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Abstract: A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA
at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL) depending on cellular
rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform
is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA
sequences are species specific and are present at high copy number in viable cells, these nucleic
acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of
E. coli at 10 fM concentration was detected against a total RNA background using a conceptually
simple approach based on electromechanical signal transduction, whereby a step change reduction in
ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide
nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration
detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection
of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of
similar length. In addition, no false positive responses were obtained with control RNA and no false
negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this
detection scheme shows promise for integration into portable, low-cost systems for rapid detection of
pathogenic microbes in food, water and body fluids.
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1. Introduction

Reportedly, 95% of deaths in the developing world are due to lack of access to proper diagnostics
for infectious diseases [1]. Even in the developed world, most infectious disease diagnosis is
accomplished by culturing methods that typically take days. Common pathogens, whose very
presence at any level in body fluid is abnormal and is an indicator of infection include Group A
Streptococcus, Neisseria gonorrhoeae (gonorrhea), Chlamydia trachomatis (chlamydia), influenza virus, and
Bordetella pertussis (whooping cough) among many others. In recent years, demand for a binary
(qualitative) test also has become apparent for the rapid screening of food for pathogens such
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as shiga-toxin producing Escherichia coli (E. coli) or Listeria monocytogenes. Clearly, there is strong
motivation for development of sensitive, robust and portable molecular diagnostic devices that
can give rapid yes/no results for the presence of important bacterial pathogens in food, water and
body fluids.

Essentially, there exist two options for pathogen diagnosis by molecular means: immunoassays
and detection of pathogen-specific nucleic acid (NA). However, many of the existing platforms for
NA detection at sufficiently low concentration require amplification by PCR, fluorescent or enzymatic
labels, and expensive instrumentation [2,3]. It is believed that the most successful of these detection
modalities for point-of-care (POC) applications ultimately will be NA amplification-free, will entail
electrical/electrochemical signal transduction, and will be compatible with a microfluidic device
platform [4–6]. Although fluorescence-based schemes improve sensitivity, the integration of optics
into a device generally adds bulk, complexity, and cost. Also, although appealing alternatives to PCR
for NA amplification have emerged, including some isothermal schemes that can be accomplished
in minutes, they all, like PCR, require expensive reagents (e.g., primers) and reactions that must be
controlled [7–11]. Thus, avoidance of NA amplification remains an important objective.

Recently, NA amplification-free electrochemical methods were demonstrated for the detection of
specific RNA sequences in urine [12] and saliva [13]. In saliva, an impressive 0.4 fM limit of detection
(LOD) was claimed using a detection scheme based on a novel oligonucleotide hairpin capture probe
immobilized on an electrode with a horseradish peroxidase-labeled antibody for amperometric signal
amplification [14]. Other clever, low LOD, NA amplification-free approaches for electrochemical DNA
detection have been reported, including a conductometric method utilizing Au nanoparticles and
silver development [15] and another scheme involving silver deposition with the signal arising from an
anodic stripping current of the deposited silver [16]. These electrochemical methods for NA sequence
detection are attractive for the avoidance of NA amplification, compatibility with microfluidic devices,
and amenability to implementation in a compact array format. Yet, ideally, this same or better LOD
would be achieved without the use of reporter probes and special reagents other than the capture
probe oligonucleotides.

When detection schemes requiring NA amplification, optics, and reagents other than the capture
probe are removed from consideration, the number of reported technologies is very small and includes
cantilever-based methods and nanotube- or nanowire-based approaches [17] The cantilever-based
approach entails the detection of a decrease in resonance frequency of vibration upon target NA
binding to probes on the cantilever. The resonance frequency typically is monitored using a laser [18],
and the system is subject to problems arising from viscous damping in liquids [17], but a recent
millimeter-scale design circumvents this issue and resonance frequency changes are monitored with
an impedance analyzer [19]. Nanotube/nanowire-based detection schemes have their foundation
in the field effect transistor concept, and NA binding is sensed by a change in current-voltage (i–V)
response. A recent report describes a polypyrrole nanowire system that provides an impressive LOD
of 0.1 fM [20]. As these and other technologies are tested further in molecular diagnostic applications,
clearer advantages and disadvantages, likely application-specific, will emerge; however, it would be
desirable to transduce the probe to target NA hybridization with simpler, low-cost electronics.

