites segregating, there is almost 
no information about selection in observing individual sites to be invariant (p ≤ 0.9).

This approach implicitly assumes that synonymous and non- synonymous sites do not differ in their 
distributions of mutation rates and that their distributions of genealogical histories are also the same, 
i.e.,, that the two types of sites are subject to comparable effects of linked selection. While we cannot 
examine whether the distributions of mutation rates are identical for lack of data, we verify that the 
mean de novo mutation rates do not differ for synonymous sites and for various non- synonymous anno-
tations (Figure 2a); we also check that the distributions of methylation levels (conditional on ≥65%), an 
important determinant of mutation rates, are similar for synonymous and non- synonymous sites (with 
a significant but small shift towards higher methylation and thus presumably higher mutation rates for 
non- synonymous sites; Figure 2—figure supplement 1). In turn, the standard assumption of similar 
distributions of genealogical histories seems sensible, given that the sites are interdigitated within 
genic regions (McDonald and Kreitman, 1991). Under these few and at least somewhat testable 
assumptions, the approach based on mutation saturation at methylated CpG sites then enables us to 
directly pinpoint individual sites that are not neutrally evolving. We note further that if synonymous 
sites are not all neutral and instead some fraction are under selection, the same idea would apply, but 
the null model would have to be modified accordingly.

Comparing the fraction of segregating sites across annotations
Under these same weak assumptions, it is also possible to compare the proportion of methylated 
CpG sites polymorphic for a transition across annotations. Here, we consider the fraction of sites 
segregating a transition in each annotation class in a sample of 780K chromosomes, rescaled by the 
fraction segregating at synonymous sites. All categories of missense, loss- of- function, and regulatory 
variants show a significant depletion in the fraction of segregating sites compared to synonymous 
variants (Figure 2b). The deficit for a given annotation is an indicator of the deleteriousness of de 
novo mutations in that annotation. Specifically, in our sample of 780K, the deficit for each annotation 
reflects sites for which we can reject neutrality at a significance level of 0.012.

These data therefore suggest that there are ~27 % fewer loss- of- function variants than would be 
expected under neutrality; at invariant sites within this annotation, neutrality can be rejected at an FDR 
of only 4.4 % ( = 1.2/27). A 27 % deficit of loss- of- function variants is again seen if we match the sites 
to synonymous mutational opportunities with the same predicted level of linked selection, i.e., with 
similar genealogical histories (McVicker et al., 2009; Figure 2—figure supplement 2a). Supporting 
the widely used assumption that LOF mutations within a gene are equivalent (after filtering for those 
at the end of transcripts; Karczewski et al., 2020; Cassa et al., 2017), when we compare the set of 
CpG sites at which mutations are annotated as leading to protein- truncation in the first versus the 
second half of transcripts, approximately the same number are missing mutations relative to synon-
ymous sites in both subsets (Figure 2—figure supplement 3; FET p- value = 0.9). By comparison, 
the fraction of missense mutations and splice region variants not observed in current samples is only 
about 5.3%, and the FDR 22.6 % ( = 1.2/5.3) (whether or not we match for the effects of linked selec-
tion; see Figure 2—figure supplement 2a).

https://doi.org/10.7554/eLife.71513
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Figure 2. Comparing de novo mutation rates and the fraction of segregating sites across annotations. (a) DNM rates for CpG transitions at highly 
methylated sites by annotation class, rescaled by the total DNM rate in exons. Fisher exact tests (FETs) of the proportion of sites with DNMs in each 
annotation compared to all other annotations yield p- values > 0.1 in all cases. (b) Fraction of highly methylated CpG sites that are segregating as a C/T 
polymorphism in an annotation class, relative to the fraction of synonymous sites segregating. Error bars are 95 % confidence intervals assuming the 
number of segregating sites is binomially distributed (FET p- values << 10–5 for comparisons of all annotations with synonymous sites). LOF variants are 

Figure 2 continued on next page
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While LOF and missense annotation classes are most commonly used in determinations of variant 
pathogenicity, any two sets of methylated CpGs with similarly- distributed mutation rates can be 
ranked in this manner. As one example, we stratify missense mutations by the type of functional site 
in which they occur. For the subset of sites at which missense mutations may disrupt or alter binding, 
particularly DNA- binding, there is a ~ 12–20% deficit in segregating sites relative to what is seen 
at synonymous sites, in contrast, say, to the much smaller deficit at missense changes within trans- 
membrane regions (Figure 2c–d, Figure 2—figure supplement 4; Figure 2—figure supplement 2b). 
In other words, observing a DNA- binding missense site that is invariant provides stronger statistical 
evidence that it is deleterious than observing an invariant missense site with no additional functional 
information (e.g. the FDR is ~1/20 vs. ~1/5).

We can also check that the fraction of sites segregating is inversely proportional to the predicted 
functional importance of the sites using CADD scores (Rentzsch et al., 2019), widely used measures 
of constraint that incorporate functional annotations and measures of conservation. Across deciles, 
mean de novo transition rates at methylated CpGs are similar (Figure 2—figure supplement 5a) and, 
as expected, the fraction of segregating sites decreases with increasing CADD scores (Figure 2—
figure supplement 5b). We note, however, that mutation rates may not always be similar across 
comparison groups: considering all CpG sites in exons (i.e. not only highly methylated ones), for 
example, de novo mutation rates are much more variable across CADD deciles (Figure 2—figure 
supplement 5c). Consequently, the depletion of segregating sites no longer has a simple interpreta-
tion (Figure 2—figure supplement 5d), instead reflecting a combination of differences in mutation 
rates and fitness effects. By implication, while CADD scores are meant to isolate the effects of selec-
tion, they will in some cases classify sites that have high mutation rates as less constrained, and vice 
versa.

What can be learned about other mutation types?
Given that current exome samples are informative about selection on transitions at methylated CpGs, 
a natural question is to ask to what extent there is also information for less mutable types, with muta-
tion rates on the order of 10–8 or 10–9 per site per generation. For sites with mutation rate on the order 
of 10–9, which is the case for the vast majority of non- CpGs, the fraction of possible synonymous sites 
that segregate in a sample of 780K chromosomes is very low: for instance, it is 5 % for T > A muta-
tions, which occur at an average rate of 1.2 × 10–9 (Figure 1—figure supplement 1) and 27 % even for 
other C > T mutations, which occur at a rate of 0.9 × 10–8 per site (Figure 1—figure supplement 1), 
compared to ~99 % for C > T mutations at methylated CpGs (Figure 3a). For invariant sites of these 
less mutable types, there is little information with which to evaluate the fit to the neutral null in current 
samples. Reflecting this lack of information, in the p- value formulation, monomorphic sites would be 
assigned p ≤ 0.95 for T > A sites and p ≤ 0.73 for C > T sites.

