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Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member

of the family Asteraceae. In the animal or cellular models of several ailments,

including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and

immune system diseases, taraxasterol has been shown to have significant

preventive and therapeutic effects. This review aims to evaluate the current

state of research and provide an overview of the possible applications of

taraxasterol in various diseases. The reported phytochemical properties and

pharmacological actions of taraxasterol, including anti-inflammatory, anti-

oxidative, and anti-carcinogenic properties, and its potential molecular

mechanisms in developing these diseases are highlighted. Finally, we further

explored whether taraxasterol has protective effects on neuronal death in

neurodegenerative diseases. In addition, more animal and clinical studies are

also required on the metabolism, bioavailability, and safety of taraxasterol to

support its applications in pharmaceuticals and medicine.
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Introduction

Dandelion is a member of the family Asteraceae and is widely distributed in the

warmer temperate zones of the Northern Hemisphere (Gonzalez-Castejon et al., 2012).

The plant dandelion has long been used as a medicinal herb. Its therapeutic role was

mentioned as early as the 10th and 11th centuries by Arabian physicians for the

treatment of liver and spleen diseases (Faber, 1958). In traditional Chinese medicine,

dandelion is used in combination with other herbs to treat hepatitis and enhance the

immune response to upper respiratory tract infections, bronchitis, and pneumonia

(Sweeney et al., 2005).

Medicinal plants typically contain several different chemical compounds that may

act individually or synergistically to improve health (Gurib-Fakim, 2006). As one of the

bioactive triterpenoids found in dandelion, taraxasterol has become a focus of

pharmacological studies. Power and Browning were the first to report the isolation

of taraxasterol from the non-saponifiable matter of Taraxacum officinale root (Power
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and Browning, 1912). They first described taraxasterol as a

phytosterol. Recently, taraxasterol has received increased

attention for its anti-inflammatory, anti-oxidative, and anti-

carcinogenic activity and its possible beneficial effects against

the development of liver damage, cancer, and numerous

immune system diseases. This review aims to evaluate the

properties of taraxasterol and investigate its phytochemical

properties, focusing on the most recent literature

analyzing the pharmacological effects of taraxasterol on

several diseases.

Phytochemical properties of
taraxasterol

Taraxasterol, also known as (3β, 18α, 19α)-Urs-20 (30)-en-3-
ol, is a pentacyclic triterpene with a 1,2-cyclopentene

phenanthrene structure. The molecular formula of taraxasterol

is C30H50O, and its molecular weight and melting point are

426.72 g/mol and 221–222°C, respectively. In the 1950s, the

structure and configuration of taraxasterol were reported by

(Figure 1) Ames et al. (1954). Oxidosqualene cyclases (OSCs)

catalyzed 2,3-oxidosqualene cyclization, which produced

triterpene scaffolds (Thimmappa et al., 2014). Recently, it was

found that transgenic yeast expressing LsOSC1, one putative

lettuce OSC gene, can produce taraxasterol in lettuce (Lactuca

sativa) (Choi et al., 2020).

Power and Browning discovered taraxasterol and first

reported it from the non-saponifiable matter of Taraxacum

officinale or Wiggers root (Power and Browning, 1912). The

highest levels of taraxasterol were observed in the latex of

Taraxacum officinale (Burrows and Simpson, 1938; Furuno

et al., 1993; Akashi et al., 1994). Taraxasterol was also

isolated from wild plants and regenerated organs of

Taraxacum officinale using a reversed-phase HPLC with

CH3CN/H2O (Furuno et al., 1993). In addition, Akash et al.

found that the radioactivity of taraxasterol was mainly observed

in differentiated organs of Taraxacum officinale with

accumulation patterns by HPLC combined with liquid

scintillation analysis (Akashi et al., 1994). In this study, the

biosynthesis of taraxasterol was revealed by detecting the

incorporation time course of radioactivity from [2–14 C]

mevalonic acid into individual triterpenols in the shoot

segments. It was discovered that taraxasterol was synthesized

during the first 24 h of the experiment, with the (pseudo)

laticifer cells being the probable site of its biosynthesis

(Akashi et al., 1994). According to the HPLC analysis,

Sharma et al. reported that the quantity of taraxasterol in

the natural root extract of T. officinale was 2.96 μg/ml,

whereas the quantity of taraxasterol was 3.013 μg/ml in the

root callus cultures (Sharma and Zafar, 2014). However, the

absolute quantitation of taraxasterol in any plant material is

unavailable and needs to be further studied. In addition,

taraxasterol is present in esculent plants such as legumes,

cereals, nuts, and seeds and in plant oils (Xu et al., 2004).

