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Abstract: Polymer films with nano- or microstructured surfaces have been widely applied to optical
devices, bioplates, and printed electronics. Laser-assisted thermal imprinting (LATI), in which a laser
directly heats the surfaces of a mold and a thermoplastic polymer, is one of the high-throughput
methods of replicating nano- or microstructures on polymer films. Only the surfaces of the mold
and polymer film are heated and cooled rapidly, therefore it is possible to replicate nano- or
microstructures on polymer films more rapidly than by using conventional thermal nanoimprinting.
In this study, microlens arrays (MLAs) were replicated on polymethylmethacrylate (PMMA) films
using LATI, and the effects of the pressing pressure (10−50 MPa) and the pattern size (33- and
5-µm pitch) of the MLA on the filling ratio were investigated by analyzing a microlens replicated
using different laser-irradiation times (0.1−2 ms). The filling ratio increased with increasing pressing
pressure and laser-irradiation time in the replication of MLAs with varying sizes, while the flow of
the PMMA varied with the pressing pressure and laser-irradiation time. It was found that during
filling, the shape of the polymer cross-sectional surface demonstrated a double and single peak in
the 33- and 5-µm-pitch patterns, respectively. This was because the depth of the heated area in the
33-µm-pitch pattern was smaller than the pattern size, whereas that of the 5-µm-pitch pattern was
comparable to (or larger) than the pattern size.

Keywords: laser-assisted thermal imprinting; pressure; pattern size; thermoplastic polymer;
microlens array

1. Introduction

Nano- or microstructured polymer surfaces perform various functions, such as hydrophilic or
hydrophobic interactions with liquids, reduction of friction or sticking to solid surfaces, demonstrating
an anchoring effect for adhesives, and optical or photonic behaviors. In terms of their use in optical
or photonic capacities, antireflection structures have been fabricated to reduce light reflection and to
increase the incident light transmittance in solar cells, flat panel displays and so forth [1]. Microlens
arrays (MLAs) are fabricated on OLED devices, or OLEDs are fabricated on polymer films with
photonic crystal surfaces [2–6] to improve the light extraction efficiency of organic light-emitting
diodes (OLEDs). Furthermore, various nanostructures have been fabricated on polymer films for
organic photovoltaic cells [7] and nanopillars have been fabricated for plasmonic biosensing [8].
As described above, nano- or microstructures are expected to become more commonly applied to
various optical and photonic devices.

For these applications, it is necessary to fabricate nano- or microstructures on polymer films
with a high throughput and low cost. Nanoimprint lithography (NIL), which was developed by
Chou et al., is one of the highest-throughput and most inexpensive methods of fabricating nano- or
microstructures [9]. To obtain nano- or microstructured surfaces on polymer films, three main kinds
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of nanoimprint method have been proposed and developed: thermal nanoimprinting [9], ultraviolet
(UV) nanoimprinting [10], and soft lithography [11]. UV lithography involves the use of a UV-curable
polymer which is coated and molded and then cured using UV light. Soft lithography involves the
use of thermocurable polymer coatings, which are cured post heating. These lithography techniques
possess advantages associated with the use of soft molds and the use of low applied pressures because
of the low viscosity of polymers. Flexible substrates can thus be coated and highly-functional materials,
such as those possessing ferroelectric functionality, can be used [12,13]. On the other hand, thermal
nanoimprinting is a direct imprinting method used to fabricate nano- and microstructures on polymer
films. Therefore, it has the advantage of simplicity in terms of the manufacturing process because of the
absence of a coating process [14]. In thermal nanoimprinting, a mold with a nano- or microstructured
surface is heated and pressed directly onto a thermoplastic polymer film. The polymer is heated
to a temperature above its glass transition temperature (Tg), causing it to flow and fill the nano-
or microstructures of the mold. The mold and polymer are then cooled and demolded. Nano- or
microstructures can be replicated on polymer films using these simple procedures. This simplicity
has increased the popularity of thermal nanoimprinting among researchers as both a promising and
convenient method [15].