How large samples have to be for other mutation types to reach saturation depends on the length of 
the genealogy that relates sampled individuals, i.e., the sum of the branch lengths, which corresponds 

defined as stop- gained and splice donor/acceptor variants that do not fall near the end of the transcript, and meet the other criteria to be classified 
as ‘high- confidence’ loss- of- function in the gnomAD data (see Materials and Methods). (c) The amount of data for synonymous and missense changes 
involving highly methylated CpG transitions by the type of functional protein site. (d) The proportion of synonymous and missense segregating C/T 
polymorphisms in different classes of functional sites. Error bars are 95 % confidence intervals assuming the number of segregating sites is binomially 
distributed (FET p- values << 10–5 for comparisons of all missense annotations with synonymous sites; Materials and methods). All annotations are 
obtained using the canonical transcripts of protein coding genes (see Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution of methylation levels at synonymous and non- synonymous methylated CpG sites in testes and ovaries.

Figure supplement 2. The effect of background selection on the fraction of sites segregating in each annotation.

Figure supplement 3. Comparing LOF CpG transitions at methylated sites in exons that constitute the first vs. second halves of canonical protein 
coding transcripts.

Figure supplement 4. Comparing de novo mutation rates and the fraction of segregating sites across annotations obtained using the worst 
consequence in protein coding transcripts by predicted severity, instead of canonical transcripts as in Figure 2.

Figure supplement 5. De novo C>T mutation rates at methylated CpG sites and the fraction of sites segregating in CADD score bins.

Figure 2 continued

https://doi.org/10.7554/eLife.71513
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to the number of generations over which mutations could have arisen at the site. For a mutation that 
occurs at rate 1.17 × 10–7 per generation, the average length of the genealogy would have to be 
greater than 8.5 million (1/1.17 × 10–7) generations for at least one such mutation to be expected at a 
site. That synonymous CpG sites are close to saturation when they experience mutations to T at this 
rate suggests that this is in fact the case. Indeed, given that more than one mutation has occurred at 
a substantial fraction of sites (Karczewski et al., 2020; Harpak et al., 2016), the average length of 
the genealogy relating the 390K individuals is expected to be substantially longer: about 39 million 
generations (calculated from the probability of at least one mutation under a Poisson distribution; see 
Materials and methods). The observation that mutation types with rates on the order of 10–8 are far 
from saturation further indicates that the average length of the genealogy for these 390K individuals 
is substantially shorter than 100 million generations. These rough calculations thus provide a sense of 
the length of the genealogical history represented by these 390K individuals.

To explicitly examine the relationship between sample size, mutation rate and the amount of vari-
ation at a locus, we simulate neutral evolution at a single site with the three different mutation rates 
above, under a variant of the widely- used Schiffels- Durbin demographic model for population growth 
in Europe (Schiffels and Durbin, 2014), in which we set the effective population size Ne equal to 
10 million for the past 50 generations (Methods). While this model is clearly an oversimplification, it 
recapitulates observed diversity levels for synonymous mutations reasonably well (Figure 3). Consis-
tent with the rough estimate above, under our choice of demographic model, a sample of 780K 
chromosomes has a genealogy spanning an average of 34  million generations (Figure  3—figure 
supplement 1a,b).

From first principles, the length of the genealogy is expected to increase much more slowly 
than linearly with the number of samples (Hudson, 1990; Nelson et al., 2012). Indeed, increasing 
the number of samples by a factor of 12 only increases the average tree length ~3.3 x (Figure 3b, 
Figure 3—figure supplement 1a,b); thus, a site that mutates at rate 10–9 per generation is expected 
to have experienced ~0.04 mutations in the genealogical history of a sample of ~1 million, and 0.1 
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Figure 3. Comparing the fraction of sites observed and expected to be segregating under neutrality, by mutation type and sample size. (a) Fraction of 
possible synonymous C > T mutations at CpG sites methylated in the germline and at all other C sites, and the fraction of possible synonymous T > A 
mutations that are observed in a sample of given size. (b) Fraction of sites segregating in simulations, assuming neutrality, a specific demographic model 
and a given mutation rate (see Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The expected length of the genealogy under different demographic models and for varying sample sizes.

Figure supplement 2. Mutation saturation in bins of sites compared to single mCpG sites.

https://doi.org/10.7554/eLife.71513
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mutations in a sample of 10 million. The implication is that saturation for mutation rates of 10–8 or 10–9 
per site per generation may not be achievable any time soon.

Quantitative predictions of our model are subject to the considerable uncertainty about the demo-
graphic history and in particular about the recent effective population size in humans (Figure 3—
figure supplement 1b). Moreover, for simplicity, we model one or at most two populations, when 
samples that combine individuals from more diverse genetic ancestries have longer genealogical 
histories (Figure 3—figure supplement 1c; see Figure 1) and thus capture more variation. Perhaps 
most importantly, for the very large sample sizes considered here, the multiple merger coalescent is 
a more appropriate model (Nelson et al., 2012; Bhaskar et al., 2014). Nonetheless, the qualitative 
statement that less mutable types will remain very far from saturation in the foreseeable future should 
hold.

In the absence of information about single sites for most mutational types in the genome, it is 
still possible to learn to a limited degree about selection using bins of sites. If we construct a bin of 
K synonymous sites with the same average mutation rate per bin as a single methylated CpG, then 
at least one site per bin is polymorphic in ~99 % of bins (see Figure 3—figure supplement 2 for 
an example with T > A mutations and K~100), just as ~99 % of individual methylated CpG sites are 
segregating. Thus, if a bin of K non- synonymous sites with the same average mutation rate is invariant, 
the p- value associated with the bin is 0.01, indicating that one or more sites in the bin is likely to be 
under selection.