Due to species-specific sequence variations, 16S ribosomal RNA (or the corresponding gene)
commonly has been used as a pathogen-specific target in numerous detection schemes [21–23]; and
we hypothesized that our previously described, low-cost device for sequence-specific nucleic acid
detection may provide a platform for detection of pathogenic bacterial 16S rRNA. Our technology
is based on the observed step change reduction in ionic current through a pore when blocked by a
peptide nucleic acid-functionalized bead that has acquired electrophoretic mobility upon target NA
hybridization [24]. We demonstrated the operation of our device for PCR-free detection of longer DNA
targets (1613 bases) with limit of detection (LOD) down to 10 fM in the presence of a high concentration
of non-specific DNA to simulate the genomic background of a realistic biological application [25].
Since 16S rRNA is close in size (~1500 bases) to that detected in our previous work and it has high
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copy number (6700–71,000 per viable cell) [26], it may prove possible to detect 16S rRNA at a level
corresponding to a low viable bacterial cell concentration (colony forming units/mL (CFU/mL)) with
our device.

Following a study by Stender et al. [27], we targeted a specific sequence within the 16S rRNA
of an easily cultured non-pathogenic laboratory E. coli strain, (ATCC 25922). This strain offers an
attractive test system for our technology since its genome has been sequenced and studied thoroughly.
Also, an optimal probe sequence complementary to its 16S rRNA has been extensively tested by other
groups [28–30]. As reported here, we studied the performance of our detector for species-specific
E. coli 16S rRNA by extracting the total RNA from viable cells and investigating the detection limit of
the sensor in terms of 16S rRNA concentration. Control experiments were conducted with the total
RNA from two other bacterial species, Pseudomonas fluorescens (ATCC 13525) and Pseudomonas putida
(ATCC 12633), whose 16S rRNA genes are closely related to those of the target E. coli bacterium. For
a positive control, we used a 15-base universal PNA probe sequence, which is complementary to all
three bacterial 16S rRNAs and has been used by other groups for detecting E. coli [31].

2. Materials and Methods

2.1. Chemical and Biological Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as received
unless otherwise noted. Carboxylic acid-functionalized, 3-µm-diameter polystyrene microspheres were
purchased from Polysciences, Inc. (Warrington, PA, USA). Peptide nucleic acid (PNA) was purchased
from Bio-Synthesis, Inc. (Lewisville, TX, USA) as HPLC-purified and lyophilized powders. The PNA
probe for detecting E. coli 16S rRNA was NH2-(CH2CH2O)12- CTC CTT CCC TCA TTT CA [27]. For
positive control experiments, the universal PNA probe NH2-(CH2CH2O)12- CTG CCT CCC GTA
GGA was used [31]. Methoxy-polyethylene glycol amine, CH3O-(CH2CH2O)3-NH2 (MW 350) was
obtained from Nanocs, Inc. (New York, NY, USA). Pre-pulled borosilicate micropipettes with 2 µm
inside tip diameter were purchased from World Precision Instruments, Inc. (Sarasota, FL, USA).
All bacteria: E. coli (ATCC 25922), Pseudomonas fluorescens (ATCC 13525), and Pseudomonas putida
(ATCC 12633), and culture medium ingredients, soy agar and nutrient agar were purchased from
ATCC, Inc. (Manassas, VA, USA). PureLink RNA Mini Kit, PureLink DNase Set, RNase free water,
RNase-free pipette tips, RNase-away reagent and RNase-free microfuge tubes were purchased from
Invitrogen Life Technologies (Grand Island, NY, USA).

