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Patterns and ecological drivers of viral communities
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Recent advances in environmental genomics have provided unprecedented opportunities for

the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic

patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep

sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and

examine the biogeography of viruses in this extreme environment. The results demonstrate

that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and

structure, whereas other factors especially latitude and mean annual temperature also impact

viral populations and functions. In silico predictions highlight lineage-specific virus-host

abundance ratios and richness-dependent virus-host interaction structure. Further functional

analyses reveal important roles of environmental conditions and horizontal gene transfers in

shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our

findings underscore the importance of both abiotic and biotic factors in predicting the

taxonomic and functional biogeographic dynamics of viruses in the AMD sediments.
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M icroorganisms are the most phylogenetically diverse and
widespread form of life on Earth1. Unraveling the
processes that generate and underlie microbial biodi-

versity across space and time is critical for predicting the
dynamics of microbial communities in the environment2,3. Gene
surveys, especially those utilizing high throughput sequencing
technologies, have advanced our understanding of the biogeo-
graphic patterns of microbes in nature, revealing significant roles
of contemporary environmental variation or historical con-
tingency in shaping their large-scale ecological ranges4. More
recently, advances in metagenomic sequencing technologies and
bioinformatics have moved microbial biogeography forward,
allowing the examination of functional trait variation in their
natural settings and the evolutionary and ecological processes
creating and maintaining the biogeographic patterns5,6. Collec-
tively, these efforts have greatly furthered our understanding of
the mechanisms shaping microbial biodiversity on the planet.

Viruses are key entities in natural microbial assemblies,
impacting prokaryotic population size through lysis7, repro-
gramming host metabolism with auxiliary metabolic genes
(AMGs)8, and shaping microbial evolution via horizontal gene
transfers (HGTs)9. However, viral ecology studies have been
hampered by an absence of universal marker genes and thus were
traditionally dependent on cultivation-based methods10. More
recently, meta-omics approaches have been applied to explore
viral diversity in the environment11, uncovering high viral
diversity with little similarity to previously recognised viruses12.
Despite these progresses, the biogeographic variation of viruses in
ecosystems remains largely unstudied. The marine environments
have been the focus of several studies of viral biogeography,
revealing patterns whereby viral communities are passively
transported on oceanic currents and locally structured by envir-
onmental conditions13, and the existence of specific ecological
zones throughout the global ocean, with epipelagic waters and the
Arctic as hotspots for viral biodiversity14. Our current under-
standing of viral biogeography stems from these pioneering
studies.

The reduced-complexity prokaryotic communities in extreme
environments have served as models for the study of microbial
community structure and function15,16. The relatively low species
richness, broad range and steep gradients of geochemical vari-
ables promise more straight-forward establishment of ecological
patterns and underlying mechanisms. The diversity and com-
munity dynamics of viruses in extreme environments such as the
Atacama Desert17, cryosphere18,19, acid mine drainage (AMD)
environment20,21, and Earth’s subsurface7,22,23 have recently been
investigated through meta-omics approaches; yet, extensive
sampling and analysis of viral communities across large geo-
graphic scales to resolve their ecological distribution patterns and
drivers have not been conducted. Here we strive to address this
knowledge gap by utilizing a massive metagenomic data set
generated from 90 AMD sediments sampled across Southern
China (Fig. 1a). Extensive recovery of viral and prokaryotic
genomes was performed and the results were analysed with a
comprehensive set of metadata on geochemistry, geographic
location and climate variables for each sample24, to quantify the
effects of both biotic (prokaryotic hosts) and abiotic factors on the
viral assemblages in this extreme ecosystem.

Results
Viral diversity in the AMD sediments. Metagenomic sequencing
was conducted on the 90 sediment samples taken from geo-
graphically separated and geochemically diverse AMD
environments24. Assemblies from the metagenomes were screened
using a viral protein families-based pipeline25, VirSorter v1.0.626 and

CheckV v0.6.027 and manually curated to predict 11,112 putative
viral genomes that ranged between 10 - 350 kb with ~94% from 10 to
50 kb in size (Fig. 1b and Supplementary Data 1). We identified a
total of 5,678 potential viral populations (viral operational taxo-
nomic units, vOTUs), which are suggested to approximately
represent species-level taxonomy12, and 143,610 viral protein clus-
ters (PCs) that help organise the dominant unknown sequence
space13 (Fig. 1c). The number of vOTUs and viral PCs in each
sample ranged from 537 to 3,199 and 6,628 to 52,631, respectively
(Supplementary Data 2). Despite such a broad range in viral taxo-
nomic and functional richness across all samples, the cumulative
curves of vOTUs and PCs were saturated, indicating that viral
communities in the AMD sediments were relatively adequately
sampled (Fig. 1c).

Taxonomic analyses of the 5,678 viral population genomes
against the NCBI Viral RefSeq v201 database showed that the vast
majority (96.0%) of vOTUs could not be assigned taxonomy
through reticulate classification (vConTACT2)28, while 66.1% of
vOTUs could be annotated at the family level using the LCA
algorithm29 (Fig. 1c). Most classified viruses were resolved as one
of the three families (Myoviridae, Siphoviridae, and Podoviridae)
in the Caudovirales order (Fig. 1d and Supplementary Data 3).
Comparisons of the predicted viral proteins against the eggNOG
database30 and VOG database revealed that most viral proteins
from the AMD sediments were uncharacterised, with the
annotated proteins enriched in information storage and proces-
sing (COG categories ABJKL) and virus replication (VOG
category Xr) or virus function beneficial for the host (VOG
category Xh) (Fig. 1e).