How strong is the selection that leads to invariant methylated CpG 
sites?
Leveraging saturation to identify a subset of sites that are not neutrally- evolving makes appealingly 
few assumptions, but provides no information about how strong selection is at those sites. To learn 
about the strength of selection consistent with methylated CpG sites being monomorphic, a series 
of strong assumptions are needed: we require a demographic model, a prior distribution on hs and a 
mutation rate distribution across sites. Here, we assume a relatively uninformative log- uniform prior 
on the selection coefficient s ranging from 10–7 to 1 and fix the dominance coefficient h = 0.5 (as for 
autosomal mutations with fitness effects in heterozygotes, we only need to specify the compound 
parameter hs; reviewed in Fuller et al., 2019), as well as a fixed mutation rate of 1.2 × 10–7 per site 
per generation. We rely on the demographic model for population growth in Europe described above 
(Schiffels and Durbin, 2014); as is standard (Sawyer and Hartl, 1992; Boyko et al., 2008; Williamson 
et al., 2005; Eyre- Walker et al., 2006; Kim et al., 2017; Cassa et al., 2017; Simons et al., 2014), 
we also assume that hs is fixed over time, even as the effective population size changes dramatically. 
Under these assumptions, we estimate the posterior distribution of hs at a site, given that the site is 
monomorphic, segregating with 10 or fewer derived copies of the T allele, or segregating with more 
than 10 copies (Figure 4a and b, Methods). These posterior distributions are estimates of the DFE 
at an individual mCpG site conditional on seeing 0 copies, 1–10 copies or >10 copies of the T allele.

Because Bayes odds provide a natural way to summarize the strength of statistical evidence that 
comes from the observation at a single site, we consider the Bayes odds that a mutation is subject to 
hs > 0.5 x 10–3, i.e., is under strong selection (see Materials and methods). In small samples, in which 
most sites are monomorphic, being monomorphic is consistent with both neutrality and very strong 
selection (Figure 4a) and the Bayes odds are close to 1, reflecting the fact that the observation barely 
shifts our prior assumptions (Figure  4b). In contrast, with larger sample sizes, in which putatively 
neutral CpG sites reach saturation, the posterior distribution for invariant sites is highly peaked–what 
is not segregating is likely strongly deleterious–and accordingly the Bayes odds become substantially 
greater than 1. Notably, at current sample sizes of 390K individuals, there is still some dependence 
on the prior (Figure 4—figure supplement 1), but the Bayes odds of hs > 0.5 x 10–3 at an invariant 
methylated CpG are large. Given our choice of prior, the odds are 15:1 (Figure 4b), which suggests 
that most (~15/16) of the ~27 % of LOF mutations and ~6 % of missense mutations not seen in current 
samples are subject to this degree of selection.

While the relationship of selection strengths to clinical pathogenicity is not straight- forward, selec-
tion coefficients on that order are likely to be of relevance to determinations of pathogenicity in clin-
ical settings (Cassa et al., 2017; Kaplanis et al., 2020). Indeed, mutations with hs > 0.5 × 10–3 may 
be highly deleterious to some individuals that carry them, enough to produce clinically visible effects, 

https://doi.org/10.7554/eLife.71513
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Figure 4. Quantifying the strength of selection associated with invariant and segregating sites.  (a) Prior and Posterior log densities of hs for a C > T 
mutation at a methylated CpG site observed at 0, 1–10, or >10 copies at various sample sizes. (b) Bayes odds (i.e. posterior odds divided by prior odds) 
of s > 0.001 for a C > T mutation at a methylated CpG site observed at 0, 1–10, or >10 copies, at various sample sizes. (c) Probability of a methylated 
CpG site segregating a T allele in simulations, if the mutation has no fitness effects (hs = 0) and if it is deleterious (with a heterozygote selection 
coefficient hs = 0.05%) or highly deleterious (with a heterozygote selection coefficient hs = 5%).

Figure 4 continued on next page
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but vary substantially in their penetrance. Accordingly, mutations classified as pathogenic in ClinVar 
(Landrum et al., 2018) or identified as underlying severe developmental disabilities in the Deciphering 
Developmental Disorders (DDD) cohort (Kaplanis et al., 2020) are 6- fold to 51- fold enriched at sites 
invariant in 390K individuals compared to those classified as benign (Figure 4—figure supplement 
2). This analysis comes with important caveats–notably that the classifications of pathogenicity rely in 
part on the presence or absence of mutations in reference databases–but it suggests an enrichment 
on par with estimated Bayes odds of strong selection.

Discussion
Interpreting polymorphic sites in current reference databases
In a sufficiently large sample, even a segregating site can be subject to strong selection (Figure 4a and 
b). For instance, in current exome sample sizes, a C > T mutation at a methylated CpG site with hs = 
0.5 × 10–3 is almost always observed segregating (Figure 4c). This follows from the expectation under 
mutation- selection- drift balance (Gillespie, 1998): in a constant population size, a mutation that arises 
at rate 1.2 × 10–7 per generation and is removed by selection at rate hs = 0.05% per generation has 
an expected population frequency of 2.4 × 10–4; in a sample of 780K, the mean number of copies is 
187. Even with substantial variation due to genetic drift and sampling error, such a site should almost 
always be segregating at that sample size. In fact, even a mutation with hs of 5 % would quite often 
be observed. Thus, segregating sites in large samples are a mixture of neutral, weakly selected and 
strongly selected sites. An implication is that, although large reference repositories such as gnomAD 
were partly motivated by the possibility of excluding deleterious variants, as samples grow in size, it 
cannot simply be assumed that clinically relevant variants are absent from reference datasets. In prin-
ciple, the only mutations never seen as samples grow in size would be the ones that are embryonically 
lethal.

More generally, any interpretation of variants of unknown function by reference to repositories 
such as gnomAD or disease cohorts enriched for deleterious variation (Taliun et al., 2021), whether 
the goal is to exclude benign variants or identify likely pathogenic ones, is implicitly reliant on assump-
tions that change with sample size and dramatically differ by mutation type. At current sample sizes, 
invariant methylated CpGs are likely highly deleterious; for less mutable types, the information 
content at invariant sites is very limited at even the largest sample sizes considered (Figure 4—figure 
supplement 3). Similarly, learning about the fitness consequences of segregating mutations from their 
observed frequencies is contingent on assumptions about the mutation rate, and the demographic 
history of the sample.

The distribution of fitness effects in human genes
As we show, a typical site in the genome, with a mutation rate of 10–8 per generation, does not provide 
much information about selection (Figure 4—figure supplement 3), because the average length of 
the genealogy is likely substantially less than 108 generations. One exception, which is a special case, 
is gene loss: each gene can be conceived of as a single locus at which many possible LOF mutations 
have the same fitness impact (Karczewski et  al., 2020; Cassa et  al., 2017; Fuller et  al., 2019; 
Weghorn et al., 2019; Agarwal, Fuller, Przeworski, in prep.). The mutation rate to LOF, calculated by 
summing rates of individual LOF mutations, is ~10–6 per gene per generation on average (Karczewski 

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of the choice of prior on Bayes odds of hs > 0.5x10–3.