2.2. Probe Coupling to Microspheres

Fifty microliters of 3-µm-diameter, carboxylic acid-functionalized polystyrene microspheres at
1.69 ˆ 109/mL were washed three times with MES buffer (60 mM, 2-(N-morpholino)ethanesulfonic
acid, pH 5.5). The diameter (determined by dynamic light scattering (DLS)) and zeta potential
(described below) of the beads before conjugation was measured with a Zetasizer Nano-ZS (Malvern
Instruments) and found to be 3720 nm and ´87 mV, respectively. After each wash, the microspheres
were centrifuged at 14,000 rpm for 15 min; after the third wash and centrifugation, the beads were
resuspended in 0.6 mL coupling buffer (100 mM, 1-[3-(dimethylamine)propyl]-3-ethylcarbodiimide
(EDC) in MES buffer) and incubated at 50 ˝C for 45 min. Ten nanomoles of amine-functionalized
PNA detection probes were added to the coupling buffer and incubated with the beads at 50 ˝C for
two hours. mPEG-amine (100 mM) was added to the reaction mixture and incubated at 50 ˝C for
one hour to cap most remaining carboxylic acid groups on the bead surfaces so as to reduce aggregation
and nonspecific binding of nucleic acids to the beads. Subsequently, 100 mM ethanolamine was added
to the bead suspension to cap residual carboxyl groups, and the preparation was incubated at 50 ˝C
for an additional hour. The same procedure was repeated for coupling the universal PNA probes
to the beads. Finally, the beads were washed four times in 0.4 ˆ SSC buffer (60 mM NaCl, 6 mM
trisodium citrate, 0.1% Triton X-100, pH 8) and stored in PBS buffer (137 mM NaCl, 2.7 mM KCl,
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10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) at 4 ˝C. Prior to hybridization, the zeta potentials of
PNA-bead batches were measured in 1 mM KCl, 10 mM HEPES (pH 7.0) to confirm the near charge
neutrality of the beads. The zeta potential after four washes for beads conjugated with E. coli-specific
PNA and capped with PEG and ethanolamine was ´3.75 mV, and ´3.27 mV for beads coupled with
the universal PNA probes. At this low zeta potential, the beads tended to aggregate despite the PEG
capping, which prevented meaningful diameter measurement by dynamic light scattering.

2.3. Sample Preparation

2.3.1. Cell Culturing and Counting

Tryptic soy medium (15 g Tryptic Soy Broth in 500 mL water, pH 6.8) was prepared for culturing
E. coli (ATCC 25922). Nutrient broth medium (4 g Nutrient Broth in 500 mL DI water, pH 6.8) was
prepared for culturing Pseudomonas putida (ATCC 12633) and Pseudomonas fluorescens (ATCC 13525).
After preparing the ATCC culture media, they were steam sterilized at 121 ˝C for 20 min. Bacterial
culture plates for colony counting were prepared according to standard procedures (ATCC).

A starter culture was prepared by mixing lyophilized E. coli (ATCC 25922) with 1 mL culture
tryptic soy medium, diluting that into 10 mL culture medium followed by incubation at 37 ˝C and
240 rpm until log phase was reached. Then, 1 mL of this starter culture was diluted into 250 mL culture
medium and incubated at 37 ˝C and 240 rpm until log phase. To assess log phase, the optical density
was measured at a wavelength of 600 nm (Genesys, Thermo Scientific) at 30 min intervals, and the
culture was removed from the incubator at an optical density of 0.4–0.6. Similar preparative steps were
repeated for the two control Pseudomonas strains in nutrient broth medium at 26 ˝C and 240 rpm. Log
phase cells from the three different bacterial cultures were diluted serially into sterile saline, plated and
incubated overnight in preparation for later colony counts. Simultaneously, 1 mL of original culture
was prepared for RNA extraction by centrifugation at 25,000ˆ g for 15 min at 4 ˝C. After removing the
supernatant, cell pellets were immediately processed for total RNA extraction as described below.

