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Abstract
Background: Microarray gene expression profiling has provided extensive datasets that can
describe characteristics of cancer patients. An important challenge for this type of data is the
discovery of gene sets which can be used as the basis of developing a clinical predictor for cancer.
It is desirable that such gene sets be compact, give accurate predictions across many classifiers, be
biologically relevant and have good biological process coverage.

Results: By using a new type of multiple classifier voting approach, we have identified gene sets
that can predict breast cancer prognosis accurately, for a range of classification algorithms. Unlike
a wrapper approach, our method is not specialised towards a single classification technique.
Experimental analysis demonstrates higher prediction accuracies for our sets of genes compared
to previous work in the area. Moreover, our sets of genes are generally more compact than those
previously proposed. Taking a biological viewpoint, from the literature, most of the genes in our
sets are known to be strongly related to cancer.

Conclusion: We show that it is possible to obtain superior classification accuracy with our
approach and obtain a compact gene set that is also biologically relevant and has good coverage of
different biological processes.

Background
Gene microarrays are a popular technology for assisting
with the prediction and understanding of diseases [1,2].
Cancer is one such disease where this technology has
proved to be particularly powerful. An important chal-

lenge in this area is the discovery of gene sets which can be
used as predictors of cancer. For a gene set to be useful as
the basis of developing a clinical predictor for cancer,
there are a number of desirable properties it should have:
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• Compactness: There should not be too many genes in the
set. This reduces the cost involved in developing a clinical
diagnostic test using these genes.

• Accuracy: When the genes are input to a machine learn-
ing algorithm as features, it should be possible to achieve
a high true positive rate and a low false positive rate.

• Classifier independence: It should be possible to achieve
high accuracy using a range of different machine learning
classifiers with the gene set. This increases the confidence
that biologists have in the stability and generality of the
gene set.

• Biological relevance: Most of the genes in the gene set
should have a known relationship to cancer, based on the
literature.

• Biological coverage: The genes in the gene set should span
a number of distinct biological processes and each gene
should be independently useful for prediction. The set of
genes should not be confined to a single pathway. This
increases the robustness of prediction and allows more
uniform classification power across different subtypes of
cancer.

In this paper, we propose a new classifier voting approach
to discover a gene set for breast cancer prognosis that sat-
isfies these five properties. We are able to discover a gene
set using the van 't Veer et al. [3] dataset that consists of 7
genes and delivers highly accurate prediction results for a
range of classifiers. In addition, we were able to discover a
6 gene set that delivers high accuracy on the Ma et al. [4]
dataset, for which we also validated our performance on
an additional independent dataset exhibiting the same
biological conditions [5]. The majority of these genes
have been previously mentioned in the cancer literature,
and we have found the genes in these sets to be relatively
independent in terms of function, meaning our genes are
able to cover a number of different processes involved in
cancer. In comparison with other studies on these data-
sets, our gene sets are considerably smaller and deliver
considerably higher performance across a range of
machine learning classifiers.

Our proposed technique is based on the use of multiple
voting classifiers to identify the final gene set. Its use of
multiple classifiers makes it different from previous work
for microarray classification, such as wrapper based meth-
ods, which only target a single classifier.

An important aspect of our method is that it does not
employ any biological domain knowledge (e.g. the Gene
Ontology) as part of the algorithm for identifying the gene
set. This makes it particularly applicable for deployment

in scenarios where the literature is sparse or the state-of-
the-art is immature. Nevertheless, for the dataset we use,
we are able to confirm that the individual genes in the sets
that are discovered are biologically relevant.

Methods
Our proposed approach comprises two steps. In the first
step, we rank all genes of the training set. In the second
step, we investigate the classification performance of com-
binations of genes using a voting approach from the
ranked genes obtained from the first step, but employing
a number of classifiers instead of just one classifier. The
steps are described in detail in the subsequent sections.

The receiver operating characteristic (ROC) curve: 
preliminaries
In machine learning, the receiver operating characteristic
(ROC) curve is used to evaluate the discriminative per-
formance of binary classifiers. This is obtained by plotting
the curve of the true positive rate (Sensitivity) versus the
false positive rate (1 – Specificity) for a binary classifier by
varying the discrimination threshold.

