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Abstract: Cell identity is governed by gene expression, regulated by transcription factor (TF)
binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene
regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making.
We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated
on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions.
Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme
important in development, tumour progression and fibrosis. Predicted “neutral” (non-functional) TF
binding always accounted for the majority (50% to 95%) of candidate target genes from statistically
significant peaks and HOT regions had higher functional binding than most of the Snail and Twist
datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity
in development and disease. We identified new gene functions and network modules including
crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that
reshape Waddington’s epigenetic landscape during epithelial remodelling. Expression of orthologous
functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour
biology, with implications for precision medicine. Predicted invasion roles were validated using a
tractable cell model, supporting our approach.

Keywords: network biology; ChIP-seq; breast cancer; transcription factors; EMT; functional gene
network; mesoderm; Drosophila melanogaster; gene regulation; epithelial remodelling

1. Introduction

Transcriptional regulatory factors (TFs) govern gene expression, which is a crucial determinant of
phenotype. Mapping transcriptional regulatory networks is an attractive approach to understand the
molecular mechanisms underpinning both normal biology and disease [1–3]. TF action is controlled
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in multiple ways; including protein–protein interactions, DNA sequence affinity, 3D chromatin
conformation, post-translational modifications and the processes required for TF delivery to the
nucleus [3–5]. A complex interplay of mechanisms influences TF specificity across different biological
contexts and genome-scale assignment of TFs to individual genes is challenging [1,5,6].

TF binding sites may be determined using chromatin immunoprecipitation followed by sequencing
(ChIP-seq) or microarray (ChIP-chip). These and related methods (e.g., ChIP-exo, DamID) have revealed
a substantial proportion of statistically significant “neutral” TF binding, that has apparently no effect
on transcription from assigned target genes [1,7–9]. Genomic regions that bind large numbers of TFs,
termed Highly Occupied Target (HOT) regions [10], are enriched for disease SNPs and can function
as developmental enhancers [11,12]. However, a considerable proportion of individual TF binding
events at HOT regions may have little effect on gene expression and association with chromatin
accessibility suggests non-canonical regulatory function such as sequestration of TFs or in 3D genome
organization [13,14], as well as possible technical artefacts [15]. Apparent neutral binding events may
also have subtle functions; for example, in combinatorial context-specific regulation or in buffering
noise [2,16]. While recent integrative work enhances context-independent TF target prediction [17],
identification of bona fide functional TF target genes remains a major obstacle in understanding the
regulatory networks that control cell behaviour [2,5,9,18,19].

Genes regulated by an individual TF typically have overlapping expression patterns and coherent
biological function [20–22]. Indeed, gene regulatory networks are organised in a hierarchical,
modular structure and TFs frequently act upon multiple nodes of a given module [23,24]. Therefore,
we hypothesised that the network properties of functional TF targets are different to those of neutrally
bound sites. Network analysis can reveal biologically meaningful gene modules, including cross-talk
between canonical pathways [25–27] and so may enable elimination of neutrally bound candidate
TF targets derived from statistically significant ChIP-seq or ChIP-chip peaks. Network approaches
afford significant advantages for handling biological complexity, enable genome-scale analysis of gene
function [28,29], and are not restricted to predefined gene groupings used by standard functional
annotation tools (e.g., GSEA, DAVID) [25,30,31]. Clustering is frequently applied to define biological
modules [32,33]. However, pre-defined modules may miss condition-specific features; for example,
gene products may be absent in the biological condition(s) analysed but included in pre-defined
network modules. Hence, clusters derived from a whole-genome network may not accurately capture
biological interactions that occur in a particular context. Context-specific interactions are common,
for example the varied repertoire of biophysical interactions in different cell types or between cell states,
such as in the stages of the cell cycle [34]. We developed an algorithm (NetNC) with capability for
context-specific functional TF target discovery and applied this to study the epithelial to mesenchymal
transition (EMT) TFs Snail and Twist. EMT is a multi-staged morphogenetic programme fundamental
for normal embryonic development that contributes to tumour progression and fibrosis [35–38].
We predicted Snail and Twist functional targets, integrating these predictions with results from genetic
screens and breast cancer transcriptomes; in order to study epithelial remodelling in development
and disease.

2. Results and Discussion

2.1. A Comprehensive Drosophila melanogaster Functional Gene Network (DroFN)

Our approach requires a genome-scale map of gene function; for this purpose we developed the
DroFN network (11,432 genes; 787,825 interactions). DroFN models Drosophila melanogaster signalling
and metabolism, integrating the Gene Ontology (GO) [39] and STRING [40] databases, calibrated
against KEGG pathways using Bayesian Logistic Regression [41]. DroFN performed well on blind test
data (TEST-NET) compared with other D. melanogaster gene networks (DroID [42], GeneMania [43])
(Table S1, Figure S1). The positive class in TEST-NET was formed from gene pairs within the same
KEGG pathway and the negative class was derived from gene pairs with no evidence for a pathway
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interaction. The overlap between DroFN and the Drosophila proteome interaction map (DPiM [44])
was highly significant (Fisher Exact Test p < 10−308). DroFN and DPiM had 999 genes in common
and 37.8% (2175/5747) of DroFN interactions for these genes were also found in DPiM. The DroFN
false positive rate (0.043) was close to the prior expectation for functional gene interactions (0.044);
thus, a proportion of these apparent false positives might represent bona fide interactions missing
from the gold standard KEGG pathways. Overall, DroFN provides a comprehensive, high-quality
representation of pathway comembership in D. melanogaster.

2.2. Prediction of Functional Transcription Factor Targets

We present NetNC, an algorithm for genome-scale prediction of functional TF target genes
(Figure 1). NetNC built upon observations that TFs coordinately regulate multiple functionally related
targets [20–22] and was calibrated for discovery of biologically coherent genes in noisy data, according
to the structure of a gene network. This approach required optimisation for elimination of noise in
biological data, rather than for community detection. Statistical evaluation of network coherence for an
input gene list, including false discovery rate (FDR) estimation, is applied within NetNC as basis for
numerical thresholding. Therefore, NetNC can analyse single-subject datasets, which is an important
emerging area for precision medicine [45]; for example, to derive networks from genes with high or
low relative expression according to ranked expression values from a single sample. Application of
statistical and graph theoretic methods in NetNC for quantitative evaluation of relationships between
genes offers an alternative to the classical emphasis on individual genes in studying the relationship
between genotype and phenotype.
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Figure 1. Overview of the NetNC algorithm. A gene network and a gene list are required by NetNC 
as input (green). The current study analyses candidate TF targets; however, NetNC could be applied 
to any gene list and network. NetNC calculates a network score (blue) using Hypergeometric Mutual 
Clustering (HMC) for each gene pair in the input gene list according to connections in the network. 
Two analysis settings are (a) NetNC-FBT (red), where Gaussian Mixture Modelling identifies high-
scoring genes; (b) NetNC-FTI (orange), which produces coherent gene clusters by thresholding 
network scores according to False Discovery Rate followed by Iterative Minimum Cut. 

NetNC has two different analysis settings, NetNC-FTI (“Functional Target Identification”) and 
NetNC-FBT (“Functional Binding Target”), shown in Figure 1. Biological similarity between gene 
pairs is represented in NetNC using shared network neighbours, formalised by the Hypergeometric 
Mutual Clustering coefficient [46]; further analysis steps then enable prediction of functional TF 
targets (Figure 1). The current study reports results from NetNC with DroFN as a reference network, 
however NetNC may be used to analyse any network and node list. We chose the DroFN network 
because of its favourable performance in comparisons against DroID and GeneMania (Table S1, 
Figure S1). In order to assess NetNC performance and to calibrate algorithm parameters, we 
developed gold standard data using KEGG pathways and “Synthetic Neutral Target Genes” 
(SNTGs). Clustering coefficient (CC) values predicted by models trained on the synthetic benchmark 
data (methods Section 3.7) matched the CC values calculated directly on the nine TF_ALL datasets, 
which are described in methods Section 3.11. For 8/9 datasets the difference between predicted and 

Figure 1. Overview of the NetNC algorithm. A gene network and a gene list are required by NetNC
as input (green). The current study analyses candidate TF targets; however, NetNC could be applied
to any gene list and network. NetNC calculates a network score (blue) using Hypergeometric Mutual
Clustering (HMC) for each gene pair in the input gene list according to connections in the network.
Two analysis settings are (a) NetNC-FBT (red), where Gaussian Mixture Modelling identifies high-scoring
genes; (b) NetNC-FTI (orange), which produces coherent gene clusters by thresholding network scores
according to False Discovery Rate followed by Iterative Minimum Cut.

NetNC has two different analysis settings, NetNC-FTI (“Functional Target Identification”) and
NetNC-FBT (“Functional Binding Target”), shown in Figure 1. Biological similarity between gene
pairs is represented in NetNC using shared network neighbours, formalised by the Hypergeometric
Mutual Clustering coefficient [46]; further analysis steps then enable prediction of functional TF targets
(Figure 1). The current study reports results from NetNC with DroFN as a reference network, however
NetNC may be used to analyse any network and node list. We chose the DroFN network because of its
favourable performance in comparisons against DroID and GeneMania (Table S1, Figure S1). In order
to assess NetNC performance and to calibrate algorithm parameters, we developed gold standard data
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using KEGG pathways and “Synthetic Neutral Target Genes” (SNTGs). Clustering coefficient (CC)
values predicted by models trained on the synthetic benchmark data (methods Section 3.7) matched the
CC values calculated directly on the nine TF_ALL datasets, which are described in methods Section 3.11.
For 8/9 datasets the difference between predicted and actual CC was <0.1 (median CC difference = 0.051,
95% CI 0.007–0.136). This similarity in CC values for the synthetic and biologically-derived candidate
TF target genes supports the application of our benchmark in the context of network-based functional
TF target prediction. NetNC was robust to variation in input dataset size and %SNTGs, outperforming
the clustering algorithms HC-PIN [33] and MCL [32] (Figure 2, Table S2). In general, NetNC was more
stringent, with lower false positive rate (FPR) and higher Matthews Correlation Coefficient (MCC).
MCC provided a measure of overall performance in correctly separating functional targets from neutral
binding (SNTGs). FPR indicated the proportion of predicted functional targets that were SNTGs
and therefore classified incorrectly. At the highest %SNTG, NetNC-FTI overall performance (MCC)
was around 50% to 67% better than HC-PIN, and NetNC-FBT typically had lowest FPR. The task of
separating SNTGs from all of the genes that form pathways is subtly different to cluster identification;
thus neither HC-PIN nor MCL were developed for the precise application evaluated here. A number
of network-based analysis method such as HotNet2 [47] and PrixFixe [48] were developed for very
different application areas, for example requiring mutational frequency data, and so were not suitable
for application to functional TF target discovery. While NetNC-FTI performed best overall, NetNC-FBT
is parameter-free, did not require training and therefore may be more robust for analysis of diverse
input datasets and reference networks other than DroFN. NetNC’s performance advantages were most
prominent on data with ≥50% SNTGs (Figure 2) and predicted neutral binding for TF_ALL was ≥61%
(Figure 3, Table 1) or ≥50% using an alternative calibration method (Figure S2).
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Figure 2. Evaluation of NetNC and HC-PIN on blind test data. Performance values reflect discrimination
of KEGG pathway nodes from Synthetic Neutral Target Genes (STNGs), shown for NetNC-FTI (orange),
NetNC-FBT (red) and HC-PIN (green). False positive rate (FPR, top row) and Matthews Correlation
Coefficient (MCC, bottom row) values are given. Data shown represents analysis of TEST-CL_ALL,
which included subsets of three to eight pathways, shown in columns, and sixteen %STNG values
were analysed (5% to 80%, x-axis). NetNC performed best on the data examined with typically lower
false positive rate and higher MCC values. Error bars reflect 95% confidence intervals calculated from
quantiles of SNTG resamples. Also see Table S2.
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Estimation of total functional binding. Median values are shown for NetNC-lcFDR, calibrated against 
resampled genes. Error bars represent 95% CI calculated using quantiles of results for the resampled 
datasets, which gave predicted functional binding ranging from 5% (sna_2–3h lower CI) to 39% 
(twi_1–3h_hiConf upper CI) across TF_ALL. Calibration based on synthetic data resulted in slightly 
higher functional binding estimates, up to 50% (Figure S2). (B), (C), (D) Line type and colour indicates 
dataset identity (see key). Candidate target gene index values were normalised from zero to one, in 
order to enable comparison across the TF_ALL datasets. 