Figure supplement 2. Odds of non- synonymous variants having been classified as pathogenic in ClinVar and DDD if they occur at sites that are either 
invariant (0 copies) or segregating ( > 0 copies) in a sample of 780 K chromosomes.

Figure supplement 3. For various sample sizes, prior and posterior log densities for hs, and the Bayes odds of s > 10–3 (and h = 0.5) for a mutation 
observed at 0, 1–10, or >10 copies.

Figure supplement 4. Comparison of measures of deleteriousness at 1.1 million mutational opportunities for methylated CpG (mCpG) transitions vs. 
90 million other mutational opportunities in exons.

Figure supplement 5. Estimating the DFE of LOF mutations using posterior densities of hs for invariant and segregating mCpG sites.

Figure 4 continued
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et al., 2020), such that in the absence of selection, many LOF mutations are expected in most genes. 
At this special subset of sites, the distribution of fitness effects can be inferred by binning loss- of- 
function variants within genes (Karczewski et al., 2020; Cassa et al., 2017; Weghorn et al., 2019; 
Agarwal, Fuller, Przeworski, in prep.).

An analogous strategy to overcome sample size limitations at other types of sites is to infer selec-
tion in bins of sites (Dukler et al., 2021); however, if sites within a bin vary in their fitness effects, infer-
ences based on these bins are not straight- forward. Indeed, the mutation frequency in a bin reflects 
the harmonic mean of hs across sites in the bin weighted by (unknown) mutation rates across sites (see 
Materials and methods).

Given these limitations, individual methylated CpG sites can provide a useful point of entry to 
understanding the DFE in humans. Although methylated CpG sites appear under somewhat less 
constraint than other sites, the differences are subtle (Figure 4—figure supplement 4), and what 
we learn at these sites can tell us what to expect more generally. As a first step, we can obtain a DFE 
across non- synonymous mCpG sites by weighting the densities for segregating and invariant sites 
(Figure 4a) by the proportion of sites in each category (an example for possible LOF mutations is 
shown in Figure 4—figure supplement 5, for sample sizes of 15K and 780K) . In current samples, 
the posterior odds for invariant methylated CpGs having hs ≥ 0.5 × 10–3 are 92 % under our model, 
whereas they are 37 % for segregating methylated CpGs. Considering possible LOF mutations at 
methylated CpGs, of which 27 % are not observed in current samples, these odds imply that the 
fraction of de novo LOF mutations with hs ≥ 0.5 × 10–3 is roughly 52 % ( = 0.27 × 0.92 + 0.73 × 0.37).

We can use a similar approach to estimate the minimum fraction of de novo mutations that lead to 
a deleterious non- synonymous change. For missense sites, given the same uninformative prior on hs 
as for LOF mutational opportunities, the fraction estimated to be highly deleterious is 40 % ( = 0.05 
× 0.92 + 0.95 × 0.37). Since ~0.97 % of all de novo point mutations are missense and ~0.07 % lead 
to a LOF (see Methods), these estimates translate into roughly a 1 in 236 chance ( = 40%x0.97% + 
52% x0.07%) that a de novo mutation has an effect hs ≥0.5 × 10–3. Assuming, finally, that each indi-
vidual inherits 70 new mutations (Kong et al., 2012; Jónsson et al., 2017), these estimates imply that 
one out of every 3.4 individuals is born with a new and potentially highly deleterious, non- synonymous 
mutation. This calculation is based on only two frequency categories, however, discarding the infor-
mation contained in allele frequencies at segregating sites, and only point mutations are taken into 
account. Thus, the true fraction is likely substantially higher.

Outlook
Moving forward, we should soon have substantial information not only about the DFE but the strength 
of selection at individual CpG sites (Figure 4). Inferences based on them, or indeed any sites, will 
need to rely on an accurate demographic model, particularly for the recent past of most relevance for 
deleterious mutations; this problem should be surmountable, given the tremendous recent progress 
in our reconstruction of population structure and changes in humans (Schiffels and Durbin, 2014; 
Kelleher et al., 2019; Speidel et al., 2019). Inferences will also require a good characterization of 
mutation rate variation across CpG sites, as is emerging from human pedigree studies and other 
sources (Jónsson et al., 2017; Poulos et al., 2017; Vöhringer et al., 2020; Seplyarskiy and Sunyaev, 
2021), and careful consideration of the effects of multiple hits (Harpak et al., 2016) and biased gene 
conversion (Glémin et al., 2015). It will also be of interest to revisit the standard assumptions that go 
into inferring a DFE, including that all mutations are at least partially dominant in their fitness effects; 
that the DFE remains fixed even as the effective population size changes by orders of magnitude; and 
that the distribution is bounded above at 0, when some of the mutations segregating in large samples 
are likely to be weakly beneficial. Putting these elements together, robust inference of the fitness 
effects of mutations in human genes should finally be within reach, through the lens of CpG sites.

Materials and methods
Processing de novo mutation data
We focused on ~190,000 published de novo mutations in a sample of 2976 parent- offspring trios that 
were whole genome sequenced (Halldorsson et al., 2019). To date, this is the largest publicly avail-
able set of trios that, to our knowledge, have not been sampled on the basis of a disease phenotype. 

https://doi.org/10.7554/eLife.71513
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Unless otherwise specified, we used these DNMs to calculate mutation rates, as described in later 
sections. We converted hg38 coordinates to hg19 coordinates using UCSC Liftover. We excluded 
indels, and all DNMs that occur outside the  ~2.8  billion sites covered by gnomAD v2.1.1 whole 
genome sequences. We obtained the immediately adjacent 5’ and 3’ bases at each position from the 
hg19 reference genome, so that we had each de novo mutation within its trinucleotide context; we 
used this information to identify CpG sites. Where such data were available (for 89 % of CpG de novo 
mutations), we also annotated each site with its methylation status measured by bisulfite sequencing 
in testis sperm cells and ovaries (see Appendix 1—table 1).

We annotated DNMs with their variant consequences using Variant effect predictor (v87, Gencode 
V19) and the hg19 LOFTEE tool (Karczewski et  al., 2020) to flag high- confidence (‘HC’) loss- of- 
function variants. We obtained the fraction of DNMs in the genome that occured at sites annotated 
as missense or LOF in the ‘canonical’ protein- coding transcript for each gene provided by Gencode.