The mold and polymer require heating and cooling in the thermal nanoimprinting process.
The reduction in cycle time is thus limited by the thermal conductivities and specific heat capacities of
the mold and polymer. On the other hand, in laser-assisted nanoimprinting, which was developed
by Chou et al., nano- or microstructures are replicated by heating only the surfaces of a mold and
a substrate using a laser [16]. Xia et al. and Grigalinūnas et al. replicated the nanostructures of a glass
mold on a thermoplastic polymer film [17,18]. Grigalinūnas et al. also demonstrated nanoimprint
lithography by using an Si mold and a CO2 laser [19]. Nagato et al. fabricated nanostructures
of diamond-like carbon on a glass mold and replicated them on thermoplastic polymer films in
a predefined area by scanning with a laser. They also demonstrated that laser heating reduced the cycle
time for thermal imprinting below that associated with conventional thermal nanoimprinting [20].

However, although it has already been demonstrated that various nanostructures could be
replicated on polymer films using laser-assisted thermal imprinting (LATI), this has only been achieved
in a few instances. When microstructures are replicated on a polymer film using LATI, the polymer
cannot effectively fill the microstructures of the mold, and the microstructures can therefore not be
completely replicated. This is because it takes a finite amount of time for the polymer to flow and fill
the microstructures of the mold. The flow of the polymer is caused by the applied pressure generated
by pressing the mold onto the polymer film and the decrease in viscosity of the polymer is caused by
laser heating. Therefore, the pressing pressure and laser-irradiation time both have an important effect
on the filling ratio of the polymer (Figure 1).
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In this study, microstructures were replicated on polymer films using LATI and the phenomenon
of polymer filling was investigated. MLAs with different pattern sizes were used as microstructures
and the effects of the pressing pressure, and the pattern size of the MLA, were investigated and the
filling ratio was measured by analyzing a microlens replicated using different laser-irradiation times.

2. Experimental

2.1. MLA Molds

Figure 2 shows scanning electron microscope (SEM) (semi-inlens field-emission type, SU-8010,
Hitachi High-Technologies Corporation, Tokyo, Japan) secondary-electron images of the Ni concave
molds with MLAs used in this study. It is possible to fabricate MLAs with various pattern sizes,
which are used to improve the light extraction efficiency of OLEDs [21]. One of the MLAs used in
this study had a lens diameter of 30 µm, a lens depth of 14 µm, and a pitch of 33 µm, and the other
had a spherical lens diameter of 4.2 µm, a lens depth of 2.1 µm, and a pitch of 5 µm. The microlenses
were arranged in a regular triangular lattice on both MLAs. The Ni concave molds for the MLAs
were constructed using electroforming on convex master molds. Each Ni concave mold had a size
of 10 × 10 mm2 and a thickness of 200 µm. The convex master molds for the electroforming process
were prepared using photolithography and etching on a glass substrate. The mold surfaces were
treated with a lubricant for the nanoimprinting mold, which was a hydrophobic coating material
(DURASURF, Harves Co. Ltd., Saitama, Japan). A polymethylmethacrylate (PMMA) film was used
as a thermoplastic film. The PMMA film had a thickness of 75 µm and Tg of approximately 89 ◦C
(HBA002P, ACRYPLEN, Mitsubishi Chemical Corporation, Tokyo, Japan).
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Figure 2. Scanning electron microscope (SEM) images of the microlens arrays (MLAs) in the Ni concave
molds all shown as 30◦-tilted views. (a) 33-µm-pitch MLA, (b) 5-µm-pitch MLA, and (c) magnified
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2.2. Experimental Setup and Conditions

Figure 3 shows the experimental setup for the LATI process. A pressure-sensitive paper (Prescale
MS R270 10M, of range: 10–50 MPa and accuracy: <±10%, Fujifilm Corporation, Tokyo, Japan) was
used to measure the pressing pressure. The pressure was applied using an air cylinder (Misumi, Tokyo,
Japan). The pressure-sensitive paper was placed on the Ni concave mold, and the paper and mold were
pressed onto a glass plate with a thickness of 15 mm. The pressure applied to the pressure sensitive
paper was then measured. In this study, the pressure measured using the pressure-sensitive paper was
defined as the pressing pressure. The pressing pressure was set to 10, 20, 30, 40, or 50 MPa by adjusting
the air pressure in the cylinder. The above procedure was conducted for each Ni concave mold [11].