Given the performance advantage at ≥50% STNGs, NetNC appears the method of choice for 
analysis of genome-scale TF occupancy data. However, NetNC may also be applied to analyse 
various data-types, including in: identification of differentially expressed pathways and 
macromolecular complexes from functional genomics data; illuminating common biology among 
CRISPR screen hits in order to inform prioritisation of candidates for follow-up work [49]; and 
discovery of functional coherence in chromosome conformation capture data (4-C, 5-C), for example 
in enhancer regulatory relationships [50,51]. We also compared NetNC against the NEST algorithm 
[52] and against node degree (Table S3). The NEST output required filtering and did not provide a 
threshold for separation of predicted neutral binding from functional targets, therefore we compared 
Area Under the Receiver Operator Characteristic curve (AUC). There was a trend towards NetNC 
having better performance than the filtered NEST results; predictions that took either node degree or 
the unfiltered NEST output had substantially lower AUC values than NetNC. NetNC results were 
robust to subsampled input gene lists (Table S4). Gold standard datasets and DroFN are available 

Figure 3. Functional transcription factor binding and false discovery rate (FDR) profiles. (A) Estimation
of total functional binding. Median values are shown for NetNC-lcFDR, calibrated against resampled
genes. Error bars represent 95% CI calculated using quantiles of results for the resampled datasets,
which gave predicted functional binding ranging from 5% (sna_2–3h lower CI) to 39% (twi_1–3h_hiConf
upper CI) across TF_ALL. Calibration based on synthetic data resulted in slightly higher functional
binding estimates, up to 50% (Figure S2). (B–D) Line type and colour indicates dataset identity (see key).
Candidate target gene index values were normalised from zero to one, in order to enable comparison
across the TF_ALL datasets.

Given the performance advantage at ≥50% STNGs, NetNC appears the method of choice for
analysis of genome-scale TF occupancy data. However, NetNC may also be applied to analyse various
data-types, including in: identification of differentially expressed pathways and macromolecular
complexes from functional genomics data; illuminating common biology among CRISPR screen hits
in order to inform prioritisation of candidates for follow-up work [49]; and discovery of functional
coherence in chromosome conformation capture data (4-C, 5-C), for example in enhancer regulatory
relationships [50,51]. We also compared NetNC against the NEST algorithm [52] and against node
degree (Table S3). The NEST output required filtering and did not provide a threshold for separation
of predicted neutral binding from functional targets, therefore we compared Area Under the Receiver
Operator Characteristic curve (AUC). There was a trend towards NetNC having better performance
than the filtered NEST results; predictions that took either node degree or the unfiltered NEST output
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had substantially lower AUC values than NetNC. NetNC results were robust to subsampled input
gene lists (Table S4). Gold standard datasets and DroFN are available from the BioStudies database:
www.ebi.ac.uk/biostudies/studies/S-BSST460. NetNC is available from https://github.com/overton-
group/NetNC.

Table 1. Predicted functional binding for Snail, Twist and Highly Occupied Target (HOT) candidate
target genes. The developmental time periods correspond to the following developmental stages: 2–4 h
stages 4–9 (except 2–4 h_intersect datasets which were stages 5–7 [53]); 2–3 h stages 4–6; 1–3 h stages
2–6; 4–6 h stages 8–9 [53]; 0–12 h stages 1–15. Also see Figure S3.

Dataset Predicted Functional Targets ‡

Name Developmental
Time Period(s)

Total Candidate
Target Genes *

Candidate Target
Genes in DroFN NetNC-FTI NetNC-lcFDR

(95% CI)

twi_1–3h_hiConf 1–3 h 755 664 202 (30%) 37% (32–39%)

twi_2–6h_intersect 2–4 h and 4–6 h 743 615 241 (39%) 31% (25–33%)

twi_2–4h_intersect 2–4 h only (not 4–6 h) 1028 801 182 (23%) 19% (14–21%)

twi_4–6h_intersect 4–6 h only (not 2–4 h) 1026 818 126 (15%) 20% (14–22%)

HOT 0–12 h + 1648 677 174 (26%) 27% (19–28%)

twi_2–3h_union 2–3 h 2285 1848 424 (23%) 21% (17–22%)

sna_2–3h_union 2–3 h 1424 1158 226 (20%) 20% (15–21%)

twi_2–4h_Toll10b 2–4 h 1578 1238 279 (23%) 25% (20–25%)

sna_2–4h_Toll10b 2–4 h 1822 1488 211 (14%) 13% (5–14%)

* mapped to FlyBase; ‡ for candidate target genes in DroFN; + multiple time periods and 41 different transcription
factors (TFs).

2.3. Analysis of EMT Transcription Factors and Highly Occupied Target (HOT) Regions

We predicted functional target genes for the Snail and Twist TFs in developmental stages around
D. melanogaster gastrulation. Chromatin ImmunoPrecipitation (ChIP) microarray (ChIP-chip) or
sequencing (ChIP-seq) data from four different laboratories were analysed for overlapping time periods
in early embryogenesis [8,22,53,54]. Two of these datasets were from studies examining the regulatory
networks that control dorsoventral patterning, including mesoderm development [53,54]. Further
Snail and Twist binding data was available from a comparatively large investigation of patterning in
early fly development by the Berkley Drosophila Transcriptional Network Project, which analysed
21 TFs including dorsoventral factors [22]. We also obtained data from more recent work that compared
ChIP-seq to other technologies for genome-scale analysis of gene regulation, including identification
of new Twist-occupied regions and a consensus motif analysis [8]. An additional dataset examined
TF binding hotspots termed “Highly Occupied Target” (HOT) regions that were annotated by the
modENCODE project [10]. Overall, nine main datasets were studied (TF_ALL, Table 1; please see
Methods Section 3.11 for further details), the proportion of predicted functional TF binding for these
datasets ranged from 5% to 39% (Figure 3A, Table 1). At the time of writing, the above datasets remain
leading sources of information for Snail and Twist binding in early mesoderm development. NetNC
does not perform peak calling—but is intended for downstream analysis of candidate target genes
from statistically significant peaks, in order to enable separation of predicted functional targets from
neutral binding. In addition to the predictions from NetNC-FTI, we developed a complementary
approach to estimate the total functional binding in each TF_ALL dataset; this method was based on
local FDR (NetNC-lcFDR; Methods, Section 3.4).

Reassuringly, candidate TF targets from the most stringent peak calling approach
(twi_1–3h_hiConf [8]) had comparatively high predicted functional binding (PFB). Despite having
high PFB, twi_1–3h_hiConf had the smallest proportion of genes passing pFDR < 0.05 (Figure 3D).
High PFB was also found for targets bound during two consecutive developmental time periods
(twi_2–6h_intersect [53]), as well as for HOT regions despite their lack of known TF motifs [11,55,56]
(Figure 3A, Table 1). Indeed, twi_2–6h_intersect had significantly higher PFB (binomial p < 4.0 × 10−15)

www.ebi.ac.uk/biostudies/studies/S-BSST460
https://github.com/overton-group/NetNC
https://github.com/overton-group/NetNC
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than datasets from the same study that represented a single time period (twi_2–4h_intersect,
twi_4–6h_intersect) [53] (Figure 3). Therefore, PFB was enriched for regions occupied at >1 time period
or by multiple TFs and results supported the emerging picture of widespread combinatorial control
involving TF–TF interactions, cooperativity and TF redundancy [2,5,57–59]. PFB was similar for sites
derived from either the union or intersection of two Twist antibodies, although the NetNC-FTI method
found a higher number of functional targets for the intersection of antibodies (30.5% (116/334) vs. 23%
(424/1848)). Hits identified by multiple antibodies may be technically more robust due to reduced
off-target binding [53]. However, taking the union of candidate binding sites could eliminate false
negatives arising from epitope steric occlusion due to protein interactions. The similarity in PFB for
either the intersection or the union of Twist antibodies suggests that, despite expected higher technical
specificity, the intersection of candidate targets may not enrich for functional binding sites at the 1%
peak-calling FDR threshold applied in [22,53]. Fewer false negatives implies recovery of numerically
more functional TF targets, likely producing denser clusters in DroFN, which could facilitate functional
target detection by NetNC. Indeed, datasets representing the union of two antibodies ranked highly
in terms of both the total number and proportion of genes recovered at lcFDR < 0.05 or pFDR < 0.05
(Figure 3). Even datasets with low PFB had candidate target genes that passed stringent NetNC
FDR thresholds; for example, sna_2–3h_union, twi_2–3h_union respectively had the highest and
second-highest proportion of candidate targets at lcFDR < 0.05 (Figure 3B). We found no evidence for
benefit in using RNA polymerase binding data to guide allocation of peaks to candidate target genes
(datasets sna_2–3h_union, twi_2–3h_union). The twi_2–4h_Toll10b, sna_2–4h_Toll10b datasets had a
relatively low peak threshold (two-fold enrichment), which may have contributed to the low PFB for
sna_2–4h_Toll10b. We note that our analysis might systematically overestimate neutral binding because
some functional targets could be missed; for example, due to errors in assigning enhancer binding
to target genes and in bona fide regulation of genes that have few DroFN edges with other candidate
targets. Predicted neutral targets for twi_2-4_intersect, twi_2-6_intersect and twi_4-6_intersect were
overwhelmingly unchanged in Twist loss-of-function gene expression data from the same study [53]
(respectively 96–97%, 93–94%, 90–91%, and 93–95% were unchanged at the 4–5 h, 5–6 h, 6–7 h, and 7–8 h
time points; q < 0.05, 1.5 FC). We also note that NetNC-lcFDR and NetNC-FTI neutral binding estimates
showed good agreement (Table 1, Figure S3).