Processing polymorphism data
We downloaded publicly available polymorphism data from gnomAD (Karczewski et al., 2020), the 
UK Biobank (Szustakowski, 2020), the DiscovEHR collaboration between the Regeneron Genetics 
Center and Geisinger Health System (Dewey et al., 2016), and 1000 Genomes Phase 3 (Auton et al., 
2015). Where needed, we lifted over coordinates to the hg19 reference assembly using the UCSC 
LiftOver tool. Salient characteristics of these samples are as follows:

Dataset
Regions
Sequenced Individuals Variants Populations sampled

Original 
alignment

1000 genomes Phase 3
(also included in gnomAD) Genomes 2504 84 million mixture hg19- b37

gnomAD v2.1.1 Exomes 125,748 15 million mixture hg19

gnomAD v2.1.1 Genomes 15,708 230 million mixture hg19

UK Biobank Exomes 199,932 16 million ~93 % European ancestry hg38

DiscovEHR Exomes 50,726 8 million ~98 % European ancestry hg19- b37

For the gnomAD data, we obtained the allele frequency for each variant in the full exome and 
genome samples, as well as their Non- Finnish European (‘NFE’) subsets from the VCF files (in hg19 
coordinates) provided. For each sample, we obtained the set of segregating sites (i.e. the set of 
variants that pass gnomAD quality filters and have an allele frequency >0 in the sample). For the 
1000 Genomes Phase- 3 data, we obtained the set of variant positions similarly. Note that the 1000 
Genomes samples are also contained within the gnomAD sample. For the DiscovEHR sample, allele 
frequencies are available where MAF >0.001 (and set equal to 0.001 for lower values > 0); we can 
thus determine the set of sites segregating in this sample, but we do not have access to any other 
information about individual variants.

For the UK Biobank exome sequencing data, additional processing was required. We downloaded 
the population- level plink files with exome- wide genotype information for ~200,000 individuals. We 
excluded exome samples that did not pass variant or sample quality control criteria in the previously 
released genotyping array data. Specifically, we excluded samples that have a discrepancy between 
reported sex and inferred sex from genotype data, a large number of close relatives in the database, 
or are outliers based on heterozygosity and missing rate, as detailed in Bycroft et al., 2018. Finally, 
we excluded individuals who withdrew from the UK Biobank by the end of 2020. This left us with 
199,932 exome samples that overlap with the high- quality subset of the genotyped samples. We 
additionally limited our analysis to the list of ~39 million exonic sites with an average of 20X sequence 
coverage provided by UK Biobank (Szustakowski, 2020). We transformed the processed plink files 
into the standard variant call format, polarized variants to the hg38 reference assembly, and obtained 
the frequency of the non- reference allele in the sample. We then lifted over the coordinates from hg38 
to hg19 using the UCSC LiftOver tool. We excluded the few positions where the reference alleles were 
mismatched or swapped between the two assemblies.

All but 12 % of segregating mCpG transitions were shared across at least two non- overlapping 
datasets. Of segregating variants seen in one of the gnomAD or UK Biobank datasets, all but two vari-
ants had at least 5 % of individuals (and typically on the order of ~100 K) sequenced at that position. 
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 Research article      Evolutionary Biology | Genetics and Genomics

Agarwal and Przeworski. eLife 2021;10:e71513. DOI: https:// doi. org/ 10. 7554/ eLife. 71513  13 of 23

Thus, we think it highly unlikely that we misclassified invariant sites as segregating, or vice versa. 
For ~9000 variants that are seen only once in the GHS data, we unfortunately did not have access to 
variant quality metrics. Excluding these sites only very slightly affects our results and does not change 
any qualitative conclusions.

Identifying and annotating mutational opportunities in the exome
For all possible mutational opportunities in sequenced exons, we collated a variety of functional anno-
tations. To this end, we first generated a list of all possible SNV mutational opportunities in the exome. 
We obtained the list of sites that fall in exons or within 50 base pairs (bp) of exons in Gencode v19 
genes and that are among the ~2.8 billion sites covered by gnomAD v2.1.1 whole genome sequences. 
For each position, we extracted the reference allele from the hg19 assembly and generated the three 
possible single- nucleotide derived alleles. We also obtained the immediately adjacent 5’ and 3’ bases 
at each position from the hg19 reference genome, so that we had each mutational opportunity within 
its trinucleotide context; we used this information to identify CpG sites. Where such data were avail-
able, we also annotated each site with its methylation status in testis sperm cells and ovaries.

To identify sites at which variants or de novo mutations could be confidently assayed by whole- 
exome sequencing methods, we obtained regions targeted in whole exome sequencing from 
gnomAD and the UK Biobank. We limited our analysis to sites that were covered at 20X or more in the 
exome sequencing subsets of both gnomAD and UK Biobank (that lifted over correctly to the hg19 
assembly), which we refer to as ‘accessible sites’.

We then annotated the ~90 million mutational opportunities (at 30 million sites) with CADD scores 
and variant consequences using Variant effect predictor (v87, Gencode V19) and the hg19 LOFTEE 
tool (Karczewski et  al., 2020) to flag high- confidence (‘HC’) loss- of- function variants. For loss- of- 
function variants, we also noted their location in the gene by exon number (e.g. in exon 10 of 12 
exons in the gene). We used a published database of curated protein features derived from Refseq 
proteins (Stanek et al., 2020) to annotate all sites in protein coding genes that were associated with 
a particular type of functional activity (detailed functional annotations were available for about 60,000 
of 1.1 million methylated CpG sites). At each site, we used either the primary ‘site- type’ annotation, or 
when that was missing or listed as ‘other’, we extracted the annotation from the more detailed ‘notes’ 
field where this information was provided.

Because there are multiple transcripts for each variant, we limited our analysis to the ‘canonical’ 
protein- coding transcript for each gene provided by Gencode to obtain a single annotation for each 
variant. For 10–20% of variants, this approach still yielded multiple possible consequences per variant, 
for instance, where there are multiple canonical transcripts due to overlapping genes. For these cases, 
we assigned one of the ‘canonical’ transcripts to the variant at random, to avoid making assumptions 
about their relative importance. Further overlaps within the same gene, for example, a missense 
variant that is also a splice variant in the same transcript, or a DNA- binding site that also undergoes a 
particular post- translational modification, were resolved in the same manner.

As an alternative approach, we obtained the worst consequence in all protein- coding transcripts for 
each variant, using the ranks of variant consequences by severity provided by Ensembl (Appendix 1—
table 1). In the absence of systematic ranking criteria for the protein function annotations, we used 
the following order: sites that were designated as having catalytic activity (‘active’ sites) were given 
highest priority in overlaps, followed by DNA- binding sites, followed by other types of binding (to 
metal, polypeptides, ions), and finally by sites that are known to undergo post- translational or other 
regulatory modifications, and trans- membrane sites. Thus, a transmembrane site with regulatory 
activity is classified as a regulatory site, while a regulatory site with DNA- binding activity is classified as 
DNA- binding. Using these alternate criteria to group sites does not affect our conclusions (Figure 2—
figure supplement 4).