Distribution patterns of viral diversity and functions. To
explore the variability in viral populations and functions across
the AMD sediments, pairwise Pearson’s correlations were used to
uncover relationships between viral communities and other biotic
and abiotic factors. Prokaryotic community structure in the
sediments was resolved by extensive reconstruction and derepli-
cation of bacterial and archaeal genomes from metagenomes, and
the results were highly similar to those from the 16 S rRNA gene
amplicon analysis24 (Supplementary Fig. 1). The prokaryotic
richness, estimated as the number of prokaryotic metagenome-
assembled genomes (MAGs) in each sample (Supplementary
Data 1), was found to be most relevant to the number of viral
populations (Pearson’s r= 0.89, P < 0.001) and functions (Pear-
son’s r= 0.82, P < 0.001) (Fig. 2a). Meanwhile, overall viral
taxonomic and functional richness increased toward the equator
and were both negatively correlated with electronic conductivity
(EC). Significant positive correlations were observed between
viral abundance and ferric iron (Pearson’s r= 0.30, P < 0.05), as
well as between viral functional abundance and Fe (Pearson’s
r= 0.29, P < 0.05). We further evaluated the dependence of viral
taxonomic and functional distributions on different factors by
correlating dissimilarities of viral taxonomic and functional
community composition with those of abiotic variables. Results
showed that mean annual temperature (MAT) and Fe were the
strongest correlates of both viral taxonomic and functional dis-
similarities, which also increased with increasing differences in
mean annual precipitation (MAP), pH, ferric iron, sulphate, and
distance from the equator of the AMD sediments (Fig. 2a).
Furthermore, Mantel test analysis revealed significant correlations
between prokaryotic dissimilarity and viral taxonomic (Mantel’s
r= 0.96, P < 0.001) and functional dissimilarities (Mantel’s
r= 0.95, P < 0.001) across all samples.

To examine whether geographic distance may influence viral
distributions, principal coordinate analyses (PCoA) were used to
assess the degree of segregation of the viral communities. We
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observed a separation of viral taxonomic and functional structure
for the 90 AMD sediment samples, with a similar distribution
within the same site (Fig. 2b, c). In support of this, significant
negative distance-decay relationships (DDRs) were observed
across all samples based on the Bray-Curtis similarities (1 -
dissimilarity) of viral taxonomic (slope=−0.10, P < 0.001) and
functional (slope=−0.09, P < 0.001) structure. Furthermore, the
slopes of the DDRs depended on spatial scale. Specifically, the
overall slope was significantly shallower than the slopes within a
local scale (pairwise distance ≤ 1 km) but steeper than the slopes
within a regional scale (pairwise distance > 1 km) (Fig. 2d, e).

Ecological drivers of viral taxonomic and functional commu-
nity structure. Having illustrated the roles of individual factors in
shaping viral taxonomic and functional diversity and distribu-
tions, we next sought to discern the causality and quantify the
direct and indirect effects of the drivers using structural equation
modeling (SEM). The final SEM models provided satisfactory fit
to our data compared with the priori models (Supplementary
Fig. 2), as suggested by the P-values (Chi-squared test) and root
mean square error of approximation (RMSEA) (Fig. 3). Specifi-
cally, the hypothesised direct effects of pH on prokaryotic
diversity and community structure in the priori models were not
observed in our final SEM models. For viral communities, we did
not find significant impacts of viral taxonomic and functional
abundance on their composition, suggesting discrepancies

between our priori predictions and the final models (Fig. 3 and
Supplementary Fig. 2). On the other hand, our final SEM models
were consistent with the Pearson’s correlation results. Distance
from the equator probably had impacts on the number of vOTUs
and viral PCs in different samples through its direct negative
effect on MAP (r=−0.32, P < 0.01), or prokaryotic richness
(r=−0.42, P < 0.001) which was the most influential variable
directly related to viral taxonomic (r= 0.86, P < 0.001) and
functional richness (r= 0.81, P < 0.001). The SEM models also
revealed that pH and MAT had some direct effect on viral
taxonomic and functional richness (Fig. 3a, b).

The prokaryotic richness had negative impacts on viral
taxonomic (r=−0.33, P < 0.001) and functional (r=−0.16,
P < 0.001) composition. Meanwhile, prokaryotic composition,
which was positively and directly affected by MAT (r= 0.72,
P < 0.001), distance from the equator (r= 0.58, P < 0.001) and
prokaryotic abundance (r= 0.29, P < 0.001), was found to drive
both viral taxonomic (r= 0.94, P < 0.001) and functional
(r= 0.96, P < 0.001) composition. Unexpectedly, the abundances
of viral populations and functions were negatively related to the
abundance of prokaryotes, which was negatively driven by pH
(r=−0.32, P < 0.001) and MAP (r=−0.25, P < 0.001), and
positively associated with MAT (r= 0.93, P < 0.001) and distance
from the equator (r= 0.74, P < 0.001). Additionally, both MAP
and prokaryotic richness affected the abundances of viral
populations and functions, with increased abundance associated
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Fig. 1 Overview of acid mine drainage (AMD) sediment viruses. a Geographic distribution of collected AMD sediment samples. The provinces from
which AMD sediments were sampled are presented in gray. All sampled AMD sites (n= 18) are marked by orange squares. b Histogram showing the
distribution of viral genome size. c Accumulation curve of viral operational taxonomic units (vOTUs, red) and viral protein clusters (PCs, blue) in the AMD
sediment metagenomes. Dots represent the average number of vOTUs and PCs for all combinations of a given number of samples, and error bars
represent the range. The numbers of viral PCs were divided by ten for better visualization. d Bar graphs showing the relative proportion and taxonomy of
vOTUs based on reticulate classification method (vContact2) and Lowest Common Ancestor (LCA) algorithm. e Relative abundances of viral functions in
the AMD sediments as annotated by eggNOG v5.0.0 database and VOG database. All COG categories are grouped into four types, including information
storage and processing (COG categories A, RNA processing and modification; B, chromatin structure and dynamics; J, translation, ribosomal structure and
biogenesis; K, transcription; L, replication, recombination and repair), cellular processes and signaling (D, cell cycle control, cell division, chromosome
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Unannotated proteins). Source data are provided in the Source Data file.
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with higher MAP and lower prokaryotic richness. The other
direct drivers of viral taxonomic and functional abundance were
ferric iron (r= 0.23, P < 0.01) and pH (r= 0.20, P < 0.05).

