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Abstract

Background: The use of adipose-derived mesenchymal stromal cell-derived exosomes (ADSC-Exos) may become a
new therapeutic method in biomedicine owing to their important role in regenerative medicine. However, the role
of ADSC-Exos in tendon repair has not yet been evaluated. Therefore, we aimed to clarify the healing effects of
ADSC-Exos on tendon injury.

Methods: The adipose-derived mesenchymal stromal cells (ADSCs) and tendon stem cells (TSCs) were isolated from
the subcutaneous fat and tendon tissues of Sprague-Dawley rats, respectively, and exosomes were isolated from
ADSCs. The proliferation and migration of TSCs induced by ADSC-Exos were analyzed by EdU, cell scratch, and
transwell assays. We used western blot to analyze the tenogenic differentiation of TSCs and the role of the SMAD
signaling pathways. Then, we explored a new treatment method for tendon injury, combining exosome therapy
with local targeting using a biohydrogel. Immunofluorescence and immunohistochemistry were used to detect the
expression of inflammatory and tenogenic differentiation after tendon injury, respectively. The quality of tendon
healing was evaluated by hematoxylin-eosin (H&E) staining and biomechanical testing.

Results: ADSC-Exos could be absorbed by TSCs and promoted the proliferation, migration, and tenogenic
differentiation of these cells. This effect may have depended on the activation of the SMAD2/3 and SMAD1/5/9
pathways. Furthermore, ADSC-Exos inhibited the early inflammatory reaction and promoted tendon healing in vivo.

Conclusions: Overall, we demonstrated that ADSC-Exos contributed to tendon regeneration and provided proof of
concept of a new approach for treating tendon injuries.
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Introduction

Tendon is a dense connective tissue consisting of limited
tendon cells and abundant extracellular matrix (ECM).
Tendon injuries are of significant concern worldwide,
with more than 30 million affected patients annually [1].
Tendon healing is slow as a result of its hypocellularity
and hypovascularity and involves three overlapping
phases: inflammation, proliferation, and remodeling [2,
3]. Furthermore, the self-healing potential of any tissue
depends, in part, on its endogenous resident stem cells.
The viability and tenogenic differentiation of tendon
stem cells (TSCs) are the main mechanisms of tendon
repair [4]. However, inflammation during the healing
phase may compromise biomechanical function [5-7].
Therefore, it is important to enhance tendon healing by
promoting anti-inflammation and the proliferation of
TSCs.

Mesenchymal stromal cells have demonstrated great
potential in tissue healing [8]. Specifically, adipose-
derived mesenchymal stromal cells (ADSCs) are highly
beneficial for clinical applications because of their abun-
dant and conveniently accessible sources [9]. When
transplanted, ADSCs are able to modulate the inflamma-
tory environment and abundant extracellular matrix
(ECM) balance to stimulate tendon regeneration [10-
12]. Recent studies have demonstrated that the effective-
ness of ADSCs in regenerative medicine is due to their
paracrine effects [13]. Thus, ADSCs have been identified
as new therapeutic agents in biomedicine [14].

Exosomes are membrane-bound extracellular vesicles
that target cells by endocytosis, membrane fusion, or
receptor-ligand interaction and are important paracrine
factors for stromal cells [15]. In addition, exosomes play
important roles in immune regulation, apoptosis, and
tissue regeneration [16]. The therapeutic effect of
ADSC-Exos has been demonstrated in multiple diseases.
This is of great significance in the future development of
tissue repair and regeneration engineering [17].

We hypothesize that ADSC-Exos promote tendon re-
pair by regulating the biological characteristics of TSCs
as well as the extracellular microenvironment. Specific-
ally, in this study, we investigated the effects of ADSC-
Exos on the proliferation, migration, and differentiation
of TSCs in vitro, and during inflammation and regener-
ation situations in vivo.

Materials and methods

Animals

Male Sprague-Dawley rats weighing 180-230 g at 8-10
weeks of age were provided by the Experiment Center of
Harbin Medical University (Harbin, Heilongjiang,