2.3.2. RNA Extraction and Purification

Total RNA extraction and purification was performed using the PureLink RNA Mini Kit and
PureLink DNase Set, and the total extracted RNA was eluted in 100 µL RNase-free purified water.
After RNA extraction from all bacterial dilutions, 5 µL of total RNA from each sample was measured
for concentration and integrity using an Agilent 2100 Bioanalyzer.

2.4. Hybridization

Prior to hybridization, 2.1 ˆ 106 PNA-beads were washed twice with wash buffer (10 mM CAPSO,
0.2% (v/v) Tween 20, pH 10) and once with hybridization buffer (10 mM NaCl, 25 mM Tris-HCl,
pH 7.0). Total RNA extracts from target and control bacteria were diluted serially to achieve the desired
concentrations for device testing. RNA samples then were hybridized with PNA-beads functionalized
with the target probe and the universal probe separately in 100 µL reaction volumes of hybridization
buffer at 68 ˝C overnight.

2.5. Detection System and Electrical Measurements

After hybridization, samples were washed twice in wash buffer and resuspended in 100 µL of
1 mM KCl, 10 mM HEPES pH 7.0 prior to introduction into the device. Total RNA extracted from
target and control bacteria incubated with the target PNA-beads and universal PNA-beads were
injected into the large opening of the micropipette and a potential of 25 V was applied to direct the
beads having bound NA to the micropipette tip, which serves at the “pore” in this incarnation of
our system (Figure 1). More details of the detector, which consists of a micropipette connecting two
buffer reservoirs, whose tip is drawn to an internal diameter of 2 µm, can be found in an earlier
publication [24]. A Pt electrode is placed in each chamber to enable imposition of a constant potential
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difference. Current data was gathered on a PC (PCI 6052, National Instruments) with LabView software
(National Instruments). The gathered data were processed using a MATLAB implementation of a
fifth-order Butterworth 100 Hz lowpass filter. The device, including the micropipette and electrodes,
was mounted on the stage of a Leica DMIRB inverted microscope for simultaneous microscopic
observation. Device mounting and sample measurement required at least 10 min each.
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Figure 1. (a) Apparatus schematic. A micropipette drawn to a 2 µm diameter bridges two chambers
filled with electrolyte. Negatively charged 3 µm diameter beads placed in the micropipette are
electrophoretically drawn to the narrow end of the micropipette by an electric field applied by electrodes
in each of the chambers; (b) When a bead reaches the narrow end of the micropipette, it blocks
the current, which is measured by the electrodes; (c) Schematic of target 16S rRNA (10 pM, red)
hybridized to PNA-bead conjugates in the drawn micropipette under applied electric field in the
presence of nonspecifically bound, background RNA (blue): (i) open pore state as bead with bound
RNA approaches the micropipette tip (“pore”); and (ii) blockade of the pore by the PNA-bead conjugate
with bound RNA (blocked pore state). Nonspecifically bound RNA (blue) detaches from the bead in
the strong electric field at the micropipette tip, while the specifically bound RNA remains, leading to a
persistent blocked pore state; (d) Measured ionic current through the pore: (i) open pore current; and
(ii) current blockade by PNA-bead conjugates with bound RNA.
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3. Results

The experiments were designed to investigate the accurate detection of the target E. coli and
establish the limit of detection (LOD) of our detector in terms of the concentration of 16S rRNA.
To assess the LOD of our system, extracted total RNA samples from approximately 109 CFU/mL were
quantified and inspected using an Agilent Bioanalyzer 2100, serially diluted, and then introduced into
our detector.