Virus-host interaction dynamics. To further resolve potential
host effects on viral ecology, we screened the 7,991 high-quality
(≥ 50% genome completeness and < 10% contamination) pro-
karyotic MAGs recovered from the sediment metagenomes for
genomic features to link viruses to their putative hosts. As a
result, 6,003 viral genomes were linked to 3,404 prokaryotic
MAGs. Summarizing these results at the population level revealed
virus-host pairs for 3,031 out of the 5,678 vOTUs and 1,488 out of
the 2,897 prokaryotic populations (Supplementary Data 4). Most
(97%) of the predicted host populations were assigned to 20
prokaryotic phyla, including bacteria belonging to Proteobacteria
(433 populations), Actinobacteriota (193) and Acidbacteriota
(137) and archaea from the Thermoplasmatota (132) (Fig. 4a).
The predicted hosts were also affiliated with many poorly char-
acterised phyla, including 14 bacterial populations from the
Dormibacterota, 13 from Elusimicrobiota and 13 from Eremio-
bacterota, and 41 archaeal populations from the Micrarchaeota,
17 from Nanoarchaeota and 8 from Thermoproteota. The abun-
dances of these host phyla were mostly (19 of the 20 phyla)
significantly correlated with the total abundance of viruses
infecting the same host lineage across the AMD sediments,
indicating a high accuracy of our host prediction (Fig. 4a). We
also calculated virus-host abundance ratios (VHRs) to assess how
virus-host dynamics varied across different hosts. A range of

lineage-specific VHRs (typically > 1) were observed, with the
highest average values recorded in Chloroflexota (Fig. 4a).

Given the dominance of Proteobacteria and Thermoplasmatota
across the 90 AMD sediments (Supplementary Fig. 3), we
examined their virus-host abundance dynamics in detail. The
VHRs were significantly higher in Proteobacteria than in
Thermoplasmatota (Supplementary Fig. 4a). We contrasted the
abundance between the two phyla across the 90 sediments, and
found that Proteobacteria and Thermoplasmatota showed distinct
dynamics in both total abundance and predicted host abundance.
The abundance of Proteobacteria increased firstly and then
decreased along the elevated prokaryotic abundance, while the
abundance of Thermoplasmatota consistently and substantially
increased. These abundance patterns were similar to those of their
associated viruses (Fig. 4b). However, the Thermoplasmatota-
associated viruses showed a weaker increase in abundance
compared with their hosts (Fig. 4b). As a result, we found that
the total abundance of viruses peaked at intermediate prokaryotic
abundance (Fig. 4c).

We next investigated whether prokaryotic hosts might affect
viral life strategies and virus-host interaction structure. A deep
learning approach was applied to distinguish virulent and
temperate viral populations in our data (Supplementary Data 3)31.
Results showed that the relative abundance of virulent viruses
increased while the relative abundance of temperate viruses
decreased significantly as the prokaryotic abundance increased,
suggesting that virulent life strategies became more prevalent in
sediment communities with higher prokaryotic abundance

Viral 
taxonomic 
composition 
(vOTUs)

Prokaryotic
taxonomic 
composition 
(MAGs)

Viral functional
composition (PCs)

Pairwise Pearman’s correlations 
between biotic and abiotic factors 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

0

1

PCoA1 (21.87%)

P
C

oA
2 

(1
1.

34
%

)
PCoA1 (17.68%)

0.0

0.2

0.4

0.6

0.8

1.0

Log10 geographic distance (m)

C
om

m
un

ity
 ta

xo
no

m
ic

 s
im

ila
rit

y
C

om
m

un
ity

 fu
nc

tio
na

l s
im

ila
rit

y

-1 -0.5 0 0.5 1

-1

0

1

P
C

oA
2 

(9
.2

5%
)

-1 -0.5 0 0.5 1

0 1 5432 6

R2 = 0.40, P < 0.001

R2 = 0.11, P < 0.001

R2 = 0.08, P < 0.001

b

c

da

P < 0.001 0.001 ≤ P < 0.01 0.01 ≤ P < 0.05 P ≥ 0.05

>  0.2

0.1 - 0.2

< 0.1

Mantel’s r 

P-value

Log10 geographic distance (m)
0 1 5432 6

0.0

0.2

0.4

0.6

0.8

1.0 R2 = 0.43, P < 0.001

R2 = 0.10, P < 0.001

R2 = 0.07, P < 0.001

*
*
*

* *

*

*

*

*

*

*

*

**

**

**
**

**

**

**

**

**

**

*** ***
***

***

*** ***
***

***

*** ***

*** *** *** ***

***

***

***

***

***

***

***
***
***

***

***

***

***
***

***

***

PC
s

M
AG

s
pH EC Fe

rro
us

Fe
rri

c
Fe Zn C

u
M

n
C

d
Pb TO

C
Su

lp
ha

te
TN TP AP M

AT
M

AP
D

is
t.

vO
TU

s 
ab

un
.