Taraxasterol is obtained from various medicinal plants in

addition to esculent ones. The distribution of taraxasterol in

plants is summarized in Table 1.

Pharmacological profiles of
taraxasterol

The use of taraxasterol has been linked to many health

advantages. The following sections review investigations that

support the pharmacological properties ascribed to

taraxasterol. The pharmacological activities of taraxasterol in

the fight against various diseases in vitro and in vivo are

summarized in Table 2. The mechanism of action of

taraxasterol is summarized in Figure 2.

Anti-inflammatory activity

Inflammation describes various physiological and

pathological processes triggered by noxious stimuli and

conditions, such as infection and tissue injury (Medzhitov,

2008). Akihisa et al. demonstrated that the ID50 of

taraxasterol extracted from the Compositae flowers was

0.3 mg/ear on 12-O-tetradecanoylphorbol-13-acetate- (TPA-)

induced inflammation in mice (Akihisa et al., 1996). After 36 h

of treatment with taraxasterol at doses of 2.5, 5, and 10 mg/kg,

survival rates in LPS-induced endotoxic shock mouse models

FIGURE 1
hemical structure of taraxasterol.
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were up to 30, 40, and 70%, respectively. Moreover, no toxic

effects of taraxasterol were observed in mice that received doses

as high as 10 mg/kg. In addition, taraxasterol (10 mg/kg per

day) significantly reduced levels of inflammatory cytokines,

including tumor necrosis factor-α (TNF-α), interferon-γ
(IFN-γ), interleukin-1β (IL-1β), and interleukin-6 (IL-6), and

significantly reduced serum levels of inflammatory mediators

such nitric oxide (NO) and prostaglandin E₂ (PGE₂) (Zhang

et al., 2014). Intraperitoneal injection of taraxasterol (10 mg/kg

per day) can significantly reduce the expression of pro-

inflammatory factors, myeloperoxidase activity, and lung

wet/dry ratio in a mouse model of LPS-induced acute lung

injury (ALI). Mechanistically, the anti-inflammatory effects of

taraxasterol may be due to the inhibition of the NF-κB and

MAPK signaling pathways (San et al., 2014). The nuclear factor

NF-κB is considered necessary for the expression of pro-

inflammatory genes, and the NF-κB pathway is considered a

prototypical pro-inflammatory signaling pathway (Lawrence,

2009). Treatment with taraxasterol at doses of 5 and 10 mg/kg

significantly reduced the inflammatory response in a liver

injury model induced by concanavalin A (Con A) by

inhibiting the toll-like receptor-NF-κB signaling axis. In

addition, taraxasterol prevented Con A-induced acute

hepatic injury via the Bax/Bc1-2 anti-apoptotic signaling

pathway (Sang et al., 2019). Furthermore, the increased

serum alanine aminotransferase (ALT), aspartate

aminotransferase (AST), and hepatic malondialdehyde

(MDA) levels induced by Con A were significantly reduced

by taraxasterol treatment (Sang et al., 2019). The potent anti-

inflammatory properties of taraxasterol (orally with 10 mg/kg

per day) have also been demonstrated in mice of an acute

experimental colitis (AEC) model induced by oral

TABLE 1 edicinal plants containing taraxasterol.

Name of plant Part containing taraxasterol References

Taraxacum officinale, Wiggers (Asteraceae) Roots (Power and Browning, 1912; Burrows and Simpson, 1938)

Taraxacum officinale Webers (Asteraceae) Roots (Bajaj, 1994; Della Loggia et al., 1994)

Calendula officinalis Hohen. (Asteraceae) Flowers Akihisa et al. (1996)

Taraxacum japonicum Koidz. (Asteraceae) Roots Takasaki et al. (1999)

Hemistepta lyrata (Bunge) Bunge (Asteraceae) Whole plant Ren and Yang (2001)

Carthamus lanatus Linn. (Asteraceae) Aerial parts Ganeva et al. (2003)

Taraxacum platycarpum Dahlst. (Asteraceae) Roots Ryu and Lee (2006)

