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Abstract

Electrical defibrillation is a well-established treatment for cardiac dysrhythmias. Studies

have suggested that shock-induced spatial sawtooth patterns and virtual electrodes are

responsible for defibrillation efficacy. We hypothesize that high-frequency shocks enhance

defibrillation efficacy by generating temporal sawtooth patterns and using rapid virtual elec-

trodes synchronized with shock frequency. High-speed optical mapping was performed on

isolated rat hearts at 2000 frames/s. Two defibrillation electrodes were placed on opposite

sides of the ventricles. An S1-S2 pacing protocol was used to induce ventricular tachyar-

rhythmia (VTA). High-frequency shocks of equal energy but varying frequencies of 125–

1000 Hz were used to evaluate VTA vulnerability and defibrillation success rate. The 1000-

Hz shock had the highest VTA induction rate in the shorter S1-S2 intervals (50 and 100 ms)

and the highest VTA defibrillation rate (70%) among all frequencies. Temporal sawtooth pat-

terns and synchronous shock-induced virtual electrode responses could be observed with

frequencies of up to 1000 Hz. The improved defibrillation outcome with high-frequency

shocks suggests a lower energy requirement than that of low-frequency shocks for success-

ful ventricular defibrillation.

Introduction

Ventricular tachyarrhythmia (VTA), which includes ventricular tachycardia and ventricular

fibrillation, is a major cause of sudden cardiac death [1]. Regarding the progress of cardiac

research in recent decades, electric defibrillation has been demonstrated to be the most effec-

tive life-saving tool for terminating VTA. However, the mechanism of defibrillation remains

insufficiently understood because the shocks obscure conventional electrical instrumentation

recordings during defibrillation. Over the past two decades, the application of optical mapping

has enabled direct observation of tissue responses to electric shocks during defibrillation, thus
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providing new insights into complicated VTA activation patterns and defibrillation mecha-

nisms [2–5].

Two major theories have been developed at the cell and tissue levels. The first theory at the

cell level is the sawtooth hypothesis, which posits that a chain of cells interconnected by high-

resistance gap junctions can generate a sawtooth pattern during the shock [6–9]. The high

resistance of the gap junction on a cell membrane forces the current to flow preferentially

through the cell membrane. After the current enters the cell, the nearest cathode at the end of

the cell depolarizes, the anode hyperpolarizes, and a sawtooth pattern can be established by

tracing the current changes in the transmembrane potential [10, 11]. Therefore, the electrical

energy can propagate into tissue deeper than the superficial layers when the shock energy fol-

lows the cell bundles in accordance with the sawtooth mechanism. On the basis of the saw-

tooth model, if an electric field is sufficiently strong, the transmembrane potential in the

depolarized areas of all cells reaches the activation threshold and initiates local excitation,

which spreads to the hyperpolarized areas, and the entire cell chain is activated almost simulta-

neously [12]. In this study, the temporal sawtooth pattern was observed at the tissue level dur-

ing high-frequency defibrillation. This phenomenon may support the defibrillation

propagation mechanism and improve defibrillation efficacy.

The second major theory at the tissue level is the virtual electrode hypothesis, which was

established on the basis of the bidomain model [13] and optical mapping experiments [14].

Virtual electrode theory suggests four modes of cardiac tissue excitation during defibrillation.

Wikswo et al. [15] described the main illustration and details of this theory. These propagation

models can be observed in experiments by using optical mapping. In optical mapping experi-

ments under real cathode stimulation, the cardiac tissue near the electrodes depolarizes, which

generates two virtual anodes and causes lateral myocardium hyperpolarization. This phenom-

enon explains how remote tissue not directly under the shocking electrodes can have trans-

membrane potential responses from the shock [12, 16, 17]. The virtual electrode hypothesis is

more applicable to biphasic shocks than to monophasic shocks possibly because of the imme-

diate phase reversal of tissue responses during the shock [15, 18]. Therefore, the multiphase

reversal may further enhance defibrillation efficacy [12]. However, the virtual electrode

response of multiphase defibrillation waveforms has not been observed in studies. The multi-

phase virtual electrode pattern was validated through experimentation in the present study

and could enhance defibrillation efficacy.