After the measurement of the pressing pressure, the pressure-sensitive paper was removed and
a PMMA film was placed on the Ni concave mold. The PMMA film and mold were then pressed onto
the glass plate with pressing pressures of 10, 20, 30, 40, or 50 MPa. A continuous-wave single-mode
fiber laser (SPI Lasers, Southampton, UK) with a wavelength of 1070 nm, 100 W power, and 500 µm
diameter was used in this study to irradiate the surface of the Ni concave mold. After the laser was
scanned once along a line of length 10 mm, the PMMA film was switched to an unimprinted one and
the laser-irradiation time was varied by varying the scanning speed. The scanning speeds were 240,
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320, and 500 mm/s for the 33-µm-pitch MLA and 1000, 2000, and 5000 mm/s for the 5-µm-pitch MLA.
The laser irradiation-time was defined as the laser-irradiation diameter divided by the scanning speed.
The laser-irradiation times were calculated to be 1.0, 1.6, and 2.1 ms for the 33-µm-pitch MLA and 0.10,
0.25, and 0.50 ms for the 5-µm-pitch MLA. Then, for each condition, the MLA replication on the PMMA
film was analyzed using a laser microscope (OLS4100, Olympus Corporation, Tokyo, Japan) and the
filling ratio of the PMMA was calculated. The height within each cell of area 0.125 × 0.125 µm2 was
obtained using the laser microscope. The product of the height and area of each cell was then summed
for each replicated microlens, and the sum was defined as the volume of the replicated microlens.
The volume of the microlens was calculated for each concave master mold. The filling ratio was then
defined as the volume of the replicated microlens as a percentage of the volume of the microlens on
the concave master mold.
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3. Results and Discussion

3.1. Replication of 33-µm-Pitch MLA

Figure 4 shows the relationship between the filling ratio and the pressing pressure for each
laser-irradiation time in the replication of the 33-µm-pitch MLA. In addition, Figure 4 shows laser
microscopic images taken at pressing pressures of 10, 30, and 50 MPa for the laser-irradiation time
of 1.6 ms, an image taken at a pressing pressure of 40 MPa and laser-irradiation time of 1.0 ms,
and an image taken at a pressing pressure of 20 MPa and laser-irradiation time of 2.1 ms. The filling
ratio increased with increasing pressing pressure and laser-irradiation time. This tendency showed
that the higher the pressing pressure, the faster the PMMA flowed and filled the mold. When the
pressing pressure was increased, the thermal contact resistance between the PMMA film and the Ni
mold decreased. The temperature of the PMMA then increased because of the increase in heat input,
and the viscosity of the PMMA decreased. This decrease in the viscosity allowed the PMMA to flow
more easily. At a pressing pressure of 50 MPa, although the filling ratio was approximately 100% for
the laser-irradiation times of 1.6 and 2.1 ms, it was only approximately 60% for the laser-irradiation
time of 1.0 ms. This was due to the laser irradiation being insufficient for the laser-irradiation time of
1.0 ms. When the laser irradiation was insufficient, the depth of the PMMA experiencing a temperature
exceeding Tg was smaller than the lens depth of the 33-µm-pitch MLA. The filling ratio was almost
identical when the pressing pressure and laser-irradiation time were 40 MPa and 1.0 ms, 30 MPa and
1.6 ms, and 20 MPa and 2.1 ms, respectively. In the laser microscopy images obtained under these
conditions, the height difference between the highest area and the center of the replicated microlens
decreased with increasing laser-irradiation time. This tendency showed that the temperature of the
PMMA exceeded Tg not only in the mold contact area but also in the noncontact area when sufficient
laser irradiation was provided, causing the PMMA to flow in both the contact area and the noncontact
area. On the other hand, when the laser irradiation was insufficient, the temperature of the PMMA
only exceeded Tg in the contact area and the PMMA flowed only in the contact area. As can be seen in
the result associated with an irradiation time of 2.1 ms and pressing pressure of 50 MPa, the filling
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was almost perfect. The LATI process possibly did not reach 100% filling because of shrinkage due to
rapid cooling after the laser irradiation. However, the filling was successful using the various pressing
pressures applied in this study.Materials 2019, 12, x FOR PEER REVIEW 5 of 8 