All the calculations of true positive rate and false positive
rate are attained when using a particular classifier thresh-
old. By varying the threshold, a set of values for these
measurements is obtained. This set of values is plotted in
a two-dimensional Cartesian graph to yield the ROC
curve. The ROC curve takes into account all the possible
solutions by varying the discriminative threshold. The
best performance would be produced, if the ROC curve
matches with the upper left corner of the ROC space
(which yields 100% sensitivity and 100% specificity). The
closer the ROC curve is to the upper part of the ROC
space, the better the performance of the classifier.

An ROC curve is a two dimensional illustration of classi-
fier performance. Reducing ROC performance to a single
scalar value to represent expected performance helps com-
pare classifiers. A popular method is to calculate the area
under the ROC curve (AUC) [6].

The AUC, being a part of the area of the unit square, has a
value between 0 and 1. Since random guessing could pro-
duce the diagonal line between (0, 0) and (1, 1) with an
area of 0.5, a classifier with an AUC less than 0.5 is unde-
sirable [7]. An AUC value close to 1 indicates better per-
formance for a binary classifier [8].

Feature ranking using ROC
We rank all genes of the training set using the first step of
Mamitsuka [9]'s ROC, which is the equivalent of the
Mann-Whitney U statistic [10], normalized by the
number of possible pairings of positive and negative val-
ues, also known as the two sample Wilcoxon rank sum
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statistic [6]. The AUC actually represents the probability
that a randomly chosen positive example is correctly rated
(ranked) with greater suspicion than a randomly chosen
negative example.

Let us consider a training dataset  of n examples, where
each example comprises m attributes: x1, x2, x3,..., xm. Each

of the m attributes has a differing discriminative power
reflected by its respective AUC. To calculate the discrimi-
native power that is expressed in terms of AUC, we plot
the ROC curve for each gene paired with the class label,

(i.e., {xi, Yi}, where 1 ≤ i ≤ m and Y is the vector of class

labels) and calculate the AUC of the ROC curve. Now, we
order the genes based on their respective AUCs.

Multi-classifier voting approach to select genes
We attempt to classify the validation dataset with the top
ranked genes. At first we pass the top 10 genes individu-
ally to all classifiers, and note the classification accuracy of
each classifier on a validation set. For the second pass, we
select the gene for which the most classifiers achieve their
highest accuracy. Then we form a pair of the selected gene
from the first pass, along with the remaining nine genes,
and input these nine pairs to the selected classifiers. We
then note the classification accuracy. The pair on which
the most classifiers achieve their highest accuracy is
selected and given to a third pass. We continue adding sin-
gle genes to form 3-gene combinations, and so on.

A diverse set of fifteen classifiers was used for this process.
They are: Logistic Model Tree (LMT) [11], Naïve Bayes
Tree (NBTree) [12], Naïve Bayes, Random Forest, C4.5, k-
Nearest Neighbour (k-NN), Artificial Neural Network
(ANN), Logistic Regression, Support Vector Machine
(SVM), and bagging [13] and boosting (ADABoost.M1)
[14] for Naïve Bayes, Random Forest and C4.5.

We stop growing the gene set once more than 50% of the
classifiers have their accuracy lowered on the validation
set by the addition of an individual gene. In the case of
any tie between two or more genes, we note the total accu-
racy (out of 1500%) for the tied genes and the gene with
the largest total accuracy is chosen for the next pass. This
majority voting approach allows us to select a small subset
of genes that can boost classification accuracy on a
number of classifiers. One can then tune the performance
of an individual classifier by choosing the prefix of the
genes (ranked using the voting approach) that delivers
best accuracy. For example, for C4.5 with boosting on the
van 't Veer data, adding the 5th gene to the first four genes
actually degrades the performance of that specific classi-
fier. So for that individual classifier, rather than using our
final selection of 7 genes, we can instead use only a subset
of 4 (out of the 7) genes.