PC
s 

ab
un

.
M

AG
s 

ab
un

.

vOTUs
PCs

MAGs
pH

EC
Ferrous

Ferric
Fe

Zn
Cu

Mn
Cd

Pb
TOC
Sulphate

TN
TP

AP
MAT

MAP
Dist.

vOTUs abun.
PCs abun.

e

Fig. 2 Dynamics of viral populations and functions. a Pairwise comparisons of the biotic and abiotic variables. The color gradient in the heatmap denotes
Pearson’s correlation coefficients and the asterisk indicates two-tailed test of Pearson’s statistical significance adjusted using the Benjamini and Hochberg
false discovery rate controlling procedure. *P < 0.05, **P < 0.01 and ***P < 0.001. Edge width corresponds to the Mantel’s r statistic for the corresponding
distance correlations, and edge color denotes the statistical significance. vOTUs, the number of viral operational taxonomic units; PCs, the number of viral
protein clusters; MAGs, the number of metagenome-assembled genomes; EC, electronic conductivity; Ferrous, ferrous iron; Ferric, ferric iron; TOC, total
organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus; MAT, mean annual temperature; MAP, mean annual precipitation; Dist.,
distance from the equator; vOTUs abun., the abundance of viruses; and PCs abun., the abundance of viral functions. b, c Principal coordinate analysis
(PCoA) of viral taxonomic b and functional (c) structure colored by sampling sites. d, e Distance-decay relationships (DDRs) based on Bray-Curtis
similarity (1 - dissimilarity) of viral taxonomic d and functional e community compositions. The blue line denotes the least-squares linear regression across
all spatial scales. Red and purple lines denote separate regressions within samples whose distance ≤ 1 km and within samples whose distance > 1 km,
respectively. Color-coded best-fit lines and adjusted R2 values for each DDR are presented. The statistical test used was two-tailed. Source data are
provided in the Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30049-5

4 NATURE COMMUNICATIONS |         (2022) 13:2389 | https://doi.org/10.1038/s41467-022-30049-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Fig. 4d). Concomitantly, significant (Wilcoxon t-test, P < 0.001)
higher virulent/temperate abundance ratios were observed in
Thermoplasmatota-associated viruses than in Proteobacteria-
associated viruses (Supplementary Fig. 4b). When averaged at
the host phylum level, lineage-specific host range (number of host
populations for each viral population) and viral range (number of
viral populations for each host population) were highest in
Thermoplasmatota and Proteobacteria, respectively. Besides, the
host range significantly increased with the prokaryotic richness
(Pearson’s r= 0.45, P < 0.05), and the viral range significantly
increased with the viral richness (Pearson’s r= 0.86, P < 0.001)
across the host phyla (Fig. 5a). Further, increased prokaryotic
richness and viral richness were associated with significant
decline in modularity (Fig. 5b, d) and significant increase in
nestedness of virus-host bipartite sub-networks across the
sediment samples (Fig. 5c, e).

Case study of viral AMGs. To further elucidate virus-host
interactions, we analysed viral AMGs to assess whether abiotic
factors impact viral functions, which in turn affect host meta-
bolism and sediment biogeochemistry. We focused on phos-
phorus (P) metabolism-related genes because of their putative
roles in response to P deficiency in AMD environments32,33. We
identified 75 viral genes annotated as phosphate starvation-
inducible protein (phoH)34, which belongs to the COG number of
4QCHF and COG0172 (Fig. 6a and Supplementary Data 5). To
further explore the origin of these predicted viral phoH genes, 111
homologs from eggNOG database (v5.0.0) and 114 homologs
from the recovered MAGs were recruited and combined to build
a phylogenetic tree (Fig. 6a and Supplementary Data 6). The
result showed that the phoH genes were widely distributed in both
prokaryotes and viruses and clustered phylogenetically. Further

examination of the recovered phoH genes showed that genes
assigned as 4QCHF were mostly clustered with their counterparts
from viruses and Bacteroidota, while genes assigned as COG0172
were mostly affiliated with homologs from Proteobacteria and
Patescibacteria. Interestingly, significant increase in the total
abundance of the phoH genes was observed with decreasing
concentrations of total P (TP) and available P (AP) in the sedi-
ments, suggesting that the viral phoH genes might be induced
under P starvation in AMD sediments (Fig. 6b).

In addition, we assembled a provirus genome encoding the first
three genes of the phn operon - phnCDE, which also belongs to
the pho regulon and comprises a binding protein-dependent
transporter involved in the uptake of P in the form of
phosphonate (Fig. 6c and Supplementary Data 5)35. This provirus
genome covered 72% of the whole fragment that was ‘co-binned’
with a host population genome (FK3.bin20) classified as
Burkholderiales of Gammaproteobacteria (Supplementary Data 5).
Meanwhile, 11 additional Burkholderiales populations were
predicted as hosts of the provirus based on BLASTn of genomic
content, as evidenced by the significant positive correlation
between the abundance of provirus and these Burkholderiales
populations (Supplementary Fig. 5). Furthermore, phylogenetic
analyses indicated that the phnCDE genes identified in the
provirus were affiliated with homologous genes from Burkholder-
iales spp. in eggNOG v5.0.0 database, implying a potential origin
of these viral functional genes (Supplementary Fig. 6 and
Supplementary Data 6).