Mikania cordifolia (L.f.) Willd. (Asteraceae) Aerial parts Oliveira et al. (2006)

Hieracium pilosella L. (Asteraceae) Rhizomes Gawronska-Grzywacz and Krzaczek (2007)

Achillea millefolium Linn. (Asteraceae) Leaves Gudaitytė and Venskutonis (2007)

Taraxacum mongolicum Hand.-Mazz. (Asteraceae) Roots Yarnell and Abascal (2009)

Cichorium glandulosum Boiss. et Huet. (Asteraceae) Air-dried stems Wu et al. (2011)

Centipeda minima (L.) A. Br. and Asch. (Asteraceae) Leaves Ngo and Li (2013)

Chrysanthemum morifolium Ramat. (Asteraceae) Flowers and Aerial parts (Akihisa et al., 2005; Boutaghane et al., 2013)

Arctium lappa L. (Asteraceae) Aerial parts Zhao et al. (2014)

Anthemis mirheydari Iranshahr (Asteraceae) Whole plant Jassbi et al. (2016)

Arnica L. (Asteraceae) Leaves De Amorim et al. (2016)

Cyanthillium cinereum (L.) H. Rob. (Asteraceae) Whole plants Thongkhao et al. (2020)

Cynara cardunculus L. (Compositae) Flowers Yasukawa et al. (2010)

Camellia japonica Linn.(Theaceae) Seed oil Itoh et al. (1980)

Acrocarpus fraxinifolius Wight ex Arn. (Fabaceae) Seed oil Saeecd et al. (1991)

Holodiscus discolor (Pursh) Maxim (Rosaceae) Leaves Haladova et al. (2001)

Strobilanthes callosus Nees (Acanthaceae) Aerial parts Singh et al. (2002)

Philadelphus coronarius L. (Hydrangeaceae) Twigs Valko et al. (2006)

Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) Aerial parts Kamboj and Saluja (2009)

Cornus kousa F.Buerger ex Hance (Cornaceae) Fruits Lee et al. (2010)

Solanum lycopersicum L. (Solanaceae) Fruit and leaves Wang et al. (2011)

Euphorbia tirucalli Linn. (Euphorbiaceae) Latex and stem Wang et al. (2011)

Olea europaea Linn. (Oleaceae) Aerial parts Stiti and Hartmann (2012)

Ficus carica L. (Moraceae) Aerial parts Chauhan et al. (2012)
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TABLE 2 Pharmacological activities of taraxasterol against diseases (in vitro and in vivo studies)a.

Pharmacological
activities

Part of
plant

Cells and/or
animal models
of disease

Dose Mechanisms References

Anti-inflammatory
activity

Aerial parts of Inula
japonica (Miq.)
Komarov

LPS-induced endotoxic
shock in mice

2.5, 5 and 10 mg/kg TNF-α↓, IFN-γ↓, IL-1β↓, IL-6↓, NO↓,
and PGE₂↓

Zhang et al.
(2014)

Compositae flowers TPA-induced inflammation
in mice

0.3 mg per ear Not mentioned Akihisa et al.
(1996)

Aerial parts of Inula
japonica (Miq.)
Komarov

LPS-induced ALI in mice 10 mg/kg Inhibition of NF-κB and MAPK
pathways

San et al. (2014)

Aerial parts of Inula
japonica (Miq.)
Komarov

ConA-induced acute hepatic
injury in mice

5 and 10 mg/kg TNF-α↓, IL-6↓, IL-1β↓, IFN-γ↓, and
IL-4↓; TLR2↓, TLR4↓, and NF-κB
p65↓; Bax/Bc1–2↓

Sang et al. (2019)

Taraxacum officinale DSS-induced AEC in mice 10 mg/kg TNF-α↓, IL-1β↓, and IL6↓ Chen et al.
(2019b)

Aerial parts of Inula
japonica (Miq.)
Komarov

HT-29 cells treated with LPS;
DSS-induced colitis in mice

Cells 2.5, 5 and 10 μg/
ml; animals 25, 50, and
100 mg/kg

IL-6↓, TNF-α↓; p53↓, Bax↓, caspase-3↓ Che et al. (2019)