Datasets
In each of the three datasets used in our analysis, the prog-
nostic outcome to be predicted is whether distant metas-
tases will occur within 5 years (poor prognosis) or
whether the patient is disease-free after 5 years (good
prognosis).

van't Veer data [3]: The dataset comprises 97 breast cancer
patients treated through modified radical mastectomy or
breast-conserving treatment followed by radiotherapy.
The patients were split into a training set of 68, a valida-
tion set of 10, and a test set of 19 cases. The training set
consists of 29 positive (poor prognoses) and 39 negative
(good prognoses) cases, the validation set comprises five
positive and five negative cases, and the test set was made
up of 12 positive and 7 negative cases. Further, we created
a merged dataset from van 't Veer's [3] training (our train-
ing and validation set) and test sets to apply k-fold cross
validation (CV). In k-fold CV, 10 cases out of the training
set are randomly selected for the validation set before
applying the FROC.

Ma et al. data [4]: This dataset contains 60 breast cancer
patients treated through standard breast surgery followed
by continued adjuvent tamoxifen therapy. There were 28
positive cases (poor prognoses) and 32 negative cases
(good prognoses). We separate the first 5 positive cases
and the last 5 negative cases to form the test set and use
the remaining cases for training.

Loi et al. data [5]: The dataset is made up of 77 breast can-
cer patients obtained from the GUYT2 test data used in the
Loi et al. study, with similar treatments to those performed
in the Ma et al. dataset. There were 10 positive cases (poor
prognoses) and 67 negative cases (good prognoses). This
dataset was included in our study as a completely inde-
pendent test dataset. All patients were considered as test
cases to gauge performance of the classifiers trained on the
Ma et al. dataset.

Evaluation
For the van 't Veer [3] and Ma et al. [4] datasets, we used a
holdout cross validation procedure, where a training set is
used to train the classifiers and a separate test set is used
to evaluate. We have also used the more general k-fold
cross validation (CV) scheme to evaluate the performance
on van 't Veer data. In k-fold CV, the original sample is
partitioned into k subsamples. Of the k subsamples, a sin-
gle subsample is retained as the validation data for testing
the model, and the remaining k - 1 subsamples are used as
training data. The CV process is then repeated k times (the
folds), with each of the k subsamples used exactly once as
the validation data. The k results from the folds, then, can
be averaged (or otherwise combined) to produce a single
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estimation. Here, we have chosen k to be 5. The results for
k-fold CV is presented in the Additional File 1.

All of our evaluation results are reported in weighted accu-
racy [15], which is calculated by the formula shown in Eq.
(1).

where, P = Total number of positive cases,

N = Total number of negative cases.

Results
Using the van 't Veer data [3], our final selected gene set
consists of the 7 genes (TSPYL5, NMU, CA9, AGTPBP1,
LIN9, ASPM, and DIAPH1) and as we shall show, this
compact gene set delivers highly accurate performance
across a range of classifiers. The functions of these genes
are summarised in Table 1. Additionally, we used the Ma
et al. [4] data to test whether our method was successful
on a dataset with different biology to the van 't Veer data-
set. We have obtained a different set of 6 genes (RGS19,
ZIC2, SRD5A3, PPARD, GM2A, CD55). We also tested the
generalisability of this 6 gene set on an additional inde-
pendent dataset exhibiting the same biological conditions
[5]. Most of the later discussion will be using the van 't
Veer data as an example, unless otherwise stated.

Biological significance of the compact gene sets
As the treatment procedures applied to the patients in
both the van 't Veer study [3] (no adjuvent therapy) and
Ma et al. study [4] (adjuvent therapy with tamoxifen) are
vastly different, it is not surprising that there is no overlap
between the two gene sets identified as the best predictors
of prognosis outcome. The biology driving the chance to
distant metastasis in each dataset is likely to be signifi-
cantly different and as such it would not make sense to
expect the gene lists to overlap. Therefore, we will consider
each gene set independently.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis of the two gene
sets show that each of the genes are diverse in function
and appear to be unrelated in terms of the biological proc-
esses in which they are involved. What is interesting, how-
ever, is that the majority of the genes have been previously
shown to be related to cancer in the literature (as shown
below). This suggests that our feature selection procedure
yields a compact sampling of the diverse biological proc-
esses represented by the microarray, which are highly rep-
resentative of the prognostic potential of the patient. In

concordance with this, in the 7 gene set, TSPYL5 and CA9
have been previously used as prognostic biomarkers in
cancer [15-19]. Furthermore, four of the top 7 genes
selected by our method are in the set of 231 genes used in
the study by van 't Veer [3]. and the most important indi-
vidual gene in improving a number of the classifier per-
formances in the test set (TSPYL5) is present in the 17
genes selected by Alexe et al. [15]. In the 6 gene set, CD55
has been used previously as a prognostic biomarker in
gastric cancer [20].