Relevant studies have focused mainly on defibrillation voltage, energy, and duration [19–

21]. By contrast, the present study investigated tissue response to different frequencies of defi-

brillation shocks. By creating a defibrillation system with adjust frequency, we applied defibril-

lation shocks with different frequencies (125–1000 Hz) in isolated rat hearts and tested the

hypothesis that the temporal sawtooth pattern induced by high-frequency shocks helps main-

tain tissue polarization and refractoriness. Furthermore, the generation of rapid virtual elec-

trode reversal synchronized with the shock frequency at remote regions may improve

defibrillation efficacy. In this study, hearts were more vulnerable to high-frequency waveforms,

which have greater defibrillation efficacy than low-frequency waveforms. The temporal saw-

tooth and spatial virtual electrode phenomena experimentally observed using optical mapping

could be the underlying mechanisms of improving defibrillation outcomes.

Material and methods

Heart preparation

The experimental protocol was approved by the National Chiao Tung University Institution

Animal Care and Use Committee. The animal experiment was approved by the Laboratory
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Animal Center of National Chiao Tung University (NCTU-IACUC-107025). Female Sprague

Dawley rats (n = 6) aged 8 to 10 weeks and weighing 200 to 300 g were obtained from Bio-

LASCO Taiwan Yi-Lan Breeding Center. Rats were housed in specific pathogen-free condi-

tions in the animal care facility at the Laboratory Animal Center of National Chiao Tung

University in accordance with institutional guidelines. Animals received food and water ad

libitum and were acclimatized to standard laboratory conditions (25˚C ± 3˚C, 55% ± 5%

humidity, and a 12-h light/dark cycle). Rats were first anesthetized using isoflurane and then

injected with heparin for blood anticoagulation and urethane for deeper anesthetization.

Hearts were rapidly excised and subject to retrograde perfusion via the aorta with Tyrode’s

solution. The Tyrode’s buffer solution composition was (in mM) 125 NaCl, 4.5 KCl, 0.5

MgCl2, 0.54 CaCl2, 1.2 NaH2PO4, 24 NaHCO3, and 5.5 glucose plus 50 mg/L albumin, and the

pH value was adjusted to 7.4 [22]. Hearts were perfused using Tyrode’s solution at 37˚C for 10

min before being stained with voltage-sensitive dyes (di-4-ANEPPS, 5 μg/mL) for fluorescence

imaging and blebbistatin (10–15 μM) to inhibit heart contraction [23]. Blebbistatin is a com-

monly used uncoupling agent for reducing heart contraction artifacts during optical mapping.

This agent is effective in inhibiting contraction while minimally affecting the optical mapping

results for rodent hearts [24, 25]. A custom-designed high-power light-emitting diode with a

center wavelength of 505 nm was used to excite the stained heart. The optical mapping setting

is illustrated in Fig 1A. The green LED was used to induce fluorescence, which was captured

through a 600-nm long-pass filter by using a high-speed camera system (MiCAM ULTIMA,

SciMedia, CA, USA). The camera had an acquisition frame rate of 2000 frames/s with a frame

interval of 0.5 ms. The image resolution was 100 × 100 pixels with a spatial resolution of

0.35 × 0.35 mm2/pixel. The images were continually acquired for 2 seconds before applying

the shock waveforms. The action potential amplitudes measured using optical recording were

represented by the relative change in fluorescence intensity [26]. The average intensity of the

acquired image sequence was calculated to obtain a mean intensity frame, and the relative

change in fluorescence intensity in consecutive frames from the “mean” was regarded as the

optical potential of tissue responses.