Aerial parts of Inula
japonica (Miq.)
Komarov

Primary human
chondrocytes treated with
IL-1β

2.5, 5, and 10 μg/ml NO↓, iNOS↓; NF-κB↓; TNF-α↓, IL-6↓,
and IL-8↓; NLRP3↓

Piao et al. (2015)

Taraxacum
mongolicum Hand-
Mazz

Primary HFLS-RA treated
with IL-1β; CIA mice

Cells 3, 10, and 30 μM;
animals 10 mg/kg

TNF-α↓, IL-6↓, and IL-8↓; NF-κB↓;
NLRP3↓

Chen et al.
(2019a)

Aerial parts of Inula
japonica (Miq.)
Komarov

FCA-induced arthritis in rat 2, 4, and 8 mg/kg TNF-α↓, IL-1β↓, and PGE2↓ Wang et al.
(2016)

Not mentioned Acne mice 5 and 10 mg/kg IL-1β↓, IL-8↓, TGF-β1↓, Smad3↓ Liu et al. (2020)

Aerial parts of Inula
japonica (Miq.)
Komarov

BV2 microglia cells treated
with LPS

3, 6, and 12 μg/ml TNF-α↓, IL-1β↓; NF-κB↓; LXRα↑ and
ABCA1↑

Liu et al. (2018)

Aerial parts of Inula
japonica (Miq.)
Komarov

HUVECs treated with LPS 5,10, and 15 μg/mL TNF-α↓, IL-8↓, PGE2↓, COX-2 ↓, NF-
κB↓, and LXRα↑

Zheng et al.
(2018)

Anti-oxidative activity Aerial parts of Inula
japonica (Miq.)
Komarov

IRI-induced AKI in mice;
HK-2 cells stimulated with
H/R

Cells 5 and 10 μM;
animals 5 and 10 mg/kg

ROS↓, Bax↓, and Bcl2↑ Li et al. (2020a)

Aerial parts of Inula
japonica (Miq.)
Komarov

Ethanol-induced liver injury
in mice

2.5, 5, and 10 mg/kg ROS↓, MDA↓; GSH↑, and SOD↑ Xu et al. (2018)

Taraxacum officinale Ethanol and high-fat diet-
induced liver injury in mice

2.5, 5, and 10 mg/kg CYP2E1↓, total and nuclear Nrf2↑,
HO-1↑

Li et al. (2020b)

Aerial parts of Inula
japonica (Miq.)
Komarov

CS-induced lung
inflammation in mice

2.5, 5, and 10 mg/kg Inhibition of TLR4 translocate to lipid
rafts; ROS↓

Xueshibojie et al.
(2016)

Taraxacum
mongolicum

OGD/R-induced
hippocampal neurons injury

2.5, 5, and 10 μM ROS↓, MDA↓, HO-1↑, NQO-1↑, and
GPx-3↑; Nuclear Nrf2↑

He et al. (2020)

Aerial parts of Inula
japonica (Miq.)
Komarov

Cardiomyocyte ischemia/
reperfusion mice

5, 10, and 30 μmol/L SOD↑, MAD↓, p-ERK1/2↑ Wang et al.
(2018)

Anti-carcinogenic
activity

Tabular flowers of
artichoke

TPA-induced skin tumor in
mice

2.0 μmol Not mentioned Yasukawa et al.
(1996)

The herbs of
Taraxacum officinale

HepG2 and SK-Hep1 cells 17.0 μM Hint1↑, Bax↑ Bcl2↓, and cyclin D1↓ Bao et al. (2018)

Aerial parts of Inula
japonica (Miq.)
Komarov

Xenograft tumor model of
gastric cancer in mice

25 μg/ml EGFR↓, total AKT1↓, p-AKT1↓, and
p-EGFR↓; RNF31↓, p53↑

Tang et al. (2021)

(Continued on following page)
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administration of dextran sulfate sodium (DSS) (ChenW. et al.,

2019). Peroxisome proliferator-activated receptor γ (PPARγ)
plays a central role in the regulation of inflammatory signaling

pathways by acting on kinases and transcription factors, such as

NF-κB, c-Jun, c-Fos, and nuclear factor of activated T cell

(NFAT), and by inhibiting the production of IL-1β and

TNF-α (Su et al., 1999; Yang et al., 2000; Desreumaux et al.,

2001). In the DSS-induced AEC animal models, taraxasterol

TABLE 2 (Continued) Pharmacological activities of taraxasterol against diseases (in vitro and in vivo studies)a.