All sources of annotation data are listed in Appendix 1—table 1. A list of CpG sites and annota-
tions is provided as additional data.

Comparing fitness effects across sets of mutational opportunities
To assess whether the set of 1.1  million C > T mutational opportunities at methylated CpG sites 
are systematically different from the other  ~90  million exonic mutational opportunities in their 
potential fitness effects, we compared the distribution of CADD scores in the two groups using a 
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Kolmogorov- Smirnov test. We note that this comparison is likely to be somewhat confounded by 
differences in mutation rates, given our finding that CADD scores do not perfectly isolate the effects 
of selection from those of variability in mutation rates (Figure 2—figure supplement 5c). Since the 
mutation rate for methylated CpG sites is higher than for other types, this may lead them to appear 
somewhat less constrained than they actually are.

We further compared the fraction of C > T mutational opportunities at methylated CpGs in an 
annotation class vs. the fraction of other mutational opportunities in that class. We used a Fisher exact 
test (with a Bonferroni correction for four tests) to determine whether the two sets of mutational 
opportunities were differently distributed across synonymous, missense, regulatory, and LOF variant 
classes.

Obtaining mean de novo mutation rates by mutation type and 
annotation
We counted the total number of de novo mutations in sequenced exons (~91 million mutational 
opportunities) for eight classes of mutations: two transitions and a transversion each at C and T 
sites, transitions at CpG sites with relatively low levels of methylation (defined here as <65%), and 
transitions at CpG sites with high levels of methylation ( ≥ 65%). To obtain the mutation rate per site 
per generation, we divided the counts by the haploid sample size (2 × 2976 individuals; see section 
1) and the number of mutational opportunities of each type. We report 95 % confidence intervals 
assuming a Poisson distribution for mutation counts. The rates obtained (Figure 1—figure supple-
ment 1) are similar to previous ones (Kong et al., 2012; Jónsson et al., 2017; Gao et al., 2019) 
and roughly consistent with the rates predicted by the gnomAD mutation model (Karczewski et al., 
2020).

To evaluate the impact of methylation status on the mutation rate at CpG sites, we obtained the 
mean mutation rate for C > T mutations at CpG sites in each methylation bin as described above, 
separately for methylation levels in ovaries and testes. While there is a limited amount of data, espe-
cially for some low- methylation bins, our choice of cutoff for ‘methylated’ seems sensible (Figure 1—
figure supplement 2).

We then calculated the mean mutation rate for methylated CpG transitions, for different compart-
ments in the genome, namely in (a) exons and non- exons, (b) four variant consequence categories: 
synonymous, missense, regulatory, and LOF variants, (c) CADD score deciles, and (d) in exons that 
constitute the first half vs the second half of genes. We also calculated the mean mutation rate for 
methylated CpG transitions in four trinucleotide contexts (ACG, CCG, GCG, and TCG). In each case, 
we obtained the total number of de novo mutations and the Poisson 95 % confidence interval around 
mutation counts in each group, and divided by the number of mutational opportunities in the group. 
We tested if the proportion of methylated CpG sites with de novo C > T mutations in each non- 
synonymous compartment was different from the proportion of synonymous methylated CpGs with 
de novo C > T mutations, accounting for multiple tests.

Variance in mutation rate at methylated CpGs
Although current samples of DNM data are large enough to compare the mean mutation rate at 
methylated CpGs across the annotation classes examined here, there is not enough data to directly 
compare variances in mutation rates. To learn how much broad scale features beyond methylation 
and the immediate trinucleotide context shape variation in mutation rates at methylated CpGs, we 
therefore relied on a broader set of regions for example those that fall inside and outside exons. 
Exonic and non- exonic regions differ considerably in epigenetic features and replication timing (Stam-
atoyannopoulos et al., 2009); yet, there is no discernable difference in average de novo mutation 
rates at methylated CpGs inside and outside sequenced exons (FET p- value = 0.10, Figure 1—figure 
supplement 4a). We also compared the number of double and single de novo hits in exons and non- 
exons using a Fisher exact test (p- value = 0.35, Figure 1—figure supplement 4b). Since the number 
of double hits reflects the variance in mutation rates across sites, these results lend some support to 
there being limited variation due to broad scale genomic features in transition rates at methylated 
CpGs.

https://doi.org/10.7554/eLife.71513
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Calculating the fraction of sites segregating by annotation
For each methylated CpG site in the exome, there are three mutational opportunities (C > A, C > G, 
C > T); we focused only on the opportunities for C > T mutations. For each methylated CpG site then, 
we noted whether or not it was segregating, or in other words if there was a C > T variant in samples 
of individuals from gnomAD (Karczewski et al., 2020), the UK Biobank (Szustakowski, 2020), the 
DiscovEHR dataset (Dewey et al., 2016), and 1000 Genomes Phase 3 (Auton et al., 2015), processed 
as described above, or a combined sample of 390 K non- overlapping individuals.

Within the set of methylated CpG sites where C > T mutations are synonymous, we calculated the 
fraction segregating in each sample of interest. Similarly, for different subsets of methylated CpGs, 
namely those in (a) four variant consequence categories: synonymous, missense, regulatory, and LOF 
variants, (c) CADD score deciles, (d) functional site categories (e.g. trans- membrane vs catalytic sites 
in proteins), and (e) the first half vs the second half of genes, we calculated the fraction segregating 
in the combined sample of 390 K individuals. We rescaled the fraction of sites segregating in each 
annotation by the fraction of synonymous sites segregating in the sample.

We verified that the differences in the fraction of sites segregating across annotations are not due 
to variable impacts of linked selection across annotations. To do so, we calculated the fraction of sites 
segregating with sites in different annotations matched for B- statistics McVicker et al., 2009; we 
obtained very similar results with this approach (Figure 2—figure supplement 2).

We assumed that conditional on the number of mutational opportunities and a fixed probability of 
segregating for each site in a compartment, the number of sites segregating is binomially distributed, 
and obtained 95 % confidence intervals on that basis. We tested if the proportion of sites segregating 
in each compartment is different from the proportion segregating at putatively neutral (here, synony-
mous) sites using a Fisher exact test, accounting for multiple tests.

We also calculated the fraction of other types of synonymous sites segregating in each sample size 
of interest (specifically, for T > A variants, and C > Ts not at methylated CpG sites).