 

 
Figure 4. Filling ratio as a function of pressing pressure for each irradiation time in the replication of 
the 33-μm-pitch MLA. 

3.2. Replication of 5-μm-Pitch MLA 

Figure 5 shows the relationship between the filling ratio and the pressing pressure for each laser-
irradiation time in the replication of the 5-μm-pitch MLA. In addition, Figure 5 shows laser 
microscopic images taken at pressing pressures of 10, 30, and 50 MPa for the laser-irradiation time of 
0.25 ms, and an image taken at a pressing pressure of 50 MPa and laser-irradiation time of 0.10 ms. 
For the laser-irradiation times of 0.10 and 0.25 ms, the filling ratio increased with increasing pressing 
pressure and laser-irradiation time. For the laser-irradiation times of 0.25 and 0.50 ms, the filling ratio 
decreased for some pressing pressures. These decreases in the filling ratio may have been due to 
calculation errors because the PMMA filled the mold almost completely according to the laser 
microscopy image obtained at a pressing pressure of 50 MPa and laser-irradiation time of 0.25 ms. 
The filling ratio was approximately 60% at a pressing pressure of 50 MPa and laser-irradiation time 
of 0.10 ms. This is because the laser irradiation was insufficient for the laser-irradiation time of 0.10 
ms. The filling ratio was almost identical when the pressing pressures and laser-irradiation times 
were 50 MPa and 0.10 ms, and 10 MPa and 0.25 ms, respectively. The laser microscopy images 
obtained under these conditions showed that the height difference between the highest area and the 
center of a replicated microlens was almost identical. This indicated that the temperature of the 
PMMA exceeded Tg not only in the mold contact area, but also in the noncontact area, causing the 
PMMA to flow from both the contact area and the noncontact area. For an irradiation time of 0.50 ms, 
the filling ratio was unstable up to approximately 5% throughout the range of pressing pressures. 
One of the reasons for this is the limitation in accuracy of the laser microscope. A 5% reduction 
corresponds to a 2% or 3% error in measured length, which equates to 100 or 150 nm error over 5 μm. 
To investigate this stability, more precise measurements, such as might be attained using an atomic 
force microscope (AFM), are necessary. The other reason for this 5% disparity is that the heated and 
low-viscosity area was deeper than shorter irradiation time and the effect of supplying the polymer 
from underneath and that of escaping the pressure to unirradiated area in planar direction. 

Figure 4. Filling ratio as a function of pressing pressure for each irradiation time in the replication of
the 33-µm-pitch MLA.