Links between identified genes and the cancer literature
7 gene set
Each of the 7 genes can be directly linked to potential can-
cer re-occurrence through their respective biological func-
tions. TSPYL5 is involved in nucleosome assembly, a
process which, if destabilised, can alter the regulatory
mechanisms of a cell [21], which is likely to occur in can-
cer. NMU has been shown to be related to metastatic
potential and cancer cachexia [22], which would have a
significant impact on the potential of reoccurrence of the
cancer. CA9 is involved in nitrogen metabolism and is
linked to cell proliferation and ASPM is involved in
mitotic spindle regulation and is expressed in proliferat-
ing tissues. (Proliferation is a mechanism which is well
known to be related to the cancerous potential of cells).
LIN9 is involved in progression through the cell cycle [23]
and is a tumor suppressor [24] that inhibits DNA synthe-
sis, thus having significant cancerous potential. Regula-
tion of the DIAPH1 gene [25] is important in regulating
the transcription factor Mitf, which in turn regulates the
invasiveness of melanoma. Finally, while no significant
link to cancer processes were found for AGTPBP1, somatic
mutations in the coding sequence have been found in
colorectal cancers [26].

6 gene set
5 out of the 6 genes in this set not only have links to can-
cer through the literature, they have in most cases been
shown to be directly linked to prognostic outcome. A
study into antibodies against ZIC2 in small lung cell car-
cinoma showed that the concentration of antibodies is a
good indicator of prognosis [27]. SRDA53 overexpression
in hormone-refractory prostate cancers was shown to be
crucial for cell viability [28] and is a likely factor in resist-
ance to hormone based therapies in prostate cancers.
PPAR has been shown previously to be abberently
expressed in colon cancer cells [29] and is an important
player in the proliferation and growth of these cells [30].
A protein involved in innate immune response which is
critical to the regulation of the complement cascade,
CD55, has been shown to be important in prostate growth
[31], gastric tumor invasiveness [32] and breast cancer
prognosis [33]. Finally, RGS19 has been implicated in the
control of autophagy in colon cancer cell lines [34].

Weighted Accuracy =
+TP

P
TN
N

2

(1)
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The demonstrated links of these genes with the literature
highlights the relevancy of each of the genes with respect
to cancer and demonstrates their potential to represent
biological processes which are directly related to the prog-
nostic potential (chance of cancer re-occurrence) of a
patient.

Classification performance on test set
7 gene set
Table 2 shows the results for a range of different classifiers
being tested on the van 't Veer [3] dataset, when config-
ured to select their preferred subset of genes from our 7
gene set. As most classifiers have their own internal mech-
anism to rank and select the features to classify, it is obvi-
ous that all classifiers will not perform similarly with the
same subset of genes. The 'majority voting' scheme, used
to select the significant 7 genes in our multi-classifier vot-
ing approach from one pass to another, helped in improv-
ing the performance of the all classifiers. However, a few
classifiers – namely C4.5, C4.5 with bagging, Naïve Bayes
with bagging, Naïve Bayes with boosting, LMT, NBTree
and k-NN – showed the best performance using only a
single gene.