Pharmacological
activities

Part of
plant

Cells and/or
animal models
of disease

Dose Mechanisms References

Anti-allergic activity Aerial parts of Inula
japonica (Miq.)
Komarov

OVA-induced allergic
asthma in mice

2.5, 5, and 10 mg/kg IL-4↓, IL-5↓ and IL-13↓; IgE
production↓

Liu et al. (2013)

Anti-viral activity Taraxacum
mongolicum

HepG2.2.15 cells 24 μg/ml Percentages of HBV-DNA↓;
extracellular HBV DNA↓, HBsAg↓,
and HBeAg↓
PTBP1↓, and SIRT1↓

Yang et al. (2020)

aNote: ↑, increase; ↓, decrease or inhibit.

FIGURE 2
Potential biological mechanisms of taraxasterol: anti-inflammatory, anti-oxidative, and anti-carcinogenic. Taraxasterol impacts several aspects
of inflammatory action. On the one hand, taraxasterol reduces the levels of inflammatory cytokines, including TNF-α and IL-6 and reduces serum
levels of inflammatory mediators NO and PGE₂ through inhibiting NF-κB and MAPK signaling pathways. On the other hand, taraxasterol reduces
ROS-mediated NLRP3 inflammation activation by suppressing mTOR and mitophagy, which contributes to the reduction of the inflammation
reaction. Interestingly, NF-κB also regulates the expression of NLRP3 and IL-1β at transcriptional levels, yet the underlying mechanisms of whether
the taraxasterol alleviates NLRP3 inflammation activation and reduces the levels of IL-1β by inhibiting the NF-κB signaling pathway are unclear. In
addition, taraxasterol reduces oxidative stress induced by ethanol and a high-fat diet by inhibiting the expression of transcription factor Nrf2.
Taraxasterol can promote tumor cell apoptosis and inhibit tumor cell proliferation by upregulating Hint1 expression in human liver cancer.
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(10 mg/kg) reversed DSS-induced PPARγ downregulation in

AEC colon tissues and improved DSS-induced colitis, offering a

novel insight into potential therapeutic strategies for acute

colitis (Chen W. et al., 2019). In addition, Che et al.

reported that taraxasterol significantly reduced the

expression levels of IL-6 and TNF-α in a dose-dependent

manner at doses between 2.5 and 10 μg/ml in vitro and

25 and 100 mg/kg in vivo (Che et al., 2019). Although there

is evidence that taraxasterol has anti-inflammatory effects in

various diseases, the precise mechanism by which it regulates

inflammatory responses is still unclear. For example, both

upstream multiple proteins and some non-encoded RNAs,

such as RACK1 (Yao et al., 2014), tripartite motif-containing

proteins (TRIMs) (Roy and Singh, 2021), microRNA-144 (Yang

et al., 2022), and AMPK (Zhai et al., 2018), can regulate NF-κB
expression. It is unclear whether taraxasterol inhibits NF-κB
expression by regulating the expression of these proteins. Thus,

further discussion is required in vitro and in vivo.

Recent studies have shown that taraxasterol exerts an anti-

arthritic effect. These studies showed that taraxasterol

reduced IL-1β-stimulated inflammatory responses in vitro

and in vivo by suppressing the expression of COX-2 and

iNOS and reducing NF-κB activation (Piao et al., 2015;

Chen J. et al., 2019). Chen et al. reported that taraxasterol

suppressed the NOD-like receptor protein 3 (NLRP3)

inflammasome through inhibition of the expression of

NLRP3, apoptosis-associated speck-like protein containing

(ASC), and caspase-1 within a dose range of 0.3 to 0 μm in

HFLS-RA cells and with 10 mg/kg in collagen-induced

arthritis (CIA) mice (Chen J. et al., 2019). In another

investigation, Wang et al. studied the protective effect of

taraxasterol against Freund’s complete adjuvant- (FCA-)