Experimental design

The experimental setup for rat hearts is presented in Fig 1A. The isolated heart was placed in a

perfusion chamber with the anterior facing the camera objective lens. Each rat heart was elec-

trically paced using a Teflon-coated stainless steel wire (0.3 mm in diameter) inserted into the

apex as the cathode and another wire in the tissue bath as the anode. Defibrillation shocks

were delivered through two stainless steel plates (5 × 10 mm2 in size) placed next to the left

ventricle, and the cathode was next to the right ventricle. Electrocardiography (ECG) was

monitored using three record electrodes placed in the heart chamber near the periphery of the

heart. A custom-designed high-frequency defibrillator generated multiphasic truncated expo-

nential decaying waveforms [27]. As illustrated in Fig 1B, the defibrillator was designed to pro-

vide four different frequencies of biphasic waveform shocks of approximately 200 V to the

isolated rat heart; this design was similar to the voltage settings in an isolated rabbit heart defi-

brillation experiment [28]. The power of each shock was 0.45–0.51 J, which was similar to that

of previous studies [29]. The output waveforms exhibited four different temporal patterns,

including the conventional biphasic 125 Hz as well as 250, 500, and 1000 Hz. The four frequen-

cies are multiples of 125 Hz with a total output duration of 8 ms. Therefore, the duration of

each individual phase in the biphasic waveforms was calculated to be 4 ms at 125 Hz, 2 ms at

250 Hz, 1 ms at 500 Hz, and 0.5 ms at 1000 Hz.
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The positive correlation between VTA vulnerability and the defibrillation success rate has

been demonstrated previously[30–33]. VTA vulnerability was evaluated using the standard

S1-S2 protocol [34], in which the S1s are the pacing stimuli and the S2 is the defibrillation

shock with the four different frequencies. In a typical application of the S1-S2 protocol, the

cycle length of the S1 pacing pulse train should be slightly shorter than the heart’s intrinsic

basic cycle length. In our experiment, the intrinsic basic cycle lengths of the isolated rat hearts

were 230–350 ms; thus, S1 cycle lengths of 200 ms were used in the study. S2 refers to one defi-

brillation shock immediately following the S1 pacing pulse train. The brief interval between S1

and S2 is called the S1-S2 coupling interval [34–36], which was set at three values in this exper-

iment: 50, 100, and 150 ms. In each heart, the four defibrillation waveforms (125, 250, 500, and

1000 Hz) were successively used as the S2 in the vulnerability test, and each waveform was

applied three times by using the respective S1-S2 coupling intervals (50, 100, and 150 ms).

Therefore, each heart received fibrillation induction 12 times. If VTA was induced, then a defi-

brillation shock with the same frequency as the induction shock was applied when the VTA

persisted for longer than 2000 ms, and the defibrillation success rate was calculated

accordingly.

Six hearts were used in this study. In the first three hearts, the sequence of the S1-S2 cou-

pling intervals was 150 ms, 100 ms, and 50 ms. In the other three hearts, such a sequence was

reversed to become 50 ms, 100 ms, and 150 ms. This process was used to minimize the con-

founding effect of the order of the S1-S2 coupling intervals on VTA inducibility. A 3-min

recovery period was added between consecutive shock applications to allow the tissue suffi-

cient resting time.

Data analysis

The heart responses to different shock frequencies were compared using a one-way analysis of

variance (ANOVA) between the four groups and a two-sample t test for paired data between

Fig 1. Optical mapping setting and typical waveform illustrations. (A) High-speed optical mapping setup for fluorescence imaging of isolated

hearts. The inset figure displays the shock electrode placement on the lateral sides of the ventricles. (B) Four shock waveforms with different

frequencies that were used as the S2s in the S1-S2 stimulation protocol.

https://doi.org/10.1371/journal.pone.0232529.g001
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two of the four groups. All values were reported as means ± standard deviation. We set a shock

frequency of 125 Hz for a control group and compared it with other shock frequencies. Statisti-

cal significance was represented by p< 0.05.

Results

The experiment setting is illustrated in Fig 1, and the details of the experimental design are

described in the Methods section.

Tissue response to high-frequency shocks

Tissue response observed using optical mapping revealed that the virtual cathode and anode

continued to appear backward and forward on the heart surface during electrical shocks. The

high-frequency frames illustrated in Fig 2 were constructed using a “difference” mode of

image processing in which each frame was obtained by subtracting the previous raw fluores-

cence image from the current one. The heart position is displayed in the inset of Fig 1A. The

heart area was encircled by the region-of-interest tool. The area outside of the heart was

masked in black. The tissue areas with depolarizing optical potential are shown in red and yel-

low, whereas repolarizing areas are in blue and white. A change in tissue polarization was

observed when the colors in the frames changed from white to red or vice versa. The virtual

electrode effect was observed in four of the six hearts (66%). For all the shock frequencies,

postshock tissue responses demonstrated virtual electrode effects by displaying the recurrent

virtual cathode (red spot) and anode (white spot) in opposite locations on the heart (Fig 2A–