The best performance for the test dataset obtained was
91.67% for C4.5 with boosting. This performance was
achieved using only three genes: TSPYL5, DIAPH1, and
AGTPBP1. It is worth noting that the gene subset
{TSPYL5, DIAPH1} was found to be significant for at least
six of the considered 15 classifiers (see Table 2). It was also
found that the gene TSPYL5 is the most influential and
has been chosen by all the considered classifiers. The per-
formance of ANN and SVM was found to be better for the
gene subsets {TSPYL5, CA9}, and {TSPYL5, LIN9},

respectively. The gene LIN9 was found to be important
only when using SVM. Similarly, the gene CA9 was found
to be suitable for the ANN and Logistic Regression along
with other genes. An analysis of the experimental results
reveals that similar types of classifiers tended to choose
the same subset of genes (except one or two different
genes in the subset) to obtain the best performance. For
instance, Random Forest, Random Forest with bagging
and Random Forest with boosting, are essentially similar
classifiers with some small variation. All these classifiers
chose the gene subset {TSPYL5, DIAPH1, ASPM} for clas-
sifying the dataset. However, Random Forest with bagging
produced the best accuracy of the three different types of
Random Forest considered in this study, adding the gene
NMU to the common gene subset {TSPYL5, DIAPH1,
ASPM}. Thus, a subset of genes used by all classifiers is
selected as the important gene subset. Table 3 summarises
the classification accuracy for both the individual test set
of van 't Veer [3] and for 5 fold cross validation (CV),
comparing the use of subsets of the 7 genes, versus the sce-
nario where all 25,000 genes are used.

6 gene set
Table 4 shows the classification performance of different
classifiers on the Ma et al. [4] and Loi et al. [5] data. Apart
from our selection of 6 genes, we have also used the 2
gene biomarker proposed by Ma et al. [4] for comparison,
bearing in mind that this is a somewhat of a simplifica-
tion, as the two genes are actually used as a ratio in their
study. Our selection of 6 genes is performing much better
than the 2 genes on the Ma et al. dataset. Of the 15 classi-
fiers, 13 achieve 100% accuracy, whereas the 2 gene
biomarker showed a maximum accuracy of only 80% by
one classifier. For most classifiers, the 2 gene biomarker

Table 1: Our set of 7 genes selected by majority voting and ordered by area under ROC curve

GeneBank Accession Number AUC Gene Symbol Gene Description

AL080059 0.800802 TSPYL5 TSPY-like 5

NM_006681 0.794786 NMU Neuromedin U

NM_001216 0.794786 CA9 Carbonic Anhydrase IX

AA830802 0.792781 AGTPBP1 ATP/GTP binding protein 1

AA834945 0.774733 LIN9 Lin-9 homolog (C. elegans)

AA748494 0.766711 ASPM ASP (abnormal spindle) homolog, microcephaly associated (Drosophila)

NM_005219 0.764706 DIAPH1 Diaphanous homolog 1 (Drosophila)
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showed only 60% to 70% accuracy. When testing on the
Loi et al. [5] dataset, the performance of the 6 gene set over
the 2 gene set is quite strong (9 wins by the 6 gene set, 3
wins by the 2 gene set and 3 draws over the 15 classifiers).

Discussion
In our multi-classifier voting approach, one selects a sub-
set of genes using an ROC based ranking. This is then fol-
lowed by a classifier voting phase, to refine this list of
genes even further. Our improved performance is
achieved due to two factors. First, ROC is a classifier inde-
pendent method that is not dependent on the standard
deviation of the features. Second, the multi-classifier vot-
ing gene selection approach produces the best possible
combination of genes satisfied by a majority of the classi-

fiers. These two benefits contribute to obtaining a better
classification performance for the complete set of unseen
datasets. Furthermore, the significant reduction of genes
we obtain is another advantage of our approach.

Previous studies that link gene expression profiles to clin-
ical outcomes in breast cancer cases have demonstrated
that the potential for distant metastasis and overall sur-
vival probability may be attributable to the biological
characteristics of the primary tumor at the time of diagno-
sis [3,35-39]. In particular, a 70-gene expression signature
by van 't Veer [3] has proven to be a strong prognostic fac-
tor, outperforming all known clinicopathological param-
eters. The accuracy in distinguishing cases of Poor and
Good breast cancer prognosis, provided by the subset of

Table 2: Accuracy achieved on test set by different classifiers using various subsets of our 7 genes