ChIP peak intensity putatively correlates with functional binding, although some weak binding
sites are functional [9,60]. The NetNC Node Functional Coherence Score (NFCS) and ChIP peak
enrichment scores were significantly, although weakly, correlated in 6/8 datasets (q < 0.05, HOT regions
not analysed; median rho = 0.11). Datasets with no significant correlation (twi_1–3h_hiConf,
twi_2–6h_intersect) derived from protocols that enriched for functional targets and had highest
PFB (Figure 3A). Indeed, the median peak score for twi_2–6h_intersect was significantly higher
than datasets taken from a single time period in same study (twi_2–4h_intersect, q < 5.0 × 10−56;
twi_4–6h_intersect, q < 4.8× 10−58). The number of orthologues for each dataset correlated strongly with
the number of predicted functional targets (r = 0.973). However, sna_2–3h_union and twi_2–3h_union
functional targets had significantly higher proportion of orthologues (>80%) than the next highest
dataset (twi_2–4h_intersect, 67%; respective binomial test q < 3.9× 10−4, q < 1.2× 10−11), which might be
explained by the use of RNA polymerase binding data in assigning candidate target genes. NetNC-FTI
predictions were enriched for human orthologues relative to respective candidate target genes in
DroFN (Table S5), for example predicted twi_2–3h_union functional targets had 82% (347/424) human
orthology vs. 61% (1135/1848) for the pool of candidate targets (binomial q < 8.7 × 10−19). Annotation
bias might contribute something to this significant enrichment, because conserved genes are more
deeply studied and may associated with a higher degree in the DroFN network; high degree is also
expected for conserved genes because of their functional importance [61]. We note that enrichment
for evolutionary conservation in Snail and Twist functional targets aligned with their regulation of
fundamental developmental processes [35,36].
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2.4. Genome-Scale Functional Transcription Factor Target Networks

NetNC results offered a global representation of tissue-specific regulation by Snail and Twist
in early D. melanogaster embryogenesis (Figure S4, Data File S1). Results revealed 11 biological
groupings common to ≥4/9 TF_ALL datasets (Table S6). We found Snail and Twist regulation of
multiple core cell processes that govern the global composition of the transcriptome and proteome,
including: transcription, chromatin organisation, RNA splicing, translation and protein turnover.
These predicted regulatory events may contribute to either repression or activation of individual genes
in the (presumptive) mesoderm. A “Developmental Regulation Cluster” (DRC) was identified in
every TF_ALL dataset and contained members of multiple key conserved morphogenetic pathways,
including notch and wnt. We examined predicted functional targets that were found in the DRC and
chromatin organisation clusters for multiple TF_ALL datasets (Figure 4A); Wingless had the highest
degree and strongest edges in the combined network; Notch and forkhead had joint second highest
frequency, represented in 8/9 NetNC-FTI results for TF_ALL. Many of the DRC genes were previously
reported to be important for mesoderm development [53,62] and their interactions suggest functional
relationships. For instance, genes that interact with T48 might contribute to fog-independent ventral
furrow formation [63]. The edge between Notch and wingless was identified most frequently in the
combined DRC network. Notch signalling modifiers identified in at least two public datasets [64]
overlapped significantly with the overall NetNC results for each TF_ALL dataset (q <0.05), including
members of the DRC, chromatin organisation and mediator complex clusters (Figure 4, Figure S4).
Activation of Notch can result in diverse, context-specific transcriptional outputs and the mechanisms
regulating this pleiotropy are not well understood [64–67]. Our results provided functional context
for many Notch modifiers and proposed signalling crosstalk mechanisms in cell fate decisions driven
by Snail and Twist, where regulation of modifiers may control the consequences of Notch activation.
Crosstalk between Notch and twist or snail was previously shown in multiple systems, for example
in adult myogenic progenitors [68] and hypoxia-induced EMT [69]. Consistent with previous
studies [64,65], our results predicted targeting of Notch transcriptional regulators, trafficking proteins,
post-translational modifiers, receptor recycling, and regulation of pathways that may attenuate or
modify Notch signalling. Clusters where multiple modifiers were identified may represent cell
meso-scale units important for Notch in the context of mesoderm development and EMT (Figure S4).
For example, the mediator complex and transcription initiation subcluster for twi_2–3h_union had
13 nodes, of which five were Notch modifiers including orthologues of MED7, MED8, and MED31
(Data File S1). These results highlight key control points regulated by Snail, Twist in fly mesoderm
specification; including wingless, forkhead, and Notch. Thirteen DRC genes were present in ≥7 TF_ALL
datasets (DRC-13, Table S7), and had established functions in the development of mesodermal
derivatives such as muscle, the nervous system and heart [66,68,70–74]. Supporting NetNC predictions,
in situ hybridisation for DRC-13 genes indicated expression in (presumptive) mesoderm at: Stages 4–6
(wg, en, twi, N, htl, how), stages 7–8 (rib, pyd, mbc, abd-A) and stages 9–10 (pnt) [75–77]. The remaining
two DRC-13 genes had no evidence for mesodermal expression (fkh) or no data available (jar). However,
fkh was essential for caudal visceral mesoderm development [78] and jar was expressed in midgut
mesoderm [79].
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occurrence. Notch modifiers (diamonds) were reported in at least two screens and genes with 
InParanoid human orthology are shown with black borders. NetNC-FTI clusters for the individual 
TF_ALL datasets are shown in Figure S4 and are available in Cytoscape format (Data File S1). (A) 
Developmental regulation cluster genes in at least five (yellow), up to nine (red) datasets. Edges 
shown were in ≥5/9 datasets, up to a maximum of 8/9 for N and wg. Thirteen genes (DRC_13) were 
present in ≥7/9 datasets, including wg (9/9) which had highest degree, N (8/9) and fkh (8/9). (B) Genes 
in chromatin organisation clusters from two (yellow) up to six (red) TF_ALL datasets. The three 
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Figure 4. Clusters of developmental regulation and chromatin organisation genes identified by NetNC
in multiple TF_ALL datasets. These clusters visualise the combined NetNC-FTI results across the
nine TF_ALL datasets; node fill colour, edge width and edge colour indicate frequency of occurrence.
Notch modifiers (diamonds) were reported in at least two screens and genes with InParanoid human
orthology are shown with black borders. NetNC-FTI clusters for the individual TF_ALL datasets
are shown in Figure S4 and are available in Cytoscape format (Data File S1). (A) Developmental
regulation cluster genes in at least five (yellow), up to nine (red) datasets. Edges shown were in
≥5/9 datasets, up to a maximum of 8/9 for N and wg. Thirteen genes (DRC_13) were present in
≥7/9 datasets, including wg (9/9) which had highest degree, N (8/9) and fkh (8/9). (B) Genes in chromatin
organisation clusters from two (yellow) up to six (red) TF_ALL datasets. The three clusters were
associated with trithorax-group (top), polycomb group (middle), and chromatin assembly factors
(bottom). These results predict components regulated by Snail and Twist in establishing the chromatin
blueprint for mesodermal lineages.

Networks produced by NetNC-FTI for each of the nine TF_ALL datasets frequently included
chromatin organisation clusters (Figure S4 and Table S6); recurrently identified nodes from these
clusters corresponded to trithorax-group (TrxG) and polycomb-group (PcG) genes which exert dynamic,
opposing gene-regulatory activity [80] (Figure 4B). The PcG cluster had Polycomb Repressive Complex 1
(PRC1) genes ph-d, ph-p, and Psc [81], the gene silencing factor Su(var)3–9 [82], as well as corto [83] and
lolal [84] (Figure 4B, Table S8). These results predict that corto and lolal function in concert with core
PRC1 members in D. melanogaster mesoderm development under the control of Twist and Snail. Indeed,
interaction with accessory proteins enables context-specific PRC1 function, and would merit further
study in Drosophila [80]. The TrxG cluster contained tara [85], trx [86], tna [87], mor [88], su(var)205 [89],
Bgb [90], and JIL-1 [91]. Tara and tna were predicted functional targets in 6/9 datasets, interact with
each other and with the brahma chromatin remodelling complex [87]. A third cluster was formed
from chromatin assembly factors, including the poorly characterised gene CG3708 that is orthologous
to the nucleosome assembly protein NAP1L1. PcG genes are crucial oncofetal regulators and the
focus of significant cancer drug development efforts [92,93]. These results align with reports that gene
silencing in EMT involved PcG [93,94] and with Snai1 recruitment of Polycomb Repressive Complex 2
members [94], supporting a model where EMT TFs control the expression of their own coregulators.
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Snail regulation of neural genes (Table S6, Figure S4) was consistent with its repression of
ectodermal (neural) genes in the prospective mesoderm [62,95,96]. Indeed, clusters relating to brain
development were found in six TF_ALL datasets. Additionally, Snail is important for neurogenesis in
fly and mammals [97,98]. Therefore, binding to neural functional modules might reflect potentiation
for rapid activation in combination with other transcription factors within neural developmental
trajectories [53,99]. NetNC results predicted novel Twist functions, for example in activation or
repression of mushroom body neuroblast proliferation factors Rx, sle, and tara. The mushroom body is
a prominent structure in the fly brain, important for olfactory learning and memory [100], identified in
analysis of six TF_ALL datasets (Table S6). Twist is typically a transcriptional activator [96] although
may contribute to Snail’s repressive activity [101]. Indeed, TWIST1 repressed Cadherin-1 in breast
cancers [102].