2D). The original file is included in S1 Appendix. These graphs indicate that virtual electrodes

appeared most obviously in areas adjacent to the shock electrodes and were easier to observe

in higher-frequency shocks. Optical potentials at the virtual electrode locations as indicated in

Fig 2A–2D are plotted in Fig 2E. Each panel in Fig 2E displays the shock waveform (top trace)

and the optical potential (lower traces). The optical potentials were measured near the physical

electrodes attached to the left (middle red trace) and right (lower blue trace) ventricle. These

optical potentials consistently exhibited virtual electrodes of opposite polarities following

shocks of all four frequencies. The vertical lines mark the valley, or virtual cathodes, in the red

traces obtained from the left ventricle. Corresponding to these valleys are the local peaks, or

virtual anodes, in the blue traces.

To examine the tissue responses along the two shock electrodes, three points (a–c) were

separately marked in red, blue, and green from the cathode to the midpoint between the two

shock electrodes (Fig 3A). The length from a to c was approximately 0.5 mm. Thus, the dis-

tance between adjacent points was approximately 0.25 mm. The optical potentials at these

points were extracted from the image sequence to evaluate the propagation of defibrillation

responses from the electrode to the center of the heart. The optical potential resulted from the

biphasic (125 Hz) and 250-, 500-, and 1000-Hz shocks along the shock electrode are displayed

in Fig 3B–3E. In general, the optical potential amplitude of the shock response gradually

decreased as the recording site moved away from the shock electrodes. The postshock optical

potential levels, measured 8 ms after the shock, are illustrated in Fig 3F. The four frequencies

of postshock potential levels were analyzed using one-way ANOVA (p = 0.02, α = 0.05) and

were significantly different (p< 0.05). Among the four defibrillation waveforms, the 500-Hz

(0.58 ± 0.15, normalized ΔF) and 1000-Hz (0.74 ± 0.09, normalized ΔF) shocks produced

higher postshock optical potential than that of the standard 125-Hz biphasic shock

(0.49 ± 0.11, p = 0.002). In addition, the 250-Hz (0.57 ± 0.09, normalized ΔF) shock was signifi-

cantly different from the 125-Hz shock (p = 0.002). High postshock action potential could pro-

long the refractory period, thus increasing defibrillation efficacy.

PLOS ONE High-frequency biphasic shocks enhance ventricular fibrillation vulnerability

PLOS ONE | https://doi.org/10.1371/journal.pone.0232529 May 1, 2020 5 / 14

https://doi.org/10.1371/journal.pone.0232529


Tissue activation from shocks

“Optical potential rise time” is defined as the occurrence time from the rising point to the first

peak of the optical potential shock response, as indicated by the red vertical lines in Fig 4A. Fig

4B displays a comparison of optical potential rise time. The rise time of the 50-ms S1-S2 inter-

val was not included because an S1-S2 interval of 50 ms was too short, and shocks delivered

during the eighth S1 action potential duration caused an incorrect estimate of the optical

Fig 2. Different frequencies of defibrillation observed using optical mapping. (A–D) Whole-heart optical potential response to shocks

of 125–1000 Hz observed from the difference in fluorescence intensity between successive frames, displaying wavefront polarization. Red

arrows indicate depolarizing virtual cathodes; white arrows indicate repolarizing virtual anodes. These virtual electrode responses were

observed in only four of the six rat hearts. (E) Comparison of shock waveforms and shock responses of the virtual electrodes on the left

and right ventricles of the four shock frequencies.

https://doi.org/10.1371/journal.pone.0232529.g002

Fig 3. Different frequency responses at the midpoint of the heart and comparison of postshock action potential. (A) Three recording

sites between the cathode and the midpoint on the heart. (B–E) The 125–1000-Hz shock-induced optical potentials. Vertical lines indicate

instances of the shock waveform switching from positive to negative potential. The x-axis is the time scale (ms), and the y-axis is relative

brightness with arbitrary units. (F) Postshock optical potential level at point (a) for the four shock frequencies (� represents p< 0.05).

https://doi.org/10.1371/journal.pone.0232529.g003
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potential rise time. Thus, the figure presents only statistics of the rise time from the S1-S2

intervals of 100 and 150 ms. We calculated the average action potential rise time in the four

frequencies. No significant differences in rise time were observed for 250 Hz (2.56 ± 0.57 ms,

p = 0.22), 500 Hz (2.58 ± 0.88 ms, p = 0.20), or 1000 Hz (2.67 ± 1.00ms, p = 0.13) compared

with 125 Hz (2.33 ± 0.52 ms).