Classifier Accuracy Gene Combination

C4.5 84.52% TSPYL5

C4.5 with boosting (ADABoost.M1) 91.67% TSPYL5-DIAPH1-AGTPBP1

C4.5 with bagging 84.52% TSPYL5

Naïve Bayes 84.52% TSPYL5

Naïve Bayes with boosting 84.52% TSPYL5

Naïve Bayes with bagging 88.69% TSPYL5-DIAPH1-NMU

LMT 84.52% TSPYL5

NBTree 84.52% TSPYL5

Random Forest 84.52% TSPYL5-DIAPH1-ASPM

Random Forest with boosting 84.52% TSPYL5-DIAPH1-ASPM

Random Forest with bagging 88.69% TSPYL5-DIAPH1-ASPM-NMU

k-NN 80.36% TSPYL5

Logistic Regression 81.55% TSPYL5-DIAPH1-CA9

ANN 77.38% TSPYL5-CA9

SVM 83.33% TSPYL5-LIN9
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70 genes selected by van 't Veer [3], was revalidated and
confirmed by van de Vijver [39] in a different cohort of
patients. However, 70 genes is not a compact set, greatly
increasing the expense of developing a clinical predictor.
Even the set of 17 genes by Alexe et al. [15] is twice as large
as our 7 gene set. Our method yielded better accuracy with
7 genes, and that, too, was independent of a specific clas-
sifier. Having a compact set of genes is extremely impor-
tant from a treatment and drug development viewpoint,
where clinical and experimental validation is costly and it
is vital to restrict the number of hypotheses or targets
(genes) to be followed up. We also show, in the compari-

son of our 6 gene set with the 2 gene set of Ma et al. [4] in
Table 4 using the Loi et al. [5] data, that our approach
avoids generating an overly compact geneset that may not
generalise well to microarray data from another lab. This
is extremely important when attempting to develop a
robust predictor in a clinical setting.

We have also compared our best results for the van 't Veer
[3] dataset against some well known cancer treatment
guidelines (see Table 5). It clearly shows that machine
learning approaches are effective technique in classifying
breast cancer prognosis.

Table 3: Comparison of the weighted accuracy of different classifiers using i) subsets of our 7 genes and ii) all 25,000 genes

Classifier Subsets of our 7 genes All 25,000 genes

Test set (19) All data (5-fold CV) Test set (19) All data (5-fold CV)

C4.5 84.52% 88.49% 79.17% 62.36%

C4.5 with boosting (ADABoost) 91.67% 89.54% 63.10% 62.89%

C4.5 with bagging 84.52% 88.94% 48.81% 63.98%

Naïve Bayes 84.52% 92.13% 50.00% 52.17%

Naïve Bayes with bagging 88.69% 86.82% 50.00% 52.17%

Naïve Bayes with boosting 84.52% 87.65% 50.00% 52.17%

LMT 84.52% 88.11% 77.38% 60.29%

NBTree 84.52% 83.69% 66.07% 58.76%

Random Forest 84.52% 90.59% 66.07% 62.47%

Random Forest with bagging 88.69% 90.59% 73.21% 64.75%

Random Forest with boosting 84.52% 88.48% 66.07% 62.45%

k-NN 80.36% 83.00% 63.69% 61.94%

Logistic Regression 81.55% 88.11% Out of memory* Out of memory*

ANN 77.38% 83.44% Out of memory* Out of memory*

SVM 83.33% 76.23% 63.69% 68.12%

*Our experiments were carried out on a standard Intel Core 2 Duo CPU 2.4 GHz desktop computer running 2 GB of RAM.
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Comparison with other studies
A number of efforts have been made in this direction for
breast cancer prognosis but without major success. Ritz
[40] combined both genetic and clinical information in a
neural network for breast cancer prognosis, but found that
the combination did not improve the performance.

Dettling et al. [41] applied penalized logistic regression
analysis to predict cancer prognosis for the van 't Veer [3]
dataset. They found that none of the clinical variables
entered the model and concluded that the clinical data

did not contain any useful independent information for
prediction, given the gene expression profile.