2.5. Breast Cancer Subtypes are Recovered by Unsupervised Clustering with Orthologous Snail and Twist
Functional Targets

We analysed the conserved molecular networks that orchestrate epithelial remodelling in
development and cancers by combining NetNC results for TF_ALL with the results of Notch screens
and breast cancer transcriptomes; data integration was based on identifier matching and orthology
mapping (methods). Predicted Snail and Twist targets included known cancer genes and also suggested
novel drivers (Figure S4, Table S5, Table S7 and Table S8). The fly genome is relatively tractable for
network studies, while data availability (e.g., ChIP-chip, ChIP-seq, genetic screens) is enhanced by
both considerable community resources and the relative ease of experimental manipulation [103].
Many developmentally patterned fly genes are orthologues of established cancer drivers. Breast
cancer intrinsic molecular subtypes with distinct clinical trajectories were extensively validated and
complement clinico-pathological parameters [104,105]. These subtypes are known as luminal-A,
luminal-B, HER2-overexpressing, normal-like, and basal-like. While more recent studies have classified
further subtypes, for example identifying ten groups [106], the five subtypes employed in our analysis
had been widely used, extensively validated, exhibited clear differences in prognosis, overlapped with
subgroups defined using standard clinical markers (ESR1, HER2), and aligned with distinct treatment
pathways [104,105]. The NetNC-FTI networks for all nine TF_ALL datasets overlapped with known
cancer pathways, including significant enrichment for Notch modifiers (q < 0.05). We hypothesised
that orthologous genes from NetNC clusters for Snail and Twist would stratify breast cancers by
intrinsic molecular subtype. Indeed, aberrant activation of Notch orthologues in breast cancers had
been demonstrated, and linked with EMT-like signalling, particularly for basal-like and claudin-low
subtypes [107–109]. One might expect the predicted Snail and Twist functional targets to be prognostic
in multiple different cancers due to the representation of established cancer cell processes, for example
DNA replication and repair as well as developmental regulation (Figure S4, Table S6).

We hypothesised that orthologous genes from Snail and Twist functional targets would stratify
breast cancers into clinically meaningful groups. Sixty-eight DroFN genes were predicted functional
targets in four or more of the nine TF_ALL datasets and also had human orthology. Fifty-seven
of these sixty-eight genes (ORTHO-57) were represented in integrated gene expression microarray
data for 2999 breast tumours (BrC_2999) [110]. Taking a threshold of at least four datasets reduced
the gene list size used for clustering in order to help prevent stratification effects arising from
autocorrelation [111]. Unsupervised clustering using ORTHO-57 and also NetNC results for individual
Twist, Snail datasets stratified BrC_2999 by intrinsic molecular subtype (Figure 5, Figure S5). Predicted
functional targets had significantly higher centroid values than equivalent resampled orthologues
from DroFN, demonstrating that the observed stratification of breast cancer subtypes was significantly
greater than expected by chance (Figure S5). Previous work suggested roles in tumour biology for
many ORTHO-57 genes; however, few were linked to an intrinsic breast cancer subtype. Searching
PubMed with the gene name(s) and “breast cancer” found little evidence of function in breast cancer
invasion for 13/57 genes (ADSS, CREG1, ATP5A1, SRSF2, SNRPD1, RNPS1, TEC, HIVEP3, SERTAD2,
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NACC2, GULP1, IRX4, and TRIB2). Heatmap features were annotated as dashed black boxes according
to the dendrogram structure and gene expression intensity (Figure 5). The datasets sna_2–4h_Toll10b,
twi_2–4h_Toll10b represented embryos formed entirely from mesodermal lineages [54] and, together,
had significantly greater proportion of basal-like breast cancer genes than the combined sna_2–3h_union,
twi_2–3h_union datasets (p < 8.0 × 10−4); consistent with EMT characteristics of basal-like breast
cancers [112]. As expected, Basal-like tumours were characterised by EN1 and NOTCH1 [107,108,113].
Notch signalling modulation is a promising area for cancer therapy [65] and Notch modifier orthologues
from our analysis could potentially inform development of companion diagnostics or combination
therapies targeting the notch pathway in basal-like breast cancers. Elevated ETV6 expression was also
a feature of basal-like cancers, where copy number amplifications and recurrent gene fusions were
previously reported [114,115]. The Luminal A subtype (feature_LumA) had similarities with luminal B
(feature_LumB2, ERBB3, MYO6) and normal-like (DOCK1, ERBB3, MYO6) tumours. High BMPR1B
expression was the major defining feature for luminal A tumours, aligning with oncogenic BMP
signalling in luminal epithelia [116]. However, BMP2 expression was highest in basal-like cancers,
where it may drive an EMT programme [117]. Several genes were highly expressed in both Luminal
B and ESR1 negative subtypes (feature_LumB1, feature_ERneg) including ECT2, SNRPD1, SRSF2,
CBX3; these genes might contribute to worse survival outcomes for luminal B relative to luminal A
cancers [104,118]. Indeed, analysis with the GEPIA2 resource [119] revealed that these four genes
stratified breast cancer patients by overall survival in an independent cohort from The Cancer Genome
Atlas [120], where high expression conferred worse prognosis (Figure S6). Feature_LoExp represented
genes with low detection rates across a mixture of subtypes, largely from a single study [121]. Key EMT
genes (SNAI2, TWIST1, and vQKI) were assigned to the NL centroid and had highest relative expression
in normal-like tumours (feature_NL, Figure 5). Feature_NL also included homeobox transcription
factors (HOXA9, MEIS2) and a secreted cell migration guidance gene (SLIT2). Genes with high
expression in both normal-like and basal-like cancers included QKI, which regulates circRNA formation
in EMT [122], and the FZD1 wnt/β-catenin receptor. Moreover, genes in feature_Bas and feature_NL
clustered together, identifying similarities between normal-like and basal-like subtypes. EMT may
confer stem-like cell properties [123–125] and our results were consistent with dedifferentiation or
arrested differentiation due to activation of an EMT-like programme in NL cancers. Previous work
found stem cell markers in NL cancers [118,126], indeed SNAI2 was important in both mammary and
breast cancer stem cells [127,128]. However, high stromal content in NL tumours [129] might also
contribute to an EMT-like gene expression signature. In summary, the predicted functional TF targets
from fly mesoderm development captured clinically relevant molecular features of breast cancers and
proposed candidate subtype-specific drivers of tumour progression.
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Figure 5. Predicted functional transcription factor targets capture human breast cancer biology.
The heatmap shows gene expression in 2999 primary breast tumours for ORTHO-57 genes (red = high,
white = mean, blue = low). The mosaic above the heatmap indicates intrinsic molecular subtype:
Luminal A (blue), basal-like (red), HER2-overexpressing (purple), luminal B (light blue), and normal-like
(green). Annotated heatmap features (black dashed lines) identified genes upregulated in one or more
intrinsic subtype; “Bas” (basal-like), “NL”(normal-like), “ERneg” (basal-like and HER2-overexpressing),
“LumB1”(luminal B), “LumB2”(luminal B), “LumA” (luminal A), and “LoExp” (low expression).
The table to the right of the heatmap indicates inclusion (grey) or absence (white) across TF_ALL;
the number of datasets where the gene was identified by NetNC-FTI (#D) and the percentage of present
calls across the 2999 tumours (%p) are shown. The LoExp feature corresponded overwhelmingly to
genes with low %p values and to samples from a single study [121]. Some genes were annotated to
more than one feature and reciprocal patterns of gene expression were found. For example, BMPR1B,
ERBB3, and MYO6 were strongly upregulated in feature LumA but downregulated in basal-like
and HER2-overexpressing cancers. Unexpectedly, feature NL (normal-like) had high expression of
canonical EMT drivers, including SNAI2, TWIST, and QKI. Some of the EMT genes in feature NL were
upregulated in many basal-like tumours, while genes in feature Bas (NOTCH, SERTAD2) had relatively
high expression in normal-like tumours. Also see Figure S5.

2.6. Integrating NetNC Functional Target Networks and Breast Cancer Transcriptome Profiling

Orthologous basal-like and normal-like genes were annotated onto NetNC-FTI networks, offering a
new perspective on the molecular circuits controlling these different subtypes (Figure S4). Interestingly,
key EMT genes were assigned to the normal-like subtype, which was also associated with splicing
factors, the ribosome, the proteasome and proteasome regulatory subunits. The sna_2–4h_Toll10b

“RNA degradation and transcriptional regulation” cluster was exclusively annotated to the basal-like
subtype, including HECA, which was upregulated in basal-like relative to normal-like tumours
(p < 3.3 × 10−23). NetNC also identified the fly orthologue of HECA, hdc, in both twi_2–4h_intersect and
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twi_4–6h_intersect, bound at non-contiguous sites. Hdc was a multifunctional Notch signalling modifier,
including in cell survival [130] and tracheal branching morphogenesis, activated by escargot [131].
Taken together, these data support participation of HECA in an EMT-like gene expression programme in
basal-like breast cancers. The SLC9A6 Na+/H+ antiporter was found in NetNC-FTI ion transport clusters
for sna_2–4h_Toll10b and twi_2–4h_Toll10b. Alterations in pH by Na+/H+ exchangers, particularly
SLC9A1, drive basal-like breast cancer progression and chemoresistance [132]. SLC9A6 was upregulated
in basal-like relative to normal-like tumours (p < 8.4 × 10−71) and might cause pH dysregulation as
part of an EMT-like programme in basal-like cancers.

Chromatin organisation clusters frequently associated with basal-like annotations. For example,
the twi_2–3h_union “chromatin organisation and transcriptional regulation” cluster had six basal-like
genes, including three Notch modifiers (ash1, tara, Bap111). These were orthologous to the ASH1L histone
methyltransferase that had copy number amplifications in basal-like tumours [133]; the SERTAD2
bromodomain interacting oncogene and E2F activator [134]; and SMARCE1, a core subunit of the
SWI/SNF chromatin remodelling complex that regulated ESR1, interacted with HIF1A signalling
and potentiated breast cancer metastasis [135–137]. Notch can promote EMT-like characteristics
and mediated hypoxia-induced invasion in multiple cell lines [69]. Consistent with these studies,
our work supported conserved function for SMARCE1 in EMT-like signalling, both in mesoderm
development and basal-like breast cancers, possibly downstream of NOTCH1 and through regulation
of SWI/SNF targeting. Indeed, SWI/SNF controlled chromatin switching in oral cancer EMT [138].
Taranis, orthologous to SERTAD2, also functioned to stabilise the expression of engrailed in regenerating
tissue [85]. The engrailed orthologue EN1 was the clearest single basal-like biomarker in the data
examined (Figure 5) and acted as a survival factor [113]. SERTAD2 and EN1 expression values
correlated in the basal-like tumours (n = 573, p < 2.0 × 10−9, rho = 0.25) but not across the entire cohort
(n = 2999, p = 0.44, rho = −0.03). Our results suggest that SERTAD2 could cooperate with EN1 in a
subset of basal-like cancers, where coordinated expression of these two genes may form part of a
gene expression programme controlled by EMT TFs. Regulation of EN1, SERTAD2 within an EMT
programme could harmonise previous results demonstrating key roles for both neural-specific and
EMT TFs in basal-like breast cancers [112,113]. Therefore, our results highlight chromatin organisation
factors downstream of Snail and Twist with orthologues that may control Notch output and breast
cancer progression through a chromatin remodelling mechanism. Indeed, NetNC results predicted
components of feedback loops where EMT TFs regulate chromatin organisation genes that, in turn,
may both reinforce and coordinate downstream stages of gene expression programmes for mesoderm
development and cancer progression. Stages of the EMT programme were described elsewhere,
reviewed in [35]; our results mapped networks that may control the remodelling of Waddington’s
landscape—identifying crosstalk between Snail, Twist, epigenetic modifiers and regulation of key
developmental pathways [139]. Dynamic interplay between successive cohorts of TFs and chromatin
organisation factors is an attractive potential mechanism to determine progress through and the
ordering of steps in (partial) EMTs, consistent with “metastable” intermediate stages.