Discussion
Recent metagenomic and viromic surveys have uncovered an
unprecedented diversity of viruses in both aquatic and terrestrial
environments12. Fully accessing viral biodiversity is important for
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the study of biogeographic patterns but represents a major
challenge especially for soil and sediments, where viruses are
typically diverse and abundant29,36. To bypass this hurdle, we
adopted a total metagenome approach to uncover viral taxonomic
and functional diversity in AMD sediments and generated a large
number of viral genomes and genes. It should be noted, however,
that a recent study showed that viromes outperformed meta-
genomes in recovering viral contigs especially the rare taxa from
agricultural soils, indicating the limitation of using metagenomes
alone to explore viral communities in complex environmental
samples37. Thus, a virome-based approach would likely capture
more viral populations in our AMD sediments.

Annotation through the reticulate method revealed that a vast
majority of our predicted viral genomes could not be tax-
onomically classified (Fig. 1d), highlighting the uniqueness of
viral populations unearthed in the current study. Such a low
annotation rate is largely attributable to the absence of complete
genomes of viral isolates from AMD and associated environ-
ments. This finding suggests that, despite extensive meta-omics
analyses of the prokaryotic communities residing the AMD
model system15, our knowledge of the viral biodiversity therein is
unbalancedly very limited20,21,38,39. Nearly one third of the pre-
dicted viral proteins could be annotated by eggNOG v5.0.0
database30, and they were mostly assigned to known functions
that are pivotal for the survival and proliferation of viruses. These
metabolic functions have previously been found over-represented
in viral assemblages in other habitats40,41, indicating a universal
distribution of viral core genes while there is also evidence of
adaptation of certain viral functions to specific environments42.

The viral taxonomic and functional richness in our study fol-
lows the latitudinal diversity gradient paradigm that suggests
higher biodiversity in the tropics with a decrease toward the poles
(Fig. 2a). While in general agreement with the diversity patterns
of other domains of life43,44, more samples from a wider range of
latitudes should be analysed to verify this result. The overall effect
of latitude on viral taxonomic and functional richness in the
AMD sediments may be primarily attributable to the variations in
prokaryotic richness (Fig. 3). However, the role of other factors,
in particular pH and MAT, in directly shaping the number of
viral populations and functions should not be overlooked. The
mechanism explaining the influence of pH and MAT remains
unknown, but decreased pH and increased MAT not only exert
impacts on prokaryotes and consequently alter the indigenous
viral assemblies, but also may increase the fitness cost of viruses
persisting in the environment.

Our analyses identified ferric iron concentration as the most
important environmental factor governing viral abundance in the
AMD sediments (Fig. 2a and Fig. 3). The Ferrojan horse
hypothesis has depicted that phages with their tail fibers incor-
porated with iron ions may effectively infect hosts through
competing with siderophore-bound iron for uptake receptors45.
Therefore, non-Ferrojan viruses would have a fitness advantage in
iron-replete conditions46. Thus, the iron-rich AMD sediments
subsequently may favor the survival and enrichment of non-
Ferrojan viruses, contributing to the variation of viral abundance
observed in the current study. Another possibility would be
potential adsorption of viral particles on iron-bearing minerals
precipitated from water phase to the sediments as previous
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investigations have documented strong relationships between
viral abundance and mineral saturation indices47,48. A similar
scenario (i.e., the attachment of viruses on particles and then co-
precipitation to the seafloor) has been demonstrated in the
marine environment49. While being mineral attached may make
these viruses inactive, they could subsequently be released with
increased pH since minerals with higher isoelectric point tend to
be a better adsorbent of viruses48.

The biogeographic pattern that community similarity decreases
with increasing geographical distance has been observed in both
prokaryotic and microbial eukaryotic communities50,51. Our
results extend this pattern to the viral world, revealing a scale-
dependent distance-decay distribution of viral taxonomic and
functional composition (Fig. 2d, e). Meanwhile, SEM model indi-
cated that MAT, MAP, distance from the equator, and pH were
most important in shaping prokaryotic assemblages, which was
further the major driver of viral taxonomic and functional com-
position. This contrasts results from our previous biogeography
survey of prokaryotes in AMD solutions where pH was the
strongest predictor of microbial community52, but is consistent
with the patterns in marine viruses in that viral communities are
influenced by temperature and latitude13,14. Furthermore, our data
suggest that the distribution of viral populations and functions is
unlikely to be primarily affected by environmental variables and
geographic distance, but rather by their host compositions. While
the strong influence of prokaryotes on viral communities have also
been observed in previous studies19,29, which could be partly
attributable to the parasitic lifestyle of viruses, it might also reflect

potential methodological limitations that recovered viral genomes
from bulk metagenomes biased toward intracellular viruses and
thus should be interpreted with caution12.