Isochronal activation maps were created to compare the activation pattern of the four

shock frequencies. Fig 4C presents optical mapping isochronal maps suggesting that shocks

with the same total energy in four shock frequencies produced the same action potential prop-

agation pattern and speed, which are consistent with the optical potential rise time profiles.

VTA vulnerability

The standard S1-S2 stimulation protocol was used to evaluate the difference in ventricular vul-

nerability among different shock frequencies. Fig 5A presents an optical potential trace from

the S1-S2 pacing protocol that failed to induce VTA. The shock was delivered after eight S1

pacing pulses but could not induce VTA. In addition, an example of successful VTA induction

is presented in Fig 5B. In this example, the shock successfully induced fibrillation. After VTA

induction, a shock was asynchronously delivered to terminate the fibrillation (Fig 5C). Optical

mapping was performed during the induction and defibrillation procedures. An example of

the VTA wavefront propagation is marked in optical mapping frames in Fig 5D.

The upper limit of ventricular vulnerability is defined as the highest energy that can induce

fibrillation [37]. However, the energy was constant during defibrillation with different fre-

quencies in this research. Thus, VTA vulnerability is defined as the ratio of cumulative times

of successful VTA induction over the number of S2 shocks delivered in the experiment. VTA

induction was considered successful when the induced VTA persisted for more than 2000 ms

[38]. VTA vulnerability increased as the shock waveform frequency increased (Fig 6). The

1000-Hz shock had the highest vulnerability among all the frequencies, and shorter S1-S2

intervals (50 and 100 ms) were correlated with higher vulnerability. The highest VTA vulnera-

bility of the 100-ms S1-S2 interval was six times higher than that of the biphasic (125-Hz)

shock. However, all the S1-S2 interval and frequency groups exhibited nonsignificant differ-

ences (p> 0.05) in the one-way ANOVA and t test. Regarding the defibrillation success rate

Fig 4. Comparison of action potential rise time and shock isochronal maps among the four shock frequencies. (A) Responses to the

four shock frequencies at point c in Fig 3B–3E were combined for comparison. The x-axis is the time scale (ms), and the y-axis is the

relative brightness with arbitrary units. (B) Comparison of the optical potential rise time resulting from the four shock frequencies. (C)

Isochronal maps of the shock-induced tissue response in the entire heart.

https://doi.org/10.1371/journal.pone.0232529.g004
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measurement, after successfully inducing VTA, the subsequent defibrillation frequency was

the same as the induction frequency. Thus, the defibrillation success rate was 50% (2 of the 4

hearts) for 125 Hz, 50% (2 of the 3 hearts) for 250 Hz, 33% (1 of the 3 hearts) for 500 Hz, and

70% (7 of the 10 hearts) for 1000 Hz.

Discussion

The main findings of this study are as follows: (1) temporal sawtooth patterns can be observed

using optical mapping during high-frequency shocks, (2) repeated virtual electrode responses

prolonged postshock action potential and tissue refractoriness, (3) high-frequency defibrilla-

tion waveforms coupled with short S1-S2 intervals produced the highest VTA vulnerability

and defibrillation success rates, and (4) the action potential rise time and isochronal maps of

shock-induced optical potentials are the same irrespective of shock frequency.