3.2. Replication of 5-µm-Pitch MLA

Figure 5 shows the relationship between the filling ratio and the pressing pressure for each
laser-irradiation time in the replication of the 5-µm-pitch MLA. In addition, Figure 5 shows laser
microscopic images taken at pressing pressures of 10, 30, and 50 MPa for the laser-irradiation time of
0.25 ms, and an image taken at a pressing pressure of 50 MPa and laser-irradiation time of 0.10 ms.
For the laser-irradiation times of 0.10 and 0.25 ms, the filling ratio increased with increasing pressing
pressure and laser-irradiation time. For the laser-irradiation times of 0.25 and 0.50 ms, the filling
ratio decreased for some pressing pressures. These decreases in the filling ratio may have been due
to calculation errors because the PMMA filled the mold almost completely according to the laser
microscopy image obtained at a pressing pressure of 50 MPa and laser-irradiation time of 0.25 ms.
The filling ratio was approximately 60% at a pressing pressure of 50 MPa and laser-irradiation time of
0.10 ms. This is because the laser irradiation was insufficient for the laser-irradiation time of 0.10 ms.
The filling ratio was almost identical when the pressing pressures and laser-irradiation times were
50 MPa and 0.10 ms, and 10 MPa and 0.25 ms, respectively. The laser microscopy images obtained
under these conditions showed that the height difference between the highest area and the center
of a replicated microlens was almost identical. This indicated that the temperature of the PMMA
exceeded Tg not only in the mold contact area, but also in the noncontact area, causing the PMMA to
flow from both the contact area and the noncontact area. For an irradiation time of 0.50 ms, the filling
ratio was unstable up to approximately 5% throughout the range of pressing pressures. One of the
reasons for this is the limitation in accuracy of the laser microscope. A 5% reduction corresponds to
a 2% or 3% error in measured length, which equates to 100 or 150 nm error over 5 µm. To investigate
this stability, more precise measurements, such as might be attained using an atomic force microscope
(AFM), are necessary. The other reason for this 5% disparity is that the heated and low-viscosity area
was deeper than shorter irradiation time and the effect of supplying the polymer from underneath and
that of escaping the pressure to unirradiated area in planar direction.
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Figure 5. Filling ratio as a function of pressing pressure for each irradiation time in the replication of
the 5-µm-pitch MLA.

3.3. Comparison of Surface Shapes during Imprinting

This section discusses the differences in the shape of the polymer surfaces after undergoing the
LATI process. As shown in Sections 3.1 and 3.2, the leading surface of the polymer in the cavity of the
33- and 5-µm-pitch MLAs showed double and single peaks in the cross-section view after imprinting,
respectively. Figure 6 shows the schematic of the heat conduction and polymer flow for the 33- and
5-µm-pitch MLAs. In the larger cavity, the depth of the heated area was smaller than the scale of the
cavity and the polymer near the contact surface preferentially decreased in viscosity and a resultant
double peak was formed, as shown in Figure 6a. In the smaller cavity, the depth of the heated area was
comparable to, or larger than, the scale of the cavity and all the polymer around the contact surface
was heated and the resultant polymer flow caused a single peak as shown in Figure 6b. To more
comprehensively analyze the polymer flow phenomena seen in Figure 6a,b, experiments should be
conducted using MLA with other sizes ranging from between 33 and 5 µm pitch. Applying simulations
that incorporate the modelling of viscoelastic body behavior [22–24] to the MLA imprinting process
would also be useful. Furthermore, other parameters such as laser power, spot diameter, and offset
temperature are important and further investigation of these parameters would expand the discussion.
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4. Conclusions

33- and 5-µm-pitch MLAs were replicated on PMMA films using LATI. The effects of the
laser-irradiation time, the pressing pressure, and the pattern size of the MLA were investigated by
analyzing the replicated microlens and measuring the filling ratio. In the replication of the 33-µm-pitch
MLA, the filling ratio increased with increasing pressing pressure and laser-irradiation time. However,
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for a laser-irradiation time of 1.0 ms, the PMMA did not fill the mold completely because of insufficient
laser-irradiation even though the pressing pressure was increased to 50 MPa, which was the highest
pressing pressure applied in this study. Furthermore, the area of the PMMA in which the temperature
exceeded Tg and the flow of the PMMA varied with laser-irradiation time. In the replication of the
5-µm-pitch MLA, the filling ratio also increased with increasing pressing pressure and laser-irradiation
time. By comparing the surface shapes during filling, it was found that the cross-sectional surface
shape possessed a double and single peak in the 33- and 5-µm-pitch pattern, respectively. The depth
of heated area of the 33-µm-pitch pattern was smaller than the pattern size, whereas that of the
5-µm-pitch pattern was comparable to or larger than the pattern size. Future experiments will need
to be conducted with patterns of other sizes along with simulation modelling of heat conduction
and polymer flow to expand on the current discussion. MLA performance characteristics, such as
light-extraction efficiency, will also be verified as part of future work.
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