The tight couplings between viral taxonomic and functional
composition and prokaryotes were further corroborated by our
host prediction analysis, which described numerous virus-host
interactions at the population level. Using the predicted virus-
host linkages, we demonstrated that almost all viruses exhibited
parallel variations in abundance with their hosts (Fig. 4a), which
was consistent with genuine virus-host pairs. Notably, total viral
abundance was better described as a nonlinear, polynomial
function of prokaryotic abundance. This pattern is probably due
to the different VHRs between the two dominant phyla: a
decrease in the abundance of Proteobacteria created niche occu-
pancy for Thermoplasmatota to fill, whereas the significantly
lower VHRs in Thermoplasmatota might result in the observed
trend of shallower increase in the abundance of Thermo-
plasmatota-associated viruses (Fig. 4b). Meanwhile, the decrease
in viral abundance at higher prokaryotic abundance is unlikely a
result of switching of viral life strategies from virulent to tem-
perate, since virulent viruses were more abundant in Thermo-
plasmatota-dominated samples (Fig. 4d). Additionally, the
specialisation or generalization of virus-host interactions are
subjected to the host group, as indicated by the lineage-specific
host range and viral range (Fig. 5a). Furthermore, the prokaryotic
and viral richness-related modularity and nestedness supports
experimental models that show how the increase of host or viral
diversity can select for generalised over specialised phages53,54.
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Thus far, very limited information is available for viral AMGs
in extreme AMD environments21. Our study identified a number
of pho regulon genes (i.e., phoH and phnCDE) in the predicted
viral genomes (Fig. 6). This suggests frequent horizontal gene
transfers (HGTs) of these different types of P metabolism-related
genes, which was further supported by the phylogenies of the
phoH and phnCDE genes, as well as previous reports of pho
regular genes in viral genomes55,56. That none of the viral
phnCDE genes were affiliated with homologs from the prokar-
yotic MAGs recovered from the AMD sediments may be a result
of mutation events occurred on them. As AMD and associated
environments are often oligotrophic, the identified P metabolism-
related genes may provide the viruses with the ability to sup-
plement or sustain P assimilation in their hosts, indicating an
important adaptation in AMD environments. The observed
negative correlations between total abundance of the phoH genes
and concentrations of TP and AP supported this assumption. It
should be noted, however, that the roles and relative importance
of phage-encoded phoH genes in the P cycle have not been fully
resolved57–59. Divergent functions such as RNA modification and
lipid metabolism have also been documented for these genes60.
On the other hand, phoH has been developed as a novel bio-
marker for assessing phage diversity in the environment56. The

identification of phoH genes in our AMD sediments provides
evidence for the wide distribution of these viral AMGs in different
habitats including extreme environments.

Our study contributes to the understanding of viral biogeo-
graphy by providing an initial view of the community patterns
and ecological constraints of viruses populating an extreme
environment. Our data suggest that the dynamics of viral popu-
lations and functions are subjected to their hosts, and also directly
or indirectly correlated with other environmental and geo-
graphical variables. Extensive prokaryotic genome recovery from
the metagenomic data set further refines our knowledge of how
host abundance and diversity may affect virus-host interplays
from the point of VHRs and interaction structure, respectively.
Future efforts are needed to resolve the mechanisms shaping the
viral biogeographic patterns observed in the AMD model system,
and to examine whether such findings are relevant to other types
of extreme environments on the planet.

Methods
Sample collection. AMD sediments were collected from 18 mine sites in six
provinces across Southern China (22.96°−31.68°N, 105.73°−118.63°E) from
August to October in 201724. These samples (10 for each site) represent a wide
range of mineralogy and environmental conditions. Samples were collected using a
shovel from the top 10 cm of AMD sediments either at the center or at ~1 m from
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the edge of AMD ponds depending on the safety and size of the features at each
mine site. The samples were sealed in 50 mL sterile tubes, kept in an icebox and
transported to the laboratory, where they were stored at 4 °C and processed within
24 h. Each sediment was well mixed and divided into two fractions: one fraction for
DNA extraction (subsequently stored at −80 °C) and the other for physicochemical
measurements (air-dried)24.

Environmental measurements. Geochemical parameters were determined with
standard methods24. Specially, air-dried subsamples were ground and passed
through 20-mesh and 100-mesh sieves, and stored at ambient temperature until
use. Total organic carbon (TOC) (TOC-VCPH; Shimadzu, Columbia, MD), total
nitrogen (TN) and TP (SmartChem; Westco Scientific Instruments Inc., Brookfield,
CT) were analysed with standard methods (0.2 g each). AP was determined col-
orimetrically by the molybdenum blue method at 700 nm wavelength61 (5.0 g of
subsamples). For measuring pH and EC, 4.0 g of sediments was mixed with 10 mL
of deionised water (1:2.5 (w/v)) and the supernatant was then measured using a pH
meter and an EC meter. The concentrations of HCl-extractable ferrous iron (Fe2+)
and ferric iron (Fe3+) were determined by UV colorimetric assay with 1, 10-
phenanthroline method at 530 nm wavelength (1.0 g of subsamples)62, and sul-
phate (SO4

2-) was measured by a BaSO4-based turbidimetric method (2.0 g of
subsamples)63. Total concentrations of heavy metals (including Pb, Zn, Cu, Cd, Fe,
and Mn) were determined by inductively coupled plasma optical emission spec-
trometry (ICP-OES; Optima 2100DV, PerkinElmer, Wellesley, MA) after digestion
of 0.2 g sediments with an HNO3/HCl mixture (1:3 (v/v)). Estimates of the MAT
and MAP were obtained from the WorldClim2 database (www.worldclim.org).

DNA extraction and metagenomic sequencing. Total DNA was extracted from
10 g of each sediment which was pretreated with 30 mL solution containing
0.1 mol/L ethylene diamine tetraacetic acid (EDTA), 0.1 mol/L Tris (pH 8.0),
1.5 mol/L NaCl, and 0.1 mol/L NaH2PO4 and Na2HPO4 prior to the employment
of the FastDNA Spin Kit (MP Biomedicals, Irvine, CA)24,64. Extracted DNA was
purified using the QIAquick Gel Extraction Kit (Qiagen, Chatsworth, CA). Finally,
a total of 90 samples (with the other samples being discarded due to their low DNA
yield/quality) were used for library preparation with NEBNext Ultra II DNA Prep
Kit (New England Biolabs, MA) and sequenced from both ends with MiSeq
Reagent Kit v3 on an Illumina MiSeq platform (150 bp, paired end reads). This
generated totally ~7 Tb metagenomic raw reads data.