To prognosticate on the breast cancer dataset, Alexe et al.
[15] applied the Logical Analysis of Data (LAD) tool to
analyze microarray data. They identified 17 genes out of
25,000 possible genes that could distinguish patients with
Poor or Good prognoses. Amongst the 17 genes the LAD
tool identified three and five genes that were associated
with Poor and Good prognoses, respectively. Two wholly
new classes (defined by similar sets of covering patterns,
gene expression ranges, and clinical features) of patients

Table 4: Comparison of the accuracy of different classifiers using 2 known biomarker genes and our selection of 6 genes on Ma et al. 
and Loi et al. data

Classifier Ma et al.data Loi et al. data

2 genes 6 genes 2 genes 6 genes

C4.5 60.00% 100% 75.64% 80.77%

C4.5 with boosting (ADABoost) 70.00% 100% 66.67% 82.05%

C4.5 with bagging 70.00% 100% 67.95% 75.64%

Naïve Bayes 60.00% 100% 74.36% 74.36%

Naïve Bayes with boosting 60.00% 80.00% 74.36% 77.95%

Naïve Bayes with bagging 60.00% 100% 75.64% 75.64%

LMT 70.00% 100% 76.92% 79.49%

NBTree 80.00% 80.00% 75.64% 82.05%

Random Forest 60.00% 100% 74.36% 75.38%

Random Forest with boosting 70.00% 100% 67.95% 74.36%

Random Forest with bagging 70.00% 100% 74.36% 71.79%

k-NN 70.00% 100% 73.08% 71.79%

Logistic Regression 70.00% 100% 76.92% 74.36%

ANN 60.00% 100% 74.36% 76.67%

SVM 60.00% 100% 74.36% 74.36%
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were discovered. It was also demonstrated that the train-
ing and test sets of van 't Veer [3] differ in their character-
istics. However, this study of Alexe et al. was overly
specific to the chosen classifier (the LAD tool), as we shall
shortly see.

We assessed the classification performance of five differ-
ent subsets of genes on the van 't Veer [3] dataset. The 231
and 70 genes selected by van 't Veer [3], the set of 17 genes
selected by the LAD technique [15], a set of 17 genes
selected by ROC (FROC) with Markov blanket [9] and the
set of 7 genes selected by our voting approach. For ROC
(FROC) with Markov blanket we have used the same
parameter for the number of genes to select as given in
that paper, namely 50 genes and then using an area
between two ROC curves (ABR) value > 20 for the second
step, chosen to yield the most competitive performance
for the technique. We applied five classification methods
used by Alexe et al. [15] and our top performing classifier
C4.5 with boosting on the gene set of size 4. These classi-
fication methods include ANN, SVM, Logistic Regression,
k-NN, C4.5 decision tree and C4.5 with boosting (see
Table 6). Following this, predictive models were con-
structed for the training set and were tested using the sup-
plied test set of 19 samples.

It is clear that the weighted accuracy in distinguishing
patients with Good and Poor breast cancer prognoses is
the highest across all classifiers using the 7 genes selected
by our voting approach and is much higher than the mod-
els using 17 (by LAD), 70 and 231 genes. Our approach
produced much better performance for most classifiers,
except for ANN, where using the 17 selected genes of Alexe
et al. [15] or by using ROC with Markov blanket [9] was
better. However, the methodology of Alexe et al. incorpo-
rated a "selection bias" [42] for finding their subset of 17
genes, since the test set was used. In contrast, our voting

Table 5: Comparison of the weighted accuracy on the test set of 
the best result from our voting method versus some well known 
cancer treatment guidelines

Classifier Weighted accuracy on Test set

C4.5 with boosting 91.67%

St. Gallen 1998* 68%

NIH 2000* 79%

NPI* 58%

70-genes* 74%

BPIM* 68%

BDIM* 58%

*Results obtained from Gevaert et al. [43], where results were 
provided as number of true positives and true negatives.