Frequency of mutant alleles in bins of K sites
Within each annotation of interest, with an average mutation rate of u per site, we construct bins of 
k sites, such that k = U/u, where U is the mean mutation rate of a transition at methylated CpG site 
in that annotation class. The mean mutation rates are calculated for each mutation type within each 
annotation, as described in Section five above. We then count the fraction of bins in which no such 
mutations are observed. As an example, for T > A mutations, k is on the order of 100 (Figure 3—
figure supplement 2a).

Since each bin can be treated as being comparable to a single neutral methylated CpG site, bins 
that contain only neutral sites are expected to contain at least one mutation in 99 % of bins; this is 
indeed the case for bins of synonymous sites (Figure 3—figure supplement 2b).

When considering sites that contain a mixture of neutral and selected sites, bins of k sites are 
no longer as readily comparable to methylated CpG sites, however (Figure 3—figure supplement 
2c). If sites within a bin are under varying degrees of selection, then the mutation count reflects the 
harmonic mean of the strength of selection acting on individual sites. Specifically, under a determin-
istic model of mutation- selection balance, if qi is the allele frequency at the ith site in a bin of k sites:
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that is, qbin is a function of the harmonic mean of hs at the k sites.
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Forward simulations
We used a forward simulation framework initially described in Simons et al., 2014, and modified in 
Fuller et al., 2019. Briefly, we modeled evolution at a single non- recombining bi- allelic site, which 
undergoes mutations each generation at rate 2Neu in a panmictic diploid population of effective 
population size Ne. Each generation is formed by Wright- Fisher sampling with selection, where fitness 
is reduced by hs in heterozygotes and s in homozygotes for the T allele. We fixed the dominance coef-
ficient h as 0.5, and we chose one value of the selection coefficient s from a log- uniform prior ranging 
from 10–7 to 1 for each simulation (for autosomal mutations with fitness effects in heterozygotes, we 
only need to specify the compound parameter hs; reviewed in Fuller et al., 2019). Given a mutation 
rate and a demographic model that specifies Ne in each generation, we simulated the evolution of 
a site forward in time to determine whether the site is segregating in a sample of size n at present.

We used u = 1.2 x 10–7 per site per generation to model CpG> TpG mutation at a methylated CpG 
site. The simulation framework allows for recurrent mutations, which are expected to arise often at 
this mutation rate. We also allowed for TpG> CpG back mutations at the rate of 5 × 10–9 (calculated 
from de novo mutation data, as CpG> TpG mutations). To model T > A mutations, we used u = 1.2 x 
10–9 per site per generation, with a back mutation rate of 1.2 × 10–9 per site per generation; for C > 
T mutations not at methylated CpG sites, we used u = 0.9 x 10–8 per site per generation, with a back 
mutation rate of 5 × 10–9 per site per generation (Figure 1—figure supplement 1). We note that, 
since the mutation rate increases with paternal and maternal ages, an implicit assumption is that the 
distribution of parental ages in the trio data is representative of the parental ages over the evolu-
tionary history of exome samples.

For the demographic model, we relied on the Schiffels- Durbin model for population size changes 
in Europe over the past ~55,000 generations, preceded by a ~ 10 Ne generation burn- in period of 
neutral evolution at an initial population size Ne of 14,448 following ref (Simons et al., 2014). In the 
last generation, that is at present, we sampled n individuals from the simulated population, to match 
the size of the sample of interest.

We calculated the probability that a site with the fixed mutation rate u is segregating for a given 
value of hs (with s = 0 under neutrality) as the proportion of simulations with those parameters in 
which the site is segregating for different sample sizes at present.

In comparing the output of these simulations to data, we considered two scenarios where we may 
either undercount or overcount segregating CpG sites in the data relative to the simulations. First, 
because we conditioned on the human reference allele being a CpG in data, we did not count sites 
where the CpG is the ancestral but not the reference allele. To check how often this is expected to 
occur, we mimicked this scenario in simulations, sampling a single chromosome at the end of the 
simulation as the mock haploid reference genome. The proportion of simulations in which CpG is 
the ancestral but not the reference allele is ~0.1%, that is, approximately the heterozygosity levels in 
humans. The second case is that for a subset of the CpG> TpG variants observed at present, the CpG 
mutation is the reference allele but is not ancestral. To mimic this scenario in our simulations, we simu-
lated a site that starts as TpG (with a mutation rate of 5 × 10–9 to CpG, and a back mutation rate ~1.2 
x 10–7 to TpG) forward in time. Then, as above, we drew a single chromosome from the sample at 
the end of the simulation and set it as the reference. We obtained the proportion of simulations in 
which the C allele is the reference, starting from a TpG background. Reassuringly, this occurs in only 
0.0014 % of simulations. We note that there is in principle a third scenario to consider, in which ApG 
or GpG sites is ancestral and a C/T polymorphism is found in the sample at present as a result of two 
mutations, one to T and one to C. Given the various mutation rates involved (all less than 5 × 10–9), 
this double mutation case will be even less likely than the one in which TpG was ancestral. These rare 
scenarios should not have any substantive effect on our comparison of data to simulations, particularly 
when we only used such comparisons to examine qualitative trends.

Inferring the strength of selection in simulations
We proposed s from a prior distribution (with h fixed at 0.5) and inferred the posterior distribu-
tion of hs for a site with a T allele at 0 copies using a simple Approximate Bayesian Computation 
(ABC) approach. Specifically, we proposed s such that log10(s)~Uniform(–7,0); we simulated expected 
T allele counts under our model for 10 million proposals from the prior. We accepted the subset of 
the proposed values of s where simulations yield 0 copies of the T allele in the sample at present; this 
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set of s values is a sample from the posterior distribution of s given that the site is monomorphic. We 
calculated the Bayes odds of s > 10–3 as the ratio of the posterior odds of s > 10–3 and the prior odds 
of s > 10–3:

 

p
(

hs > 0.5 × 10−3 | copies of T = 0
)

/p
(

hs ≤ 0.5 × 10−3 | copies of T = 0
)

p
(
hs > 0.5 × 10−3

)
/p
(
hs ≤ 0.5 × 10−3

)
  

We similarly obtained posterior distributions of hs for sites that are segregating at 0, 1–10 copies, 
or >10 copies, in samples of different sizes, and for three different choices of priors on s, namely: s ~ 
Beta(α = 0.001, β = 0.1); log(s)~ N(–6,2); and Nes ~ Gamma(k = 0.23, θ = 425/0.23), with Ne = 10,000, 
based on the parameters inferred in Eyre- Walker et al., 2006. These are shown in Figure 4—figure 
supplement 1.