2.7. Novel Twist and Snail Functional Targets Influence Invasion in a Breast Cancer Model of EMT

NetNC results predicted new gene functions in EMT and cell invasion. We investigated the
functional and instructive role of four genes in an established invasion model [140]; SNX29 (also known
as RUNDC2A), ATG3, IRX4, and UNK. These genes were selected for experimental follow-up from
the large pool of NetNC results for TF_ALL according to novelty in the context of cell invasion and
EMT. The orthologues of IRX4 and SNX29 were predicted to be regulated by both Snail and Twist,
the orthologue of ATG3 was predicted to be a functional target of Twist; and the orthologue of UNK was
predicted to be regulated by Snail. MCF7 cells were weakly invasive [141], thus the SNAI1-inducible
MCF7 cell line was well suited to study alteration in expression of the selected genes in terms of their
influence on invasion in conjunction with SNAI1 induction, knockdown or independently (Figure 6).
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Over-expression of IRX4 significantly increased invasion relative to controls in all conditions 
examined and IRX4 had high relative expression in a subset of basal-like breast cancers (Figures 5 
and 6). IRX4 was a homeobox transcription factor involved in cardiogenesis, marking a ventricular-
specific progenitor cell [142] and was also associated with prostate cancer risk [143]. SNX29 was 
poorly characterised, belonged to the sorting nexin protein family that function in endosomal sorting 
and signalling [144], and ectopic expression significantly reduced invasion in a SNAI1-dependent 
manner (Figure 6). Since we obtained these results, SNX29 downregulation was associated with 
metastasis and chemoresistance in ovarian carcinoma [145], consistent with SNX29 inhibition of 
invasion driven by Snail. ATG3 was an E2-like enzyme required for autophagy and mitochondrial 
homeostasis [146], ATG3 overexpression significantly increased MCF7 invasion. Knockdown of 
ATG3 reduced invasion in hepatocellular carcinoma [147]. UNK was a RING finger protein 
homologous to unkempt which bound mRNA, functioned in ubiquitination and was upregulated in 
gastrulation [148]. Others reported that UNK mRNA binding controlled neuronal morphology and 
induced spindle-like cell shape in fibroblasts [149,150]. UNK significantly increased MCF7 invasion 

Figure 6. Validation of candidate invasion genes in breast cancer cells. The fluorescence signal from
invasive MCF7 cells is shown. Induction of every gene examined significantly changed invasion in least
one of three conditions: (a) Ectopic expression; (b) ectopic expression and SNAI1 induction; (c) ectopic
expression with shRNA knockdown of SNAI1. SNX29 (blue) had reduced invasion compared with
the SNAI1 induction control (orange); UNK (purple) and IRX4 (dark red) had increased invasion
in all three conditions examined; ATG3 (green) had higher invasion at background levels of SNAI1
(without induction or knockdown). Mean values are shown, error bars indicate 95% CI, n = 3; * q < 0.05;
*** q < 5.0 × 10−4.

Over-expression of IRX4 significantly increased invasion relative to controls in all conditions
examined and IRX4 had high relative expression in a subset of basal-like breast cancers (Figures 5 and 6).
IRX4 was a homeobox transcription factor involved in cardiogenesis, marking a ventricular-specific
progenitor cell [142] and was also associated with prostate cancer risk [143]. SNX29 was poorly
characterised, belonged to the sorting nexin protein family that function in endosomal sorting and
signalling [144], and ectopic expression significantly reduced invasion in a SNAI1-dependent manner
(Figure 6). Since we obtained these results, SNX29 downregulation was associated with metastasis
and chemoresistance in ovarian carcinoma [145], consistent with SNX29 inhibition of invasion driven
by Snail. ATG3 was an E2-like enzyme required for autophagy and mitochondrial homeostasis [146],
ATG3 overexpression significantly increased MCF7 invasion. Knockdown of ATG3 reduced invasion in
hepatocellular carcinoma [147]. UNK was a RING finger protein homologous to unkempt which bound
mRNA, functioned in ubiquitination and was upregulated in gastrulation [148]. Others reported
that UNK mRNA binding controlled neuronal morphology and induced spindle-like cell shape in
fibroblasts [149,150]. UNK significantly increased MCF7 invasion both independently of and additively
with Snail; supporting a potential role in breast cancer progression. Indeed, UNK was overexpressed in
cancers relative to controls in ArrayExpress [151]. These in vitro confirmatory results both supported
the novel analysis approach and evidenced new function for the genes examined.

3. Methods

3.1. A Comprehensive D. Melanogaster Functional Gene Network (DroFN)

A high-confidence, comprehensive Drosophila melanogaster functional network (DroFN) was
developed using a previously described supervised learning approach in order to model global
gene function [152]. Genes were network nodes and their interactions represented associations
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within biological pathways. Gene interactions were quantified by functional interaction probabilities,
reflecting pathway co-membership, estimated by logistic regression of Bayesian probabilities from
STRING v8.0 scores [40] and Gene Ontology (GO) coannotations [39]; KEGG [41] pathways were taken
as gold standard.

Gene pair co-annotations were derived from the GO database of 25th March 2010. The GO
Biological Process (BP) and Cellular Component (CC) branches were read as a directed graph and
genes added as leaf terms. The deepest term in the GO tree was selected for each gene pair, and BP
was given precedence over CC. Training data were taken from KEGG v47, comprising 110 pathways
(TRAIN-NET). Positive gold standard gene pairs were derived from genes found within the same
pathway, the remaining gene pairs had no evidence for a pathway comembership interaction and were
therefore assigned to the negative class. Bayesian probabilities for STRING and GO coannotation
frequencies were derived from TRAIN-NET [152]. Selection of non-interacting “negative” pairs from
TRAIN-NET using the perl rand() function was used to generate training data with equal numbers of
positive and negative pairs (TRAIN-BAL). This approach to selection of negative pairs by random
sampling helps to avoid bias [153]. TRAIN-BAL which was input for logistic regression, to derive a
model of gene pair functional interaction probability (Equation (1)):

p(I|GO, STRING) =
1

1 +
(
e−6.75+1.03pGO+1.12pSTRING

) (1)

where: pGO is the Bayesian probability derived from Gene Ontology coannotation frequency, pSTRING
is the Bayesian probability derived from the STRING score frequency.

The above model was applied to TRAIN-NET and the resulting score distribution thresholded by
seeking a value that maximised the F-measure [154] and true positive rate (TPR), while also minimising
the false positive rate (FPR). The selected threshold value (p ≥ 0.779) was applied to functional
interaction probabilities for all possible gene pairs to generate the high-confidence network, DroFN.

For evaluation of the DroFN network, time separated test data (TEST-TS) were taken from
KEGG v62 on 13/6/12, consisting of 14 pathways that were not in TRAIN-NET. The pathways in
the time separated test dataset were not present in KEGG at the time when the training data was
downloaded, supporting stringent independent evaluation; indeed, this principle is employed in
community critical assessment work [155]. Gene pairs were eliminated from TEST-TS if either gene
was found in TRAIN-NET, removing 76 positive and 1294 negative gene pairs to generate the blind
test dataset TEST-NET (3481 pairs). Therefore, all gene pairs in TEST-NET corresponded to the most
stringent evaluation class, termed “C3” by Park and Marcotte [156]. The most up-to-date versions
of GeneMania (v2017-03-14) [43] and DroID (v2018_08) [42] downloaded April 2020 were assessed
against TEST-NET (Table S1, Figure S1).

Enrichment of DroFN edges in DPiM [44] was estimated as follows: A total of 999 genes were
found in both DroFN and the DroPIM network thresholded at FDR 0.05 (DroPIM_FDR). These 999 genes
had 5747 edges in DroPIM_FDR and 25,797 edges in DroFN, of which 2175 were common to both
networks. A 2 × 2 contingency table was constructed conditioning on the presence of edges for these
999 genes in the DroFN and DroPIM_FDR networks. The contingency table cell corresponding to
edges not found in DroFN or DroPIM was populated by the number of possible edges for the 999 genes
((n2
−n)/2), subtracting the values from the other cells. Therefore, the contingency table cell values

were: 2175, 3572, 23,622, 469,132. The enrichment p-value was calculated by Fisher’s Exact Test.

3.2. Network Neighbourhood Clustering (NetNC) Algorithm

NetNC identifies functionally coherent nodes in a subgraph S of functional gene network G
(an undirected graph), induced by some set of nodes of interest D; for example, candidate transcription
factor target genes assigned from analysis of ChIP-seq data. Intuitively, we consider the proportion
of common neighbours for nodes in S to define coherence; for example, nodes that share neighbours
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have greater coherence than nodes that do not share neighbours. The NetNC workflow is summarised
in Figure 1 and described in detail below. Two analysis approaches are available (a) node-centric,
parameter-free (NetNC-FBT) and (b) edge-centric, with two parameters (NetNC-FTI). Both approaches
begin by assigning a p-value to each edge (Sij) from Hypergeometric Mutual Clustering (HMC) [46],
described in points one and two, below.

1. A two times two contingency table is derived for each edge Sij by conditioning on the Boolean
connectivity of nodes in S to Si and Sj. Nodes Si and Sj are not counted in the contingency table.

2. Exact hypergeometric p-values [46] for enrichment of the nodes in S that have edges to the
nodes Si and Sj are calculated using Fisher’s Exact Test from the contingency table. Therefore,
a distribution of p-values (H1) is generated for all edges Sij.

3. The NetNC edge-centric analysis setting (NetNC-FTI) employs positive false discovery rate [157]
and an iterative minimum cut procedure [158] to derive clusters as follows:

(a) Subgraphs with the same number of nodes as S are resampled from G, application of steps
1 and 2 to these subgraphs generates an empirical null distribution of neighbourhood
clustering p-values (H0). This H0 accounts for the effect of the sample size and the structure
of G on the Sij hypergeometric p-values (pij). Each NetNC run on TF_ALL in this study
resampled 1000 subgraphs to derive H0.

(b) Each edge in S is associated with a positive false discovery rate (q) estimated over pij using
H1 and H0. The neighbourhood clustering subgraph C is induced by edges where the
associated q ≤ Q. Therefore, Q is the NetNC-FTI threshold for false discovery rate (q).

(c) An iterative minimum cut procedure [158] is applied to C until all components have
density greater than or equal to a threshold Z. Edge weights in this procedure are taken as
the negative log p-values from H1. Therefore, Z is the threshold for the density of network
components output by NetNC-FTI.