The Bioanalyzer was used to measure RNA concentration, size, and integrity number using an
on-chip gel electrophoresis technique. The concentration of total RNA extracted from the target E. coli
was 364 ng/µL. The percentage of 16S rRNA was 18.2% of total RNA, thus the concentration of 16S
rRNA was 66.3 ng/µL. Using an approximate molecular weight of 1500-base ssRNA (480,909 g/mol),
the molar concentration of 16S rRNA was calculated to be 137.8 nM. The Bioanalyzer measured the
size of 16S rRNA to be 1494–1924 nucleotides. Also, it is essential to check the quality of the extracted
RNA since RNA molecules are susceptible to degradation by RNAse present in the environment. The
Bioanalyzer instrument measures the RNA integrity number based on evaluation of the 23S and 16S
ribosomal ratios using an RNA integrity number algorithm. The integrity number of extracted total
RNA from target E. coli was 9.2 (10 represents highest integrity and 0 represents lowest integrity),
indicating that the extracted RNA was largely intact.

The same measurements and calculations were repeated for RNA extracted from the two
control bacteria. For the control, Pseudomonas putida (P. putida, ATCC 12633), the total extracted
RNA concentration was 449 ng/µL and the percentage of 16S rRNA was 25.7%, giving a 16S rRNA
concentration of 115.4 ng/µL. The size of the 16S rRNA was reported to be 1260–1914 nucleotides, and
the RNA “integrity number” was 10. The calculated 16S rRNA concentration was 239 nM.

The total extracted RNA concentration of the other control, Pseudomonas fluorescens (P. fluorescens,
ATCC 13525), was 261 ng/µL and the percentage of 16S rRNA was 24.5%, giving a 16S rRNA
concentration of 64 ng/µL. The 16S rRNA size was 1294–1984 nucleotides and the RNA “integrity
number” was 10. We calculated the 16S rRNA concentration to be 133 nM. The data reported by the
gel chip electrophoresis analysis of extracted total RNA from target and control bacteria is shown in
the Supplementary Materials (Figure S1).

Following the RNA analysis, extracted total RNA samples were serially diluted, based on their
16S rRNA concentrations, to concentrations between 10 pM and 1 fM by dilution factors of 10. Diluted
samples were then each hybridized separately with 2.1 ˆ 106 target and universal PNA-beads in high
stringency conditions to reduce non-specific binding and enhance selectivity. These high stringency
hybridization conditions were carefully chosen based on a study by Li et al. in which the same
conditions were used for quantitative Dechlorosoma suillum rRNA detection by PNA molecular beacon
assays [32]. After hybridization, in separate experiments, samples at each dilution were injected into
the micropipette sensor apparatus and the electrical conductance measurements were performed.
Table 1 summarizes the results of the experiments from 10 pM to 1 fM.

Target 16S rRNA at concentrations ranging from 10 pM to 100 fM was detected by the sensor with
no false negatives. Also, only a few transient blocks (<60 s) were observed in control experiments
that otherwise gave no false positives. Figure 1 shows a schematic of the pore blockage and the
corresponding current measurements for target 16S rRNA at 10 pM, while Figure 2 shows a schematic
of the transient pore blockage occasionally observed with non-complementary control 16S rRNA
and the corresponding current trace for P. putida rRNA at 10 pM. Notably, target 16S rRNA at
10 fM was also detected in three separate experiments with no false negatives, and the controls
incurred no false positives at this concentration. However, in the case of 1 fM target 16S rRNA, no
detection events were observed with the detection probe or the universal probe. We concluded that
the concentration detection limit of our sensor for 16S rRNA is ~10 fM. This limit is consistent with
previous work with our sensor where we found a 10 fM LOD for 1613-base ssDNA, which corresponds
to ~100–1000 CFU/mL (depending on the growth rate of the bacterium at the time of harvest and the
corresponding rRNA levels within the cells) [24,25]. In the experiments reported here, we observed
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fewer transient blockades compared to previous studies with ssDNA detection. This might be due to
the use of higher stringency hybridization conditions in this work. The high stringency hybridization
conditions reduce the non-specific binding of non-complementary RNA to PNA-beads, therefore
fewer beads with non-specifically bound RNA were able to reach the sensing zone and block the
pore temporarily.