induced arthritis in rats. They found that taraxasterol (at

doses of 2, 4, and 8 mg/kg) inhibited bone destruction by

increasing serum OPG production and inhibiting the

overproduction of serum inflammatory cytokines (Wang

et al., 2016). In addition, Liu et al. showed that taraxasterol

(10 mg/kg) improved propionibacterium acnes-induced

inflammatory responses in a mouse ear edema model and

suppressed pro-inflammatory chemokine production via the

TGF-β/Smad pathway (Liu et al., 2020). The liver X receptors

(LXRs) are members of the nuclear hormone receptor

superfamily that bind and are activated by oxysterols

(Lehmann et al., 1997). Liu et al. showed that taraxasterol

(0 to 12 μg/ml) was a ligand of LXRα and inhibited the

expression of TNF-α and IL-1ß via the activation of LXRα
in LPS-stimulated BV2 microglia (Liu et al., 2018). These

results suggested that taraxasterol may exert anti-

inflammatory effects via activation of LXRα in the central

nervous system. Similarly, another study on LPS-stimulated

human umbilical vein endothelial cells also showed that

taraxasterol (5–15 μg/ml) exerted anti-inflammatory effects

by activating LXRα (Zheng et al., 2018).

Anti-oxidative activity

Oxidative stress is caused by exposure to reactive oxygen

intermediates, which can damage proteins, nucleic acids, lipids,

and cell membranes (Storz and Imlay, 1999). Studies have shown

that cumulative damage caused by reactive oxygen species (ROS)

contributes to numerous diseases (Apel and Hirt, 2004;

Jakubczyk et al., 2020). Several studies have characterized the

anti-oxidative effects of taraxasterol. In mice with acute kidney

injury (AKI) induced by ischemia/reperfusion injury (IRI), Li

et al. showed that taraxasterol (5 and 10 mg/kg) inhibited

mitochondrial ROS production and ameliorated apoptosis in

the kidney by decreasing Bax expression and increasing

Bcl2 expression (Li C. et al., 2020). The transcription factor

Nrf2 regulates the expression of phase II detoxification enzymes

and a series of antioxidant enzymes (Chen et al., 2015). Heme

oxygenase (HO-1), a phase II detoxification enzyme regulated by

Nrf2, also plays an important antioxidant role (Suh et al., 2006).

Many studies have shown that taraxasterol (2.5–10 mg/kg)

inhibited oxidative stress by increasing the activity of the

CYP2E1/Nrf2/HO-1 pathway in animal models of ethanol and

high-fat diet-induced liver injury (Xu et al., 2018; Li Z. et al.,

2020). Moreover, taraxasterol (2.5–10 mg/kg) also reduced the

production of ROS, malondialdehyde (MDA), and increased

glutathione (GSH) levels and superoxide dismutase (SOD)

activity in ethanol-induced liver injury (Xu et al., 2018). An in

vivo study showed that taraxasterol inhibited cigarette smoke-

induced lung inflammation by inhibiting ROS production and

ROS-mediated recruitment of TLR4 into lipid rafts within a dose

range of 2.5–10 mg/kg. Moreover, taraxasterol also upregulated

GSH production (Xueshibojie et al., 2016). In addition,

taraxasterol has been shown to exert protective effects against

neurological diseases. In oxygen-glucose deprivation/

reperfusion- (OGD/R-) induced hippocampal neurons,

taraxasterol (2.5–10 μm) significantly suppressed ROS

production and MDA generation. Furthermore, taraxasterol

induced nuclear Nrf2 accumulation and promoted increased

expression of HO-1, NQO-1, and GPx-3 (He et al., 2020).

Wang et al. found that taraxasterol increased the

phosphorylation level of ERK1/2 in a cardiomyocyte ischemia/

reperfusion (I/R) model, which indicated that taraxasterol

exerted protective effects against oxidative stress by

upregulating the ERK pathway at a dose of 30 μm (Wang

et al., 2018). These results demonstrated that taraxasterol

protected cardiomyocytes against hypoxia, suggesting that it

may be significant for treating heart diseases (Wang et al., 2018).