(d) As described below, thresholds Q and Z were chosen to optimise the performance of
NetNC on the “Functional Target Identification” task using training data taken from KEGG.
Connected components with less than three nodes are discarded, in line with common
definitions of a “cluster”. Remaining nodes are taken as functionally coherent.

4. The node-centric, parameter-free approach (NetNC-FBT) proceeds by calculating
degree-normalised node functional coherence scores (NFCS) from H1, then identifies statistical
modes of the NFCS distribution using Gaussian Mixture Modelling (GMM) [159].

(a) The node functional coherence score (NFCS) is calculated by summation of Sij p-values in
H1 (pij) for fixed Si, normalised by the Si degree value in S (di) (Equation (2)):

NFCSi = −
1
di

∑
j

log
(
pi j

)
(2)

(b) GMM is applied to identify structure in the NFCS distribution. Expectation-maximization
fits a mixture of Gaussians to the distribution using independent mean and standard
deviation parameters for each Gaussian [159,160]. Models with 1..9 Gaussians are fitted
and the final model selected using the Bayesian Information Criterion (BIC).

(c) Nodes in high-scoring statistical mode(s) are predicted to be “Functionally Bound Targets”
(FBTs) and retained. Firstly, any mode at NFCS < 0.05 is excluded because this typically
represents nodes with no edges in S (where NFCS = 0). A second step eliminates the lowest
scoring mode if >1 mode remains. Very rarely a unimodal model is returned, which may
be due to a large non-Gaussian peak at NFCS = 0 confounding model fitting; if necessary,
this is addressed by introducing a tiny Gaussian noise component (SD = 0.01) to the
NFCS = 0 nodes to produce NFCS_GN0. GMM is performed on NFCS_GN0 and nodes
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eliminated according to the above procedure on the resulting model. This procedure was
developed following manual inspection of results on training data from KEGG pathways
with “synthetic neutral target genes” (STNGs) as nodes resampled from G (TRAIN-CL).

Therefore, NetNC can be applied to predict functional coherence using either edge-centric or
node-centric analysis settings. The NetNC-FTI (edge-centric) approach automatically produces a
network, whereas the NetNC-FBT (node-centric) analysis does not output edges; therefore, to generate
networks from predicted NetNC-FBT nodes an edge pFDR threshold may be applied, pFDR ≤ 0.1 was
selected as the default value. The statistical approach to estimate pFDR and local FDR is described in
the sections below.

3.3. Estimating Positive False Discovery Rate for Hypergeometric Mutual Clustering p-Values

The following procedure is employed to estimate positive False Discovery Rate (pFDR) [157] in
the NetNC-FTI approach (edge-centric). Subgraphs with number of nodes identical to S are resampled
from G to derive a null distribution of HMC p-values (H0) (described above). The resampling
approach for pFDR calculation in NetNC-FTI controls for the structure of the network G, including
degree distribution, (because G is fixed) but does not control for the degree distribution or other
network properties of the subgraph S induced by the input nodelist (D). In scale free and hierarchical
networks, degree correlates with clustering coefficient; indeed, this property is typical of biological
networks [161]. Part of the rationale for NetNC assumes that differences between the properties of G
and S (for example; degree, clustering coefficient distributions) may enable identification of clusters
within S. Therefore, it would be undesirable to control for the degree distribution of S during the
resampling procedure for pFDR calculation because this would also partially control for clustering
coefficient. Indeed, clustering coefficient is a node-centric parameter that has similarity with the
edge-centric hypergeometric clustering coefficient (HMC) calculation [46] used in the NetNC algorithm
to analyse S. Hence, the resampling procedure does not model the degree distribution of S, although
the degree distribution of G is controlled for. Positive false discovery rate is estimated over the p-values
in H1 (pij) according to Storey [157] (Equation (3)):

pFDR = E
(V

R

)
, R > 0. (3)

R denotes hypotheses (edges) taken as significant, V are the number of false positive results (type I error).
NetNC steps through threshold values (pα) in pij estimating V using edges in H0 with p ≤ pα.

H0 represents Y resamples, therefore V is calculated at each step (Equation (4)):

V =
H0

Y
, p ≤ pα. (4)

The H1 p-value distribution is assumed to include both true positives and false positives (FP); H0 is
taken to be representative of the FP present in H1. This approach has been successfully applied to
peptide spectrum matching [162,163]. The value of R is estimated by (Equation (5)):

R =
∑

p∈H1

{
1 pi j ≤ pα

0 otherwise
. (5)

Additionally, there is a requirement for monotonicity (Equation (6)):

pFDRx+1 ≥ pFDRx , px < px+1. (6)

Equation (6) represents a conservative procedure to prevent inconsistent scaling of pFDR due to
sampling effects. For example consider the scaling of pFDR for pFDRx+1 at a pij value with additional
edges from H1 but where no more resampled edges (i.e., from H0) were observed in the interval
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between px and px+1; before application of Equation (6), the value of pFDRx+1 would be lower than
pFDRx. The approach also requires setting a maximum on estimated pFDR, considering that there
may be values of pα where R is less than V. We set the maximum to 1, which would correspond to a
prediction that all edges at pij are FPs. The assumption that H1 includes false positives is expected to
hold in the context of candidate transcription factor target genes and also generally across biomedical
data due to the stochastic nature of biological systems [164–167].

3.4. Estimating Local False Discovery Rate from Global False Discovery Rate

We developed an approach to estimate local false discovery rate (lcFDR) [167], being the probability
that an object at a threshold (pα) is a false positive (FP). Our approach takes global pFDR values as
basis for lcFDR estimation. In the context of NetNC analysis using the DroFN network, a FP is defined
as a gene (node) without a pathway comembership relationship to any other nodes in the nodelist
D. The most significant pFDR value (pFDRmin) from NetNC was determined for each node Si across
the edge set Sij. Therefore, pFDRmin is the pFDR value at which node Si would be included in a
thresholded network. We formulated lcFDR for the nodes with pFDRmin meeting a given pα (k) as
follows (Equation (7)):

lcFDRk =
((n× pFDRk)–((n–X) × pFDRl))

X
(7)

where l denotes the pFDRmin closest to and smaller than k, and where at least one node has pFDRmin

≡ pFDRl. Therefore, our approach can be conceptualised as operating on ordered pFDRmin values.
n indicates the nodes in D with pFDRmin values meeting threshold k. X represents the number of
nodes at pα ≡ k. The number of FPs for nodes with pα ≡ k (FPk) is estimated by subtracting the FP
for threshold l from the FP at threshold k. Thus, division of FPk by X gives local false discovery rate
bounded by k and l (Figure S7). If we define the difference between pFDRk and pFDRl (Equation (8)):

pFDR∆ = pFDRk − pFDRl (8)

Substituting pFDRk for (pFDRl + pFDR∆) into Equation (7) and then simplifying (Equation (9)):

lcFDRk = ((n × pFDR∆)/X) + pFDRl (9)

Equations (7) and (9) do not apply to the node(s) in D at the smallest possible value of pFDRmin because
pFDRl would be undefined; instead, the value of lcFDRk is calculated as the (global) pFDRmin value.
Indeed, global FDR and local FDR are equivalent when H1 consists of objects at a single pFDRmin value.
Taking the mean lcFDRk across D provided an estimate of neutral binding in the TF_ALL datasets
and was calibrated against mean lcFDR values from analysis of “faux” candidate targets resampled
from DroFN—where the number of resampled targets was identical to the number of candidate target
genes in the TF_ALL dataset analysed. For comparison, we also calibrated mean lcFDR for TF_ALL
against values from synthetic data with known %SNTGs (Figure S2). Estimation of the total proportion
of neutral binding in ChIP-chip or ChIP-seq data required lcFDR rather than (global) pFDR and,
for example, accounts for the shape of the H1 distribution. In the context of NetNC analysis of TF_ALL,
mean lcFDR may be interpreted as the probability that any candidate target gene is neutrally bound in
the dataset analysed; therefore, providing estimation of the total neutral binding proportion. Computer
code for calculation of lcFDR is provided within the NetNC distribution. Estimates of SNTGs by the
NetNC-FBT approach were not taken forward due to large 95% CI values (Figure S8).

3.5. Median Difference and Correlation between Estimates of Functional Binding from NetNC Functional
Target Identification and Local False Discovery Rate

Candidate target genes that passed NetNC-FTI thresholds were considered functional targets
(FTI_FT). The proportion of FTI_FT genes was compared to the proportion of functional binding
estimated by lcFDR (lcFDR_FB, Figure 3A). The modulus of the difference between FTI_FT and
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lcFDR_FB for each dataset gave a distribution of differences in predicted functional binding and the
median of this distribution was quoted in the text above.

3.6. NetNC Benchmarking Data

There are significant challenges in separating functional TF targets from neutral binding in
experimentally determined candidate TF target gene lists [1,2,5]. For example, it is not straightforward
to define neutral TF binding by examining target genes that do not change steady-state expression
upon knockout of the TF in question: TF knockout might not affect expression of bona fide TF
targets where an additional TF (or TFs) are partially redundant with the lost TF [2,5]; and loss of
TF binding may alter gene expression dynamics, such as a change in oscillation or stochasticity,
without changing steady-state gene expression measured across a large population of cells [164,165].
Gene expression changes following TF knockout can also incorrectly propose “functional” targets
that change expression via an indirect mechanism. For example, manipulation of gene expression
by knockout or overexpression causes systemic changes in gene expression, including regulation by
feedback loops with complicated logical outputs [6]. Therefore, we developed synthetic benchmark
data for the purpose of development and evaluation of NetNC—where biologically coherent genes
were taken to represent functional TF targets, and randomly sampled genes taken to represent neutral
binding. We consider the relevance of our synthetic benchmark data to the nine TF_ALL datasets in
the section below; firstly we outline the construction of the synthetic benchmark. Gold standard data
for NetNC benchmarking and parameterisation took pathways from KEGG to represent biologically
coherent gene groups (v62, downloaded 13/6/12) [41]. Training data were selected as seven pathways
(TRAIN-CL, 184 genes) and a further eight pathways were selected as a blind test dataset (TEST-CL,
186 genes) summarised in Table S9. For both TRAIN-CL and TEST-CL, pathways were selected to
be disjoint and to cover a range of different biological functions. However, pathways with shared
biology were present within each group; for example, TRAIN-CL included the pathways dme04330
“Notch signaling” and dme04914 “Progesterone-mediated oocyte maturation”, which are related by
notch involvement in oogenesis [168,169]. TEST-CL also included the related pathways dme04745
“Phototransduction” and dme00600 “Sphingolipid metabolism”, for example where ceramide kinase
regulates photoreceptor homeostasis [170–172].