Calculating odds of being pathogenic in ClinVar and DDD
We downloaded de novo mutation data for ~35 K individuals with developmental disorders (Kaplanis 
et al., 2020). We also obtained a list of 380 ‘consensus’ genes from the same study; for these genes, 
there is evidence from multiple sources that LOF or missense mutations are causal in developmental 
disorders, such that they are used as part of diagnostic criteria in the clinic.

We downloaded ClinVar variants and excluded those that were not associated with at least one 
disease. We obtained the ‘CLNSIG’ annotation, which classifies each variant as benign or likely benign, 
pathogenic or likely pathogenic, or as having uncertain status or conflicting evidence.

We limited both DDD and ClinVar variants to non- synonymous C > T mutations at the subset of 
methylated CpG sites considered. Using variants in ClinVar and DDD at sites that are invariant in our 
sample of 780K, we calculated the odds that an invariant site is pathogenic (vs. benign) as follows:

 

p
(
pathogenic | copies of T = 0

)
/p
(
benign | copies of T = 0

)

p
(
pathogenic

)
/p
(
benign

)
  

where p(pathogenic) refers to the proportion of sites classified as such, and p(benign) is defined 
analogously.

In DDD, we considered mutations that fall in 380 consensus genes ‘pathogenic’, and mutations in 
all other genes benign; thus our ‘benign’ category likely contains some genes in which mutations are 
in fact pathogenic. In ClinVar, variants classified as ‘pathogenic’ or ‘likely pathogenic’ are assumed to 
be pathogenic; these are compared to two sets of benign variants, one limited strictly to variants clas-
sified in ClinVar as ‘benign’ or ‘likely benign’, and the other inclusive of variants for which the evidence 
is uncertain or inconclusive. The results are shown in Figure 4—figure supplement 2.

We note that since both ClinVar classifications and the identification of consensus genes in DDD rely 
in part on whether a site is segregating in datasets like ExAC, the degree of enrichment in Figure 4—
figure supplement 2 is hard to interpret.

Calculating the average length of the genealogy of a sample in which 
methylated CpGs are saturated
Methylated CpG sites experience mutations to T at the rate of 1.17 × 10–7 per generation; 99 % of 
such sites are segregating in a sample of 390 K individuals. Then the average length (L) of the gene-
alogy relating the 390 K individuals can be calculated from the probability under a Poisson distribution 
of at least one mutation at 99 % of sites as 1- exp(–1.17 × 10–7 x L) = 0.99, which gives L = 39 million 
generations.

Coalescent simulations to obtain the length of genealogy of large 
samples
We simulated the genealogy of a sample of varying sizes using msprime (Kelleher et  al., 2016) 
under different demographic histories, modifying the standard Schiffels- Durbin model (Schiffels and 
Durbin, 2014) as follows:

https://doi.org/10.7554/eLife.71513
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a. Demographic history for a sample of Utah residents with Northern and Western European ancestry 
(CEU) over 55,000 generations, with a recent Ne of 10 million for the past 50 generations, described 
above.

b. CEU demographic history for 55,000 generations with a recent Ne of 100 million for the past 50 
generations.

c. CEU demographic history for 55,000 generations with 4.5 % exponential growth for the past 196 
generations, with a current Ne of ~100 million.

d. Demographic history for a sample of Yoruba sampled in Nigeria (YRI) from Schiffels and Durbin, 
2014, modified with a recent Ne of 10 million for the last 50 generations.

e. A structured sample from two populations that derived from an ancestral population with YRI 
demographic history 2000 generations ago, with YRI and CEU demographic histories respectively 
since, and a recent Ne of 10 million for the last 50 generations in each.

In each case, we recorded the mean genealogy length over 20 iterations.
The code for implementing these different demographic models in msprime is available on the 

project github repository.
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Appendix 1

Appendix 1—table 1. List of data sources.

Annotation type Source

Exon coordinates
http:// ftp. ebi. ac. uk/ pub/ databases/ gencode/ Gencode_ human/ release_ 19/ 
gencode. v19. annotation. gtf. gz

Exon annotations

Variant Effect Predictor (VEP) v87 using Gencode v19
Ranks:https:// m. ensembl. org/ info/ genome/ variation/ prediction/ predicted_ data. 
html

WGS covered regions 
and exome target regions 
(gnomAD v2.1.1) https:// gnomad. broadinstitute. org/ downloads

Exome target regions
(UK Biobank)

https:// biobank. ndph. ox. ac. uk/ ukb/ ukb/ auxdata/ xgen_ plus_ spikein. GRCh38. bed 
(liftovered to hg19)

CpG methylation Testis GEO Accession GSM1127119 (https://www. ncbi. nlm. nih. gov/ geo/)

CpG methylation Ovary GEO Accession GSM1010980 (https://www. ncbi. nlm. nih. gov/ geo/)

CADD CADD v1.4 (https:// cadd. gs. washington. edu/ download)

B- statistic https:// doi. org/ 10. 1371/ journal. pgen. 1000471 (lifted over to hg19)

Functional site annotations
https:// ftp. ncbi. nlm. nih. gov/ refseq/ H_ sapiens/ mRNA_ Prot/ and https://www. 
prot2hg. com

De novo mutations
Decode: https:// doi. org/ 10. 1126/ science. aau1043 (Data S5)
DDD: https:// doi. org/ 10. 1038/ s41586- 020- 2832-5 (Supp. Table 1)

Polymorphism data

gnomAD: https:// gnomad. broadinstitute. org/ downloads
UK Biobank: https:// biobank. ctsu. ox. ac. uk/ showcase/ field. cgi? id= 23155
DiscovEHR: http://www. discovehrshare. com/ downloads
1,000 Genomes: ftp:// ftp. 1000genomes. ebi. ac. uk/ vol1/ ftp/ release/ 20130502/

ClinVar https:// ftp. ncbi. nlm. nih. gov/ pub/ clinvar/ vcf_ GRCh37/ clinvar. vcf. gz

https://doi.org/10.7554/eLife.71513
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz
https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html
https://gnomad.broadinstitute.org/downloads
https://biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/xgen_plus_spikein.GRCh38.bed
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cadd.gs.washington.edu/download
https://doi.org/10.1371/journal.pgen.1000471
https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/
https://www.prot2hg.com
https://www.prot2hg.com
https://doi.org/10.1126/science.aau1043
https://doi.org/10.1038/s41586-020-2832-5
https://gnomad.broadinstitute.org/downloads
https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=23155
http://www.discovehrshare.com/downloads
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar.vcf.gz
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