Anti-carcinogenic activity

Previous studies have shown that extracts of Taraxacum

officinale inhibited proliferation and induced apoptosis in

hepatocellular carcinoma (HCC), HepG2, and Huh7 cells
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(Koo et al., 2004; Guo J. B. et al., 2015; Yoon et al., 2016). It has

also been demonstrated that taraxasterol inhibits the

development and progression of tumors. Taraxasterol

extracted from the aerial parts of the Chrysanthemum genus

significantly inhibited cell proliferation of both PC3 (human

prostate cancer) and HT-29 (human colon cancer) cells. The IC50

values of the taraxasterol compound were determined as 37.1 and

89.7 µm in the PC3 and HT-29 cells at 48 h, respectively

(Boutaghane et al., 2013). However, among other tumor cells,

including MCF-7 (human breast carcinoma), HeLa (human

cervix carcinoma), SK-MEL-5 (human melanoma), KB

(human nasopharyngeal carcinoma), P388 (murine leukemia),

MOLT-4 (human acute lymphoblastic leukemia), and SK-OV-3

(human ovary carcinoma) cells, taraxasterol did not exhibit

significant inhibitory activity with IC50 values equal to or

higher than 49 mm, suggesting that the anti-carcinogenic

activity of taraxasterol may have cellular specificity (Villarreal

et al., 1994; Lee et al., 2010; Jassbi et al., 2016). In an in vivo two-

stage test, administration with 2 μmol/mouse of taraxasterol

markedly inhibited the tumor-promoting effect of TPA on

skin tumor formation following initiation with 7,12-

dimethylbenz[α]anthracene. In this study, taraxasterol caused

an 86% reduction in the average number of tumors per mouse at

week 20 (Yasukawa et al., 1996). However, a subsequent study

showed that taraxasterol (850 nmol/ml) also exhibited about 60%

inhibition of the average number of papillomas per mouse at

20 weeks in terms of the two-stage carcinogenesis test (Takasaki

et al., 1999). Furthermore, in the C3H/OuJ female mice treated

with taraxasterol (2.5 mg in 100 ml of drinking water), the

survival ratio of the mice was 80% even at 70 weeks of

breeding, suggesting that taraxasterol can remarkably suppress

the spontaneous mammary carcinogenesis in the C3H/OuJ

female mice (Takasaki et al., 1999). Histidine triad nucleotide-

binding protein 1 (Hint1) is a tumor suppressor often

downregulated in association with the development of cancer

(Wang et al., 2007; Wang et al., 2009). Bao et al. found that

taraxasterol (IC50: 17.0 μm) selectively inhibited the proliferation

of HepG2 cells by inducing cell cycle arrest at G0/G1 and

inhibited apoptosis by upregulating Hint1 transcription to

regulate the expression of Bax, Bcl2, and cyclin D1 (Bao et al.,

2018). In addition, oral administration of 25 μg/ml of taraxasterol

in drinking water for 30 days can effectively inhibit the growth of

the implanted SK-Hep1 tumor in vivo (Bao et al., 2018). In a

gastric cancer subcutaneous xenograft model, taraxasterol

(25 μg/ml) inhibited the growth of xenograft tumors by

inhibiting EGFR/AKT1 signaling (Chen et al., 2020). The

E3 ubiquitin ligase RNF31 is overexpressed in many tumors

and is associated with tumorigenesis (Guo J. et al., 2015; Zhu

et al., 2016; Qiu et al., 2018). Tang et al. found that taraxasterol

(50 μg/ml) promoted the degradation of RNF31 by activating

autophagy, thereby inhibiting the p53 degradation and colorectal

cancer (CRC) cell proliferation (Tang et al., 2021). In addition,

taraxasterol can inhibit cell growth of breast, cervical, and

melanoma in vitro (Dai et al., 2001; Lee et al., 2010). These

findings indicated that taraxasterol may be a promising candidate

for treating tumors.

Others

Liu et al. found that taraxasterol (5 and 10 mg/kg)

significantly decreased the production of the Th2 cytokines

IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF)

and reduced the levels of ovalbumin- (OVA-) specific IgE in

serum (Liu et al., 2013). In addition, taraxasterol (2.5–10 mg/kg)

suppressed airway hyperresponsiveness (AHR) in a dose-

dependent manner. Histological studies showed that

taraxasterol substantially suppressed OVA-induced

inflammatory cell infiltration into lung tissues and goblet cell

hyperplasia in airways, which suggested that taraxasterol may

protect against allergic asthma (Liu et al., 2013). In an in vitro

study, taraxasterol (7.5 and 12.5 μg/ml) reduced the number of

CaOx crystals in a dose-dependent manner and reduced the

diameter of CaC2O4 dihydrate crystals. In addition, the

inhibition of nucleation was increased by taraxasterol in the

range of 26%–64% (Yousefi Ghale-Salimi et al., 2018). A recent

study found that taraxasterol also exerted anti-viral effects.