Gold standard datasets were also developed in order to investigate the effect of dataset size
and noise on NetNC performance. The inclusion of noise as resampled network nodes into the
gold-standard data was taken to model neutral TF binding [1,7] and matches expectations on data taken
from biological systems in general [164,167]. Therefore, gold standard datasets were generated by
combining TRAIN-CL with nodes resampled from the network (G). The final proportion of resampled
nodes (Synthetic Neutral Target Genes, SNTGs) ranged from 5% through to 80% in 5% increments.
SNTGs were drawn by uniform resampling from the DroFN network using the rand() function in
perl excluding the genes in TRAIN-CL. Since we expected variability in the network proximity of
SNTGs to pathway nodes, 100 resampled datasets were generated per %SNTG increment. Additional
gold-standard datasets were generated by taking five subsets of TRAIN-CL, from three through seven
pathways. Resampling was applied for these datasets as described above to generate node lists
representing five pathway sets in TRAIN-CL by sixteen %SNTG levels by l00 repeats (TRAIN_CL_ALL,
8000 node lists). A similar procedure was applied to TEST-CL, taking from three through eight
pathways to generate data representing six pathway subsets by sixteen noise levels by 100 repeats
(TEST-CL_ALL, 9600 node lists). Data based on eight pathways (TEST-CL_8PW, 1600 node lists) were
used for calibration of lcFDR estimates. Preliminary training and testing against the MCL algorithm [32]
utilised a single subsample for 10%, 25%, 50%, and 75% SNTGs (TRAIN-CL-SR, TEST-CL-SR).

3.7. Comparison of Synthetic NetNC Benchmark to Experimentally Determined TF Binding Data

Transcription factors act to coordinately regulate multiple functionally related targets [20–22].
Accordingly, we reasoned that biological pathways could be taken as synthetic functional TF targets.
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We modelled neutral binding by random resampling across all of the genes represented in the DroFN
network, with the rationale that the creation and disappearance of neutral binding sites would
not be driven by evolutionary selection. In order to further explore the correspondence between
the synthetic benchmark and the TF binding datasets analysed (TF_ALL), we compared the global
clustering coefficient (CC) of the network induced in DroFN by the nine TF_ALL datasets and the
synthetic benchmark (TEST-CL_ALL). CC provides a single graph-theoretic measure of clustering
in each dataset, which is a key property used by NetNC to identify functional TF targets. Therefore,
CC is an appropriate measure to use for comparison of the synthetic and experimentally determined
datasets. Accordingly, we developed linear models using TEST-CL_ALL in order to predict the CC of
the biological TF_ALL data. Each dataset in TF_ALL had been assigned to a proportion of neutral
binding, matched to a %SNTG value in the synthetic benchmark (Figure S2). For model training,
we took the mean CC across the 100 repeats per %SNTG level for the six different dataset sizes in the
synthetic data (from three up to eight pathways in each). This generated six values of CC and six
values for the number of nodes (#nodes) in the dataset per %SNTG, which were used for the model:

CC = intercept + (coefficient × log(#nodes)). (10)

As an illustrative example, the sna_2–3h_union dataset was matched to the benchmark dataset
with 75% SNTGs. Therefore, a model was fitted using the TEST-CL_75% dataset with the six values
for the number of nodes (for each of the six sub-datasets from three to eight pathways) and their
six corresponding CC values. The model based on TEST-CL_75% was used to predict CC for
sna_2–3h_union; the predicted CC value was compared to the CC calculated for the graph induced
by sna_2–3h_union in DroFN. The fitted models therefore accounted for the expected influence of
dataset size on the CC of the induced subnetwork. The “glm” function in R was used for model fitting.
The regularised fit, determined by Akaike Information Criterion, was always superior for models
where the logarithm of the number of nodes was taken, rather than taking raw values. The calculated
CC values were for subnetworks induced in DroFN by the relevant TF binding dataset and included
disconnected nodes.

3.8. NetNC-FTI Parameter Optimisation

NetNC-FTI analysed the TRAIN-CL_ALL datasets across a range of FDR (Q) and density (Z)
threshold values. Performance was benchmarked on the Functional Target Identification (FTI) task
which assessed the recovery of biological pathways and exclusion of SNTGs. Matthews correlation
coefficient (MCC) was computed as a function of NetNC-FTI parameters (Q, Z). MCC is attractive
because it is captures predictive power in both the positive and negative classes. FTI was a binary
classification task for discrimination of pathway nodes from noise, therefore all pathway nodes
were taken as positives and SNTGs were negatives for the FTI MCC calculation. The NetNC-FTI
approach therefore tests discrimination of pathway nodes from SNTGs, which is particularly relevant
to identification of functionally coherent candidate TF targets from ChIP-chip or ChIP-seq peaks.

Parameter selection for NetNC-FTI analysed MCC values for the 100 SNTG resamples across
five pathway subsets by sixteen SNTG levels in TRAIN-CL_ALL over the Q, Z values examined,
respectively ranging from up to 10−7 to 0.8 and from up to 0.05 to 0.9. Data used for optimisation of
NetNC-FTI parameters (Q, Z) are available from the BioStudies database (www.ebi.ac.uk/biostudies/
studies/S-BSST460) and contour plots showing mean MCC across Q, Z values per %SNTG are provided
in Figure S9. A “SNTG specified” parameter set was developed for situations where an estimate of
the input data noise component is available, for example from the NetNC-FBT approach. In this
parameterisation, for each of the 16 datasets with different proportions of SNTG (5%.. 80%), MCC values
were normalized across the five pathway subsets of TRAIN-CL (from three through seven pathways),
by setting the maximum MCC value to 1 and scaling all other MCC values accordingly. The normalised
MCC values < 0.75 were set to zero and then a mean value was calculated for each %SNTG value

www.ebi.ac.uk/biostudies/studies/S-BSST460
www.ebi.ac.uk/biostudies/studies/S-BSST460
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across five pathway subsets by 100 resamples in TRAIN-CL_ALL (500 datasets per noise proportion).
This approach therefore only included parameter values corresponding to MCC performance ≥ 75%
of the maximum across the five TRAIN-CL pathway subsets. The high performing regions of these
“summary” contour plots sometimes had narrow projections or small fragments, which could lead
to parameter estimates that do not generalise well on unseen data. Therefore, parameter values
were selected as the point at the centre of the largest circle (in (Q, Z) space) completely contained
in a region where the normalised MCC value was ≥0.95. This procedure yielded a parameter map:
(SNTG Estimate)→ (Q, Z), given in Table S10. Parameters were also determined for analysis without
any prior information about the %SNTG in the input data. For this purpose, a contour plot was
produced to represent the proportion of datasets where NetNC-FTI performed better than 75% of
the maximum performance across TRAIN-CL_ALL for the FTI task in the Q, Z parameter space.
The maximum circle approach described above was applied to the contour plot in order to derive
“robust” parameter values (Q, Z), which were respectively 0.120, 0.306 (NetNC-FTI).

3.9. Performance on Blind Test Data

We compared NetNC-FTI and NetNC-FBT against leading methods, HC-PIN [33] and MCL [32]
on blind test data (Figure 2, Table S2). HC-PIN was obtained from the developers and is currently
available within the cytocluster Cytoscape app (https://apps.cytoscape.org/apps/cytocluster); MCL is
available from https://micans.org. Previous work that evaluated nine clustering algorithms, including
MCL, found that HC-PIN had strong performance in functional module identification and was
robust against false positives [33]; therefore HC-PIN was selected for extensive comparison against
NetNC. Input, output and performance summary files for HC-PIN on TEST-CL are available from the
BioStudies database (per datapoint, n = 100 for NetNC, n = 99 for HC-PIN). HC-PIN was run on the
weighted graphs induced in DroFN by TEST-CL with default parameters (lambda = 1.0, threshold
size = 3). MCL clusters in DroFN significantly enriched for query nodes from TEST-CL-SR were
identified by resampling to generate a null distribution [152]. Clusters with q < 0.05 were taken as
significant. MCL performance was optimised for the functional target identification (FTI) task over the
TRAIN-CL-SR datasets for MCL inflation values from 2 to 5 incrementing by 0.2. The best-performing
MCL inflation value overall was 3.6 (Table S11). Comparison to NEST [52] and baseline node degree
was performed on TEST-CL-SR (Table S3). NEST required expression values, therefore a uniform
expression value was added to the NEST input for all TEST-CL-SR nodes. The NEST output included
genes that were not present in the input data from TEST-CL-SR and these additional genes were
removed in order to produce the “Filtered NEST” dataset. The NEST scores or node degree were
analysed separately against the labelling of TEST-CL-SR nodes as KEGG pathways (positives) or
SNTGs (negatives), enabling calculation of area under the Receiver Operator Characteristic curve for
each method examined (Table S3).

3.10. Subsampling of Transcription Factor Binding Datasets and Statistical Testing

Robustness of NetNC performance was studied by taking 95%, 80%, and 50% resamples from
nine public transcription factor binding datasets, summarised above and described previously in
detail [8,10,22,53,54]. A hundred subsamples of each of these datasets were taken at rates of 95%,
80%, and 50%, thereby producing a total of 2700 datasets (TF_SAMPL). NetNC-FTI results across
TF_SAMPL were used as input for calculation of median and 95% confidence intervals for the edge
and gene overlap per subsampling rate for each transcription factor dataset analysed. The NetNC
resampling parameter (Y) was set at 100, the default value. The edge overlap was calculated as the
proportion of edges returned by NetNC-FTI for the subsampled dataset that were also present in
NetNC-FTI results for the full dataset (i.e., at 100%). Therefore, nine values for median overlap and
95% CI were produced per subsampling rate for both edge and gene overlap, corresponding to the
nine transcription factor binding datasets (Table S4). The average (median) value of these nine median

https://apps.cytoscape.org/apps/cytocluster
https://micans.org
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overlap values, and of the 95% CI, was calculated per subsampling rate; these average values are
quoted in Supplementary Materials.

False discovery rate (FDR) correction of p-values was applied where appropriate and is indicated in
this manuscript by the commonly used notation “q” Benjamini–Hochberg correction was applied [173]
unless otherwise specified in the text. Calculation of pFDR and local FDR values by NetNC is described
in the sections above.

3.11. Transcription Factor Binding and Notch Modifier Datasets

We analysed public Chromatin Immunoprecipitation (ChIP) data for the transcription factors twist
and snail in early Drosophila melanogaster embryos. These datasets were derived using ChIP followed
by microarray (ChIP-chip) [22,53,54] and ChIP followed by solexa pyrosequencing (ChIP-seq) [8].
Additionally “highly occupied target” regions, reflecting multiple and complex transcription factor
occupancy profiles, were obtained from ModEncode [10]. Nine datasets were analysed in total
(TF_ALL) and are summarised below.