Future work will focus on 16S rRNA detection against a more realistic background of microbial
nucleic acid. Work is also underway to scale-down the detector to the nano-regime in pursuit of still
lower limits of detection.
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Figure 2. (a) Schematic of control (noncomplementary) Pseudomonas putida rRNA (blue, 10 pM)
nonspecifically bound to bead-PNA probe conjugates under applied electric field in the drawn
micropipette tip: (i) open pore state as bead with bound RNA approaches the micropipette
tip (“pore”); (ii) transient blockade of the pore by the PNA-bead conjugate with nonspecifically
bound noncomplementary RNA (blocked pore state); and (iii) relief of the pore blockade after the
noncomplementary RNA of control bacteria was detached from the bead in the strong electric field
at the micropipette tip and the bead is carried away from the pore by the opposing electroosmotic
flow (red arrows) (open pore state). (b) Measured ionic current through the pore: (i) open pore current;
(ii) current blockade by PNA-bead conjugates with bound RNA; and (iii) relief of the current blockade
after the nonspecifically bound RNA was detached from the bead and the lack of tightly bound,
complementary 16S rRNA resulted in the bead conjugate being swept from the pore by the opposing
electroosmotic flow.
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Table 1. Summary of experiment (Expt.) results for target and control samples based on their 16S rRNA
concentration. A positive result was defined as a blockade that persisted for >60 s and that was
reversible by reversing the field polarity. A negative result was defined as the observation of either no
block or a transient block (<60 s).

Target E. coli
(ATCC 25922)

Control Bacterium 1
(ATCC 12633)

Control Bacterium 2
(ATCC 13525)

[16S rRNA] Detection? Positive
control? Detection? Positive

control? Detection? Positive
control?

10 pM
Expt. 1 Yes Yes No * Yes No Yes

10 pM
Expt. 2 Yes Yes % No Yes No Yes

10 pM
Expt. 3 Yes Yes No Yes No * Yes

1 pM Yes Yes No Yes No Yes

100 fM Yes Yes No Yes No Yes

10 fM
Expt. 1 Yes Yes No Yes No Yes

10 fM
Expt. 2 Yes Yes No Yes No Yes

10 fM
Expt. 3 Yes Yes No Yes No Yes

1 fM No No No No No No

* Transient block observed; % Transient block observed, followed by permanent block.

4. Conclusions

Our previously described, PCR-free, optics-free detector for nucleic acids of specific sequence
was used successfully to detect E. coli (ATCC 25922) 16S rRNA at 10 fM, which corresponds to
~100–1000 CFU/mL. The detector, as configured for E. coli 16S rRNA, did not give a signal in
the presence of total RNA extracted from two control bacterial species, Pseudomonas fluorescens
(ATCC 13525) and Pseudomonas putida (ATCC 12633) whose 16S rRNA genes are closely related
to the target E. coli. To fully realize its potential, the detector would be integrated into a device
containing a sample preparation frontend including cell lysis (e.g., chemical, electrical, mechanical or
thermal), and DNA separation (e.g., silica-based surface affinity, electrostatic interaction, nanoporous
membrane filtration, and functionalized microparticles), which have been shown to accomplish these
tasks together in typically 10–15 min [33]. Although separation of RNA generally is more problematic
due to its short lifetime and the ubiquitous presence of RNases, rapid methods (<15 min) to accomplish
this task have also been reported [34]. Integrated together with these components, our detector shows
promise for a low-cost, portable system for bacterial pathogen detection.

Supplementary Materials: Bioanalyzer (Figure S-1) and blockade current data (Section A) are presented in the
Supplementary Materials.
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