Table 6: Comparison of the classifier performance using i) a variable subset of our 7 genes, ii) a set of 17 genes identified by ROC with 
Markov Blanket [9], iii) a set of 17 genes identified by LAD [15], iv) a set of 70 genes identified by van 't Veer [3] and v) a set of 231 
genes identified by van 't Veer [3]

Classifier Subsets of our 7 
genes

Our 7 genes Set of 17 genes 
[9]

Set of 17 genes 
[15]

Set of 70 genes 
[3]

Set of 231 genes 
[3]

C4.5 with boosting 91.67% 84.52% 68.42% 59.52% 54.76% 76.19%

C4.5 84.52% 84.52% 68.42% 57.90%* 42.11%* 73.68%*

k-NN 80.36% 77.38% 74.21% 63.16%* 63.16%* 78.94%*

Logistic Regression 81.55% 77.38% 73.68% 73.68%* 47.37%* 73.68%*

ANN 77.38% 76.19% 84.21% 84.21%* 42.11%* 73.68%*

SVM 83.33% 76.19% 79.47% 63.16%* 57.90%* 73.68%*

*Results adopted from Alexe et al. [15].
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approach did not have access to the test set for gene selec-
tion. When selecting genes using our voting approach, we
used only the training dataset, keeping the test set com-
pletely unknown. The performance of the classifiers using
the selected 70 and 231 genes by van 't Veer [3] was found
to be insignificant compared with that of our approach.
Furthermore, 70 or 231 is not a compact set of genes and
our voting method can obtain a better accuracy using at
most four genes (see Table 2).

Gevaert et al. [43] proposed a Bayesian networ k-based
strategy to treat clinical and microarray data along the
same lines as above using the same dataset. A probabilistic
model was used because it integrates the data sources in
several ways, and explores and documents the model
structure and parameters. The concept of a Markov Blan-
ket is used to identify all the variables that shield the class
variable from being affected by the rest of the network.
However, all the processes are integrated in the classifier,
and hence the performance of the system is biased
towards the choice of a classifier. Furthermore, the per-
formance of the classifier would depend on the selection
of the initial distribution for the model.

Comparison with other filter approaches
Jeffery et al. [44] have demonstrated that the ROC is an
accurate way to identify differentially regulated genes in a
microarray dataset and that it can produce robust classifi-
ers applying 9 feature selection techniques on 9 gene
expression datasets. When dealing with datasets that have
15 or more samples, the ROC was shown to be the most
accurate. Other filter approaches like t-test and Principle
Component Analysis (PCA) produce reasonable results,
but ROC yields better results (see Figure 1) on the van 't
Veer [3] dataset. It is particularly useful for gene expres-
sion data, as it is not directly dependent on the standard

deviation of the expression of each gene like the t-test is,
or only on the correlation of each genes like the PCA is.
Moreover, unlike PCA, ROC is not sensitive to the scaling
of the data.

Gene set significance tests
It is interesting to consider the results of gene set enrich-
ment analysis (GSEA) [45] on our set of 7 genes obtained
by voting, against the other gene sets proposed by van 't
Veer et al. [3] (size 70 and 231 genes, respectively), Alexe
et al. [15] (17 genes), and the one we have obtained using
Mamitsuka's [9] technique (17 genes). Three out of the
five gene sets are enriched in phenotype 1 (i.e. relapse). Of
which, Mamitsuka's and our gene sets have an FDR q-
value equal to 0 and 0.005, with an enrichment score (ES)
of 0.78 and 0.80, respectively. Members of the leading
edge subset (i.e., tags = 100%, list = 20% and signal =
125%) also indicate that our gene set contains only those
genes contributing to the enrichment score, compared to
the other gene sets that contain only a fraction of genes
contributing to the enrichment score (see Additional File
2).

Conclusion
We have proposed and implemented a multi-classifier
voting approach for gene selection, to effectively classify
the prognosis of breast cancer patients using data from
two distinct treatment cases. The novelty of our approach
is that it can identify a very small number of genes that are
predictive across a large range of classifiers. We applied
our voting approach to three well-known microarray data-
sets, related to breast cancer. Experimental analysis dem-
onstrated high prediction accuracies for the gene sets
discovered, compared to previous studies. The gene sets
discovered were also biologically relevant and had good
biological process coverage.

ROC curves of three classifiers with selected genes using three filter approaches FROC, t-test and PCAFigure 1
ROC curves of three classifiers with selected genes using three filter approaches FROC, t-test and PCA. A 
group of three graphs showing ROC curves for three classifiers with selected genes using three filter approaches FROC, t-test 
and PCA.
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