The “union” datasets (WT embryos 2–3 h, mostly late stage four or early stage five) combined
ChIP-chip peaks significant at 1% FDR for two different antibodies targeted at the same TF and these
were assigned to the closest transcribed gene according to RNA Polymerase II binding data [22].
Additionally, where the closest transcribed gene was absent from the DroFN network then the
nearest gene was included if it was contained in DroFN. This approach generated the datasets
sna_2–3h_union (1158 genes) and twi_2–3h_union (1848 genes). The union of peaks derived from
two separate antibodies maximised sensitivity and may have reduced potential false negatives
arising from epitope steric occlusion. For the “Toll10b” datasets, significant peaks with at least two-fold
enrichment for Twist or Snail binding were taken from ChIP-chip data on Toll10b mutant embryos (2–4h),
which had constitutively activated Toll receptor [54,174]; mapping to DroFN generated the datasets
twi_2–4h_Toll10b (1238 genes), sna_2–4h_Toll10b (1488 genes). Toll10b embryos had high expression of
Snail and Twist, which drove all cells to mesodermal fate trajectories [54]. The two-fold enrichment
threshold selected for this study reflects “weak” binding, although was expected to include functional
TF targets [9]. Therefore, the candidate target genes for twi_2–4h_Toll10b and sna_2–4h_Toll10b were
expected to contain a significant proportion of false positives. The Highly Occupied Target dataset
included 38,562 regions, of which 1855 had complexity score ≥8 and had been mapped to 1648 FlyBase
genes according to the nearest transcription start site [10]; 677 of these genes were matched to a DroFN
node (HOT). The “HighConf” data took Twist ChIP-seq binding peaks in WT embryos (1–3 h) that had
been reported to be “high confidence” assignments; high confidence filtering was based on overlap
with ChIP-chip regions, identification by two peak-calling algorithms and calibration against peak
intensities for known Twist targets, corresponding to 832 genes [8] of which 755 were mapped to
FlyBase. A total of 664 of these genes were found in DroFN (twi_1–3h_hiConf) and represented the
most stringent approach to peak calling of all the nine TF_ALL datasets. The intersection of ChIP-chip
binding for two different Twist antibodies in WT embryos spanning two time periods (2–4h and 4–6h)
identified a total of 1842 target genes [53] of which 1444 mapped to DroFN (Intersect_ALL). Subsets
of Intersect_ALL identified regions bound only at 2–4 h (twi_2–4h_intersect, 801 genes), or only at
4–6 h (twi_4–6h_intersect, 818 genes), or “continuously bound” regions identified at both 2–4 and
4–6 h (twi_2–6h_intersect, 615 genes). Assigned gene targets may belong to more than one subset of
Intersect_ALL because time-restricted binding was assessed for putative enhancer regions prior to gene
mapping; overlap of the Intersect_ALL subsets ranged between 30.2% and 55.4%. The Intersect_ALL
datasets therefore enabled assessment of functional enhancer binding according to occupancy at
differing time intervals and also to examine the effect of intersecting ChIPs for two different antibodies
upon the proportion of predicted functional targets recovered.

Seven of the nine TF_ALL datasets included developmental time periods encompassing stage
four (syncytial blastoderm, 80–130 min), cellularisation of the blastoderm (stage five, 130–170 min)
and initiation of gastrulation (stage 6, 170–180 min) [8,22,53,54,175]. The datasets twi_2–4h_intersect,



Cancers 2020, 12, 2823 23 of 34

sna_2–4h_intersect, twi_2–4h_Toll10b and sna_2–4h_Toll10b additionally included initial germ band
elongation (stage seven, 180–190 min) [53,54,175]; twi_2–4h_Toll10b and sna_2–4h_Toll10b may have
also included stages eight (190–220 min) and nine (220–260 min) [54,175]. Twi_2–4h_intersect and
sna_2–4h_intersect were tightly staged between stages 5–7 [53]. Additional to stages four, five and
six, twi_1–3h_hiConf may have included the latter part of stage two (preblastoderm, 25–65 min) and
stage three (pole bud formation, 65–80 min) [175]. The twi_4–6h_intersect dataset was restricted to
stages eight to nine which included germ band elongation and segmentation of neuroblasts [53,175].
Therefore, there were differences in the biological material used across TF_ALL.

The Notch signalling modifiers analysed in this study were selected based on identification in at
least two of the screens reported in [64]. Networks were annotated using GO and FlyBase [31,39,176,177].

3.12. Breast Cancer Transcriptome Datasets and Molecular Subtypes

Primary breast tumour gene expression data were downloaded from NCBI GEO (GSE12276,
GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, GSE17907, GSE2990, GSE7390, GSE11121, GSE16716,
GSE2034, GSE1456, GSE6532, GSE3494, and GSE68892 (formerly geral-00143 from caBIG)). All datasets
were Affymetrix U133A/plus 2 chips and were summarised with Ensembl alternative CDF [178].
RMA normalization [179] and ComBat batch correction [180] were applied to remove dataset-specific
bias as previously described [110,181]. Intrinsic molecular subtypes were assigned based upon the
highest correlation to Sorlie centroids [104], applied to each dataset separately. Centred average linkage
clustering was performed using the Cluster and TreeView programs [182]. Centroids were calculated
for each gene based upon the mean expression across each of the Sorlie intrinsic subtypes [104].
These expression values were squared to consider up and down regulated genes in a single analysis.
Orthology to the DroFN network was defined using Inparanoid [183]. Differential expression was
calculated by t-test comparing normalised (unsquared) expression values in normal-like and basal-like
tumours with false discovery rate correction [173].

3.13. Invasion Assays for Validation of Genes Selected from NetNC Results

MCF-7 Tet-On cells were purchased from Clontech and maintained as previously described [184].
To analyse the ability of transfected MCF7 breast cancer cells to degrade and invade surrounding
extracellular matrix, we performed an invasion assay using the CytoSelect™ 24-Well Cell Adhesion
Assay kit. This transwell invasion assay allows the cells to invade through a matrigel barrier utilising
basement membrane-coated inserts according to the manufacturer’s protocol. Briefly, MCF7 cells
transfected with the constructs (Doxycycline-inducible SNAI1 cDNA or SNAI1 shRNA with or without
candidate gene cDNA) were suspended in serum-free medium. SNAI1 cDNA or SNAI1 shRNA were
cloned in our doxycyline-inducible pGoldiLox plasmid (pGoldilox-Tet-ON for cDNA and pGolidlox-tTS
for shRNA expression) using validated shRNAs against SNAI1 (NM_005985 at position 150 of the
transcript [184]). pGoldilox has been used previously to induce and knock down the expression of
Ets genes [185]. Following overnight incubation, the cells were seeded at 3.0 × 105 cells/well in the
upper chamber and incubated with medium containing serum with or without doxycyline in the
lower chamber for 48 h. Concurrently, 106 cells were treated in the same manner and grown in a
six well plate to confirm over-expression and knockdown. mRNA was extracted from these cells
and quantitative real-time PCR (RT-qPCR) was performed as previously described [186]; please see
Data File S2 for gene primers. The knockdown efficiency for Snai1 was >81% (5.4-fold knockdown),
Snai1 induction produced 2.0-fold overexpression. The transwell invasion assay evaluated the ratio of
CyQuant dye signal at 480/520 nm in a plate reader of cells from the two wells and therefore controlled
for potential proliferation effects associated with ectopic expression. We used empty vector (mCherry)
and scrambled shRNA as controls and to control for the non-specific signal. At least three experimental
replicates were performed for each reading.
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3.14. Data and Software Availability

NetNC is available at https://github.com/overton-group/NetNC. The following data are available
from the European Bioinformatics Institute BioStudies database (https://www.ebi.ac.uk/biostudies/
studies/S-BSST460): The DroFN network; all gold standard datasets; HCPIN input, output and
performance summary files. The all-vs-all connectivity matrix before application of the DroFN edge
weight threshold is available upon request.

4. Conclusions

We developed and validated the novel NetNC algorithm for identification of biologically coherent
transcription factor (TF) target genes, and a comprehensive D. melanogaster functional gene network
(DroFN). While NetNC was developed for functional TF target discovery, the approach may be
widely useful for recovery of functionally coherent nodes in noisy data, for example in analysis of
differential gene expression or CRISPR screen data. The network-based statistical framework in
NetNC is applicable to single sample datasets and includes a novel method for estimation of local
false discovery rate (FDR) from global FDR values. Analysis of Snail, Twist and modENCODE highly
occupied target (HOT) regions found from 50% to 95% of candidate target genes were neutrally bound
across the nine datasets analysed (TF_ALL). Correlation of the predicted neutral binding proportion
with experimental and analytical factors across TF_ALL suggested consideration of strategies to
enrich for functional TF targets. Datasets representing > 1 time period or that were derived from
multiple TFs (HOT regions) had a relatively high proportion of functional binding, aligning with the
emerging picture of widespread combinatorial control involving TF–TF interactions, cooperativity and
TF redundancy [2,5,57–59]. The NetNC functional target networks provide a map of genome-scale
regulation by Snail and Twist in early D. melanogaster embryogenesis. Each of the networks for the
nine TF_ALL datasets was significantly enriched in Notch signalling modifiers, and we predicted
genes involved in signalling cross-talk—where Snail and Twist may act to control the pleiotropic
consequences of Notch activation. Eleven biological functions were annotated to at least four of the
nine TF_ALL networks, including developmental regulation, chromatin organisation and mushroom
body development. Predicted Snail and Twist regulation of chromatin structure, including PRC1 core
components and other gene silencing factors, provides evidence for the action of EMT TFs in controlling
the expression of their own coregulators. Unsupervised clustering with orthologues of the NetNC
functional targets stratified 2999 breast cancer transcriptomes into the five intrinsic subtypes [104];
demonstrating that the regulation by Snail and Twist in fly mesoderm development captures important
features of breast cancer biology. We identified breast cancer subtype-specific genes and network
modules. Results in the basal-like subtype suggest a role for HECA in an EMT-like gene expression
programme, and predict orthologous Snail, Twist functional targets that may control the consequences
of Notch activation through chromatin remodelling. Our integrative analysis revealed subtype-specific
genes that may prove useful for precision medicine. For example, potentially informing development
of companion diagnostics or combination therapies targeting the notch pathway in basal-like tumours.
We validated predicted roles in invasion for four NetNC functional targets in a breast cancer model,
supporting our approach.
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Agreement between NetNC-lcFDR and NetNC-FTI estimates of functional binding, Figure S4: Networks of
functionally coherent candidate target genes identified by NetNC-FTI, Figure S5: Unsupervised clustering of 2999
primary breast cancers with NetNC results for individual Snail and Twist datasets, Figure S6: Survival analysis of
four genes associated with Luminal B but not Luminal A subtypes, Figure S7: Estimation of local False Discovery
Rate from positive False Discovery Rate, Figure S8: Proportion of neutral binding predicted by NetNC-FBT and
NetNC-lcFDR, Figure S9: NetNC Functional Target Identification Performance on TRAIN-CL_ALL, Table S1:
Evaluation of DroFN on Time Separated Blind Test Data, Table S2: Results from preliminary study of NetNC and
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