Taraxasterol (24 μg/ml) significantly reduced the secretion of

HBsAg, HBeAg, HBV DNA, and intracellular HBsAg. Moreover,

the treatment of taraxasterol (24 μg/ml for 48 h) also decreased

the protein expression levels of the host factors polypyrimidine

tract binding protein 1 (PTBP1) and sirtuin 1 (SIRT1) in

HepG2.2.15 cells (Yang et al., 2020). In addition, pretreatment

with different concentrations of taraxasterol (30, 60, 90, 120, 150,

180, or 210 µm) markedly prevented cell injury and

inflammation in H2O2-induced HUVECs by reducing the

expression of vascular cell adhesion molecule 1 (VCAM-1)

and the cluster of differentiation 80 (CD80) (Yang et al.,

2015). In addition, taraxasterol has also been shown to exert

significantly antimicrobial effects. Taraxasterol obtained from

the Mexican plants of the Asteraceae elicited a significant

minimum inhibitory concentration (MIC) value (12.5 μg/ml)

against Staphylococcus aureus (Villarreal et al., 1994).

However, Boutaghane et al. observed weak inhibition of

taraxasterol against the growth of Gram-negative (E. coli, P.

aeruginosa, K. pneumoniae) bacteria (Boutaghane et al., 2013).

Akihisa group described the anti-tubercular activity of

taraxasterol against Mycobacterium tuberculosis with the MIC

values of 64 μg/ml (Akihisa et al., 2005).

Conclusion

Taraxasterol is a natural pentacyclic triterpene primarily

extracted from dandelion. This article gives a general overview

of the pharmacological activities of taraxasterol for treating
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various illnesses, such as respiratory, gastrointestinal, and

urinary disorders. Taraxasterol was discovered to have

excellent potential for preventing the above disorders. Anti-

inflammatory, anti-oxidative, and anti-carcinogenic

mechanisms may be responsible for its protective effects.

Neurodegenerative diseases, including Alzheimer’s disease

(AD), Parkinson’s disease (PD), and Huntington’s disease (HD),

cause progressive damage to the nervous system. The abnormal

aggregation of some proteins in particular brain regions is a

pathological hallmark of neurodegenerative diseases mainly

caused by impaired protein-degradation systems, such as the

autophagy-lysosome pathway (ALP) and the ubiquitin-

proteasome system (UPS) (Zheng et al., 2014; Finkbeiner,

2020). Recently, it was found that taraxasterol promoted the

degradation of RNF31 protein by enhancing autophagy and

further alleviating the degradation of p53 through proteasome,

indicating that taraxasterol may regulate the protein degradation

pathways in cells (Tang et al., 2021). It is necessary to conduct

more in vivo and in vitro studies to determine whether

taraxasterol prompts the degradation of aggregate proteins by

regulating ALP and UPS pathways in neurodegenerative diseases.

Previous studies have shown that inflammatory stimulation can

be active by genetic mutation and protein aggregation in

neurodegenerative diseases (Glass et al., 2010; Stephenson

et al., 2018). Microglia and astrocytes are mainly responsible

for persistent inflammatory responses (Xu et al., 2016;

Stephenson et al., 2018). Taraxasterol may have effects on

inhibiting the inflammatory response induced by glial cells

and potentially protective effect on neuronal death caused by

abnormal activation of glial cells in neurodegenerative diseases,

according to recent research conducted in vitro. Taraxasterol

inhibited the expression of proinflammatory factors via the

activation of LXR in LPS-stimulated BV2 microglia (Liu et al.,

2018). However, taraxasterol can directly act on glial cells

through the blood–brain barrier (BBB), and its concentration

in the cerebrospinal fluid requires further investigation.

Additional research is also necessary to identify the effective

concentration of taraxasterol in plasma. Zhang et al. reported

that the amount of taraxasterol in the plasma of rats following

oral administration could be accurately detected through a highly

selective and sensitive liquid chromatography/tandem mass

spectrometry (Zhang et al., 2015). This finding may aid in the

pharmacokinetic study of taraxasterol in humans and other

animals. Furthermore, more clinical studies are necessary on

the metabolism, bioavailability, and safety of taraxasterol to

support its applications in pharmaceuticals and medicine.
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