Processing of metagenomic sequence data. Metagenomic reads were quality
filtered and trimmed using in-house Perl scripts. A trim quality threshold of 30 was
used and reads containing more than five ‘N’s were discarded. All quality-
controlled reads from a sediment sample were assembled using SPAdes v3.14.1 and
kmers of 21, 33, 55, 77, 99, 127 under the ‘--meta’mode65. Genes were predicted by
Prodigal 2.6.3 with the parameters set as ‘-p meta -g 11 -f gff -q -m’66. For
functional annotation, the protein-coding sequences were separately compared
against the Pfam v33.167, Kyoto Encyclopedia of Genes and Genomes (KEGG)
database68, Non-supervised Orthologous Groups (eggNOG v5.0.0)30, and Virus
Orthologous Group (VOG, http://vogdb.org, Accessed 5 Oct. 2021) with a
threshold of 50 for bit score and 10−5 for E-value. Annotations with the lowest
E-value in each database were then selected as the best hits for the proteins.

Identification and clustering of viral genomes. Three methods were employed
separately to identify viral genomes in the metagenomic assemblies: (1) viral protein
families25, (2) VirSorter v1.0.6 software26, and (3) CheckV v0.6.0 software27. Speci-
fically, viral protein families were downloaded from the Integrated Microbial Gen-
omes with Microbiome (IMG/M) system and used as bait to screen the proteins of
metagenomic contigs longer than 10 kb (hmmsearch v3.3.2, threshold of 10−5 for E-
value)69. Contigs with five or more viral protein families were collected and then
filtered based on the number of genes covered with Pfams and KO terms25. Mean-
while, VirSorter (run with default parameters using the ‘virome’ database) was also
used to recover viral contigs longer than 10 kb and those identified as categories 1 and
2 were retained and curated, as described previously70. Additionally, prophages
identified as VirSorter categories 4 and 5 were processed with CheckV ‘contamina-
tion’ program to identify and remove host contaminations27. Finally, viral genomes
predicted by the three methods were pooled. All predicted viral genomes originating
from eukaryotic viruses based on a BLAST affiliation of the genes to the NCBI
RefseqVirus database (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral, Accessed 20
July. 2020) were removed71. Besides, predicted viral genomes with no genes dis-
playing a best BLAST hit to prokaryotic viruses were also excluded.

The identified viral genomes were clustered into vOTUs using the parameters 95%
average nucleotide identity (ANI) and 85% alignment fraction of the smallest
scaffolds based on the scripts (https://bitbucket.org/berkeleylab/checkv/src/master/)
provided in CheckV27. Representative viral population genomes were then detected
with DeePhage v1.0 to distinguish life strategies (virulent or temperate)31. Genes of all
identified viral genomes were predicted by Prodigal 2.6.3 (with the parameters set as
‘-p meta -g 11 -f gff -q -m’)66, and clustered by using cd-hit (-n 4 -d 0 -g 1; 60%
identity and 80% coverage)72. Reads from each of the 90 sediment metagenomes were
mapped to the viral representative genomes and genes using BamM ‘make’ v1.7.3
(http://ecogenomics.github.io/BamM/) with default parameters, and the coverage of

each sequence was calculated with BamM ‘parse’ v1.7.3 using the ‘tpmean’ coverage
mode (remove the highest 5% and the lowest 5% coverage regions, minimum
nucleotide identity of 95%, minimum aligned length of 75% of each read). The
abundance for a given scaffold or gene was computed as the average scaffold or gene
coverage divided by the number of reads in a given library and multiplied by the
mean value of the number of reads in the 90 libraries. For taxonomic assignment, a
gene content-based network analysis was used to taxonomically place the viral
representative genomes in the context of known viruses28. Briefly, predicted proteins
from viral genomes were clustered with predicted proteins from isolate reference
viruses (v201) based on an all-versus-all BLASTp search with an E-value of 10−3, and
protein clusters were defined with the Markov clustering algorithm and processed
using vConTACT v2.028. Meanwhile, predicted viral proteins were aligned against the
NCBI Viral RefSeq v201 database using BLASTp with a threshold of 50 for bit score
and 10−5 for E-value. The LCA algorithm was then used for taxonomic analysis of
each viral genome based on the taxonomic rank of annotated proteins29.

Recovery of prokaryotic population genomes. Prokaryotic population genomes
were recovered from the 90 sediment metagenome assemblies (excluded free viral
genomes) using MetaBAT v2.12.173, MaxBin v2.2.274, Abawaca v1.0075, and
Concoct v0.4.076 with default parameters, considering tetranucleotide frequencies,
scaffolds coverage and GC content. The resulting bins were then combined using
DASTool v1.1.277, and further manually curated to obtain high-quality genomes
using RefineM v0.0.2478. These genomes were then classified using the genome
taxonomy database (GTDB-Tk v1.6.0)79. The completeness and contamination of
genome bins were assessed using CheckM v1.1.3 with default parameters, except
those assigned as Patescibacteria which were estimated using a smaller set of
markers80. Genomes estimated to be ≥ 50% complete and < 10% contaminated
were selected to calculate the ANI. Genomes with > 97% ANI over >70% alignment
were grouped as a population: the highest quality genome calculated as ‘com-
pleteness – 4 × contamination’ in each population was chosen as the
representative81. Finally, reads from each of the 90 sediment metagenomes were
mapped to the set of dereplicated genomes using BamM v1.7.3 as described above
for the viral sequences (Supplementary Data 7).