Fig 5. S1-S2 protocol-induced ventricular tachyarrhythmia (VTA) observed using electrocardiography and VTA

observed using optical mapping. (A) Example of optical potential from S1-S2 pacing protocol without VTA

induction. After applying eight S1 pacing pulses, S2 appeared as a premature stimulation (S1-S2 interval: 50 ms). (B)

Successful VTA induction by a 1000-Hz shock (S1-S2 intervals: 100 ms). (C) Successful defibrillation by a 1000-Hz

shock followed by the restored rhythm. (D) VTA wavefront observed using optical mapping. The yellow dotted lines

and arrows indicate the direction of VTA wavefront propagation.

https://doi.org/10.1371/journal.pone.0232529.g005
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Our results experimentally demonstrated for the first time that the entire heart can react to

biphasic high-frequency shock waveforms of up to 1000 Hz. Shocks at even higher frequencies

(>1000 Hz) were not evaluated in the current study because of the low signal-to-noise ratio in

optical recording with high frame rates. Moreover, because the optical mapping camera frame

rate was 2000 frames/s, according to the Nyquist sampling theorem, the highest shock fre-

quency that could faithfully reveal the tissue response was 1000 Hz. Rapid polarity-reversing

virtual electrodes and prolonged tissue refractoriness from high-frequency shocks are novel

findings that could have crucial implications in defibrillation research. Because of the signifi-

cant correlation between VTA vulnerability–related shock strength and defibrillation success

[35], high-frequency defibrillating waveforms could achieve higher defibrillation success rates

than those of conventional biphasic waveforms, and our study demonstrated this result.

High-frequency response has been discussed in many studies. Weirich et al. [39] applied

alternating-current (AC) defibrillation waveforms with frequencies of 30–1000 Hz on guinea

pig hearts and demonstrated that the fibrillation threshold increased when high frequencies

were applied. One study demonstrated that 200 Hz had a higher defibrillation success rate

than 1000 Hz did; however, the study had limited sampling frequencies [40]. High-frequency

AC stimulation (1000–2000 Hz) can also inhibit cardiac excitation and generate reversible

conduction blocks in cardiomyocytes [41]. In our study, virtual electrode responses and tem-

poral sawtooth patterns were clearly observed when using the optical mapping technique. Nev-

ertheless, our study was constrained by the optical mapping frame rate at 1000 Hz; thus, the

virtual electrode reaction in each heart could not be observed during most of the 1000-Hz

shocks (66%).

High-frequency ACs (HFACs) have been applied in real and simulated animal models [42,

43]. HFACs can produce conduction block and sustained refractoriness in cardiac tissue.

HFACs were applied during spiral wave reentry in cardiomyocyte monolayers (HFAC: 50–

1000 Hz) and ventricular arrhythmias in Langendorff-perfused guinea pig (HFAC field: 50–

200 Hz) and rabbit hearts (HFAC field: 200 Hz). These results demonstrated that HFAC field

Fig 6. Ventricular tachyarrhythmia vulnerability bubble plot of S1-S2 coupling intervals and shock frequencies.

https://doi.org/10.1371/journal.pone.0232529.g006
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stimulation could generate reversible conduction block and terminate reentrant arrhythmias.

Our study employed capacitor-discharged rectangular biphasic waveforms rather than AC

fields; however, our results of sustained refractoriness are consistent with those of relevant

studies. Furthermore, we demonstrated the virtual electrode mechanism that may play a major

role in establishing conduction block and sustained tissue refractoriness.

In this study, spatial sawtooth patterns were not identified for any of the shock frequencies.

However, a temporal sawtooth pattern was clearly observed in the plateau region of the optical

potential after initial tissue activation for all shock frequencies (Fig 2E). The amplitude of the

temporal sawtooth decreased as the recording site moved away from the physical shock elec-

trode. The prolonged refractoriness and temporal sawtooth pattern may facilitate the penetra-

tion of electrical energy into deeper layers of heart tissue, which is preferred in defibrillation.

Further studies are required to investigate the implications of these temporal sawtooth

patterns.

The virtual electrode was clearly observed during shock delivery in this study. Wikswo et al.

[15] demonstrated that monophasic stimulation can generate electrical virtual electrodes of

opposite polarity at the stimulation site. The current research also demonstrated that the vir-

tual electrode can be observed during shocks by using the optical mapping technique. Our

results are the first to demonstrate the synchronization of virtual electrodes with high-fre-

quency multiphasic shocks of up to 1000 Hz. Such a peculiar spatial pattern led to prolonged

tissue refractoriness and could have crucial implications in determining defibrillation

outcomes.

Biphasic waveforms are superior to monophasic waveforms because of their improved abil-

ity in terminating VTA [29, 44, 45]. In addition, triphasic waveforms have a significantly

higher probability of shock success than biphasic shocks [27], and quadriphasic waveforms

exhibit further improvement at higher energy levels [46]. Consequently, we used only biphasic

shocks for comparison with multiphasic shocks. These results led to the speculation that multi-

phasic waveforms could improve defibrillation efficacy as the number of waveform phases

increases. Sweeney et al. [47] proposed that the heart acts as a low-pass filter for high-fre-

quency monophasic pulses. The authors demonstrated that the defibrillation requirement was

approximately twice as high when the pulse frequency exceeded 1000 Hz. Our experiment

involved the use of biphasic shocks rather than monophasic shocks; thus, the capacitor effect

may not be obvious. In fact, such an effect was not observed in high-resolution optical

mapping.

Although tissue response to shocks can be directly visualized using the optical mapping

technique, such a method is limited to only recording electric propagation on the heart surface.

In the optical mapping results depicted in Fig 2, the virtual anode and cathode appear at the

opposite sites of the true cathode and anode, respectively. The initiation and termination of

VTA are determined by many structural and dynamic factors [48]. The defibrillation shock

can cause major changes to the electrical dynamics. Increased defibrillating frequencies likely

have a strong influence on the intracellular and extracellular electrical current flow that dis-

rupts wave propagation with the virtual electrode formation mechanism and causes prolonged

refractoriness through recurrent virtual electrodes. In our previous research.

In analyzing electrical energy delivered to the heart, the heart may be modeled as a parallel

circuit consisting of a resistance and a capacitance [49, 50]. The resistance equals the series

combination of the effective series resistance of the turn-on transistor, current-limiting resis-

tance, electrode resistance, and the heart resistance. For multiple phasic reversals of the shock

waveform, due to the charging effect of the heart capacitance, the switching between phases is

not instantaneous. Therefore the total energy delivered to the heart was not exactly the same

among shock waveforms with different frequencies. Our results showed that the switching
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time between phases was less than 0.1 ms. Therefore, the difference in the delivered energy

may not be significantly different among different-frequency waveforms. Nevertheless, consis-

tent with the charge-burping model of defibrillation [51], the higher frequency shocks gener-

ated more phasic reversals in tissue responses and could underlie the higher efficacy in the

defibrillation outcomes than the lower frequency ones.

This study had several limitations. First, each heart received 12 defibrillation episodes.

Despite the resting period between shocks, multiple shocks may have caused heart tissue dam-

age. Second, our system used single-capacitor discharge at the output stage. Because of the low

energy consumption of defibrillating a small heart, exponential decay of the waveform during

the shock was not readily detectable. We tested waveforms with equal energy, but the vulnera-

bility test results could depend on other factors, such as the average amplitude of the shock

waveform. The effect of these different waveform features on ventricular vulnerability may

require further investigation. In addition, the setting and the order of the S1-S2 coupling inter-

vals may affect the defibrillation results. Also, the experimental protocol of using fixed S1-S2

coupling intervals cannot precisely determine the vulnerable window, as the subtle 1–2 ms

could be critical in determining the VTA inducibility. Finally, in optical mapping, the absolute

value of membrane potential cannot be established reliably. Therefore, the changes in mem-

brane potential resulting from the application of high-frequency shock waveforms could only

be represented qualitatively.

Conclusions

In this study, we designed a defibrillator with adjustable frequency and demonstrated that

multiphasic shocks with frequencies of up to 1000 Hz can induce temporal sawtooth patterns

and synchronous virtual electrode responses. Ventricular tissue is more vulnerable to high-fre-

quency defibrillation shocks than to low-frequency ones. High-frequency defibrillation shocks

may be further investigated to enhance defibrillation success with high efficacy and low energy

consumption and thereby reduce heart damage.

Supporting information

S1 Appendix. Original optical mapping file for verification (125 Hz, 250 Hz, 500 Hz, and

1000 Hz). These files were recorded using a high-speed camera (MiCAM).
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