Virus–host linkage analyses. Viral genomes were putatively linked to their hosts
in silico82. Briefly, these linkages were based on (1) shared genomic content
between viral scaffolds and host genomes, (2) prophages identified in host gen-
omes, and (3) sequence similarity between CRISPR-spacers in host genomes and
protospacers in viral scaffolds. All viral genomes were compared to the recovered
prokaryotic genomes using BLASTn (E-value ≤ 10−3, bit score ≥ 50, alignment
length ≥ 2.5 kb and identity ≥ 70%)71. Viral genomes identified as prophages were
matched to their corresponding host genomes. CRISPR spacers were recovered
from metagenomic scaffolds using metaCRT with default parameters83. Extracted
spacers were compared to viral scaffolds using BLASTn with thresholds of an
E-value ≤ 10−10 and no mismatches over the whole spacer length71,84.

Viral AMGs analyses. The predicted viral proteins were assigned to eggNOG
v5.0.0 database using BLASTp (threshold of 50 for bit score and 10−5 for E-
value)30. As a result, 75 viral proteins were assigned as phoH genes (4QCHF and
COG0172) and three were assigned as phn operon (phnCDE) genes. These viral
proteins were compared to the host proteins and eggNOG v5.0.0 database
(BLASTp, threshold of 50 for bit score and 10−3 for E-value) to recruit relevant
sequences (up to 5 for each viral AMG sequence)71. Each set of viral AMGs were
then aligned with Muscle v3.8.31 and filtered by TrimAL v1.4.rev22 to remove
columns comprised of more than 95% gaps85,86. Finally, phylogenetic trees were
constructed using iqtree2 with the parameters set as ‘-mem 100GB -T 20 -m MFP
-B 1000 --bnni’, and visualized and formatted in the Interactive Tree of Life online
interface using the Newick file with the best tree topology87,88.

Statistical analyses. Statistical analyses were implemented with various packages
within the statistical program R v4.0.389. Biotic and abiotic matrices were stan-
dardised using ‘decostand’ function in vegan v2.5–5 with methods of ‘Hellinger’
and ‘Standardize’, respectively90. Bray–Curtis dissimilarity was used to show dis-
tances for prokaryotic and viral community structure and function profiles,
whereas Euclidean distances were calculated using environmental variables (vegan
v2.5–5)90. Pearson correlations were performed using ‘rcorr’ function (999 per-
mutations) in Hmisc v4.2-0 to assess the relationships between the richness and
abundances of viral populations and functions, prokaryotes and environmental
variables in all samples91. Mantel tests were performed to reveal the correlations
between the dissimilarity matrices (vegan v2.5-5)90. In all correlation analyses, P
values were adjusted for multiple testing using the Benjamini and Hochberg false
discovery rate controlling procedure (stats v4.0.3)92.

To understand how local spatial organisation of the viral communities varies
within and across different AMD sites, PCoA (utilizing the Bray-Curtis dissimilarity
metric), which allows dimensionality reduction, was used (vegan v2.5-5)90. The rate
of the DDRs was calculated as the slope of a linear least squares regression on the
relationship between log10-transformed geographical distance versus viral taxonomic
and functional community composition similarity. SEM was used to tease apart the
direct and indirect relationships among environmental and geographical variables,
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prokaryotic community composition, and viral taxonomic and functional
composition (lavaan v2.1.2)93. Community composition was represented by PCoA
PC1 based on the Bray-Curtis dissimilarity metric. Priori models were first
constructed, considering all theoretical or empirical mechanisms whereby abiotic and
biotic factors influence viral taxonomic and functional diversity, abundance and
structure (Supplementary Fig. 2). The priori models were then optimized until
attaining the final models. A Chi-squared test and the RMSEA were used to evaluate
the fit of models. Sub-networks for virus-host interactions in each sediment sample
were also generated from meta-networks by preserving viral or prokaryotic
populations presented in the sample. The modularity and nestedness values for each
sub-network were computed with ‘Brim’ and ‘NODF’ algorithm in MATLAB BiMat
package with 1000 permutions94. The Shapiro-Wilk test and Bartlett’s test were
performed to check for normality and equal variance between groups92. Statistical
significance of differences was then determined using non-parametricWilcoxon t-test
(unpaired)92.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw reads of metagenomes and all assembled prokaryotic population genomes have been
deposited in NCBI BioProject database under accession code PRJNA666025. Short Reads
Archive accession numbers for individual reads are listed in Supplementary Data 8.
Biosample accession numbers for individual prokaryotic genomes are listed in
Supplementary Data 9. Assembled viral genomes are available from the NCBI BioProject
database under accession code PRJNA648034. eggNOG database is available at http://
eggnog5.embl.de/download/eggnog_5.0. NCBI viral RefSeq database is available at
https://ftp.ncbi.nlm.nih.gov/refseq/release. WorldClim database is available at https://
www.worldclim.org/data/worldclim21.html. Source data are provided with this paper.

Code availability
The in-house Perl scripts, R scripts, Matlab scripts, and relevant data used to generate
figures of this study are provided with this paper and publicly available on GitHub at
https://github.com/eco-gaoshaom/viral-biogeography (https://doi.org/10.5281/zenodo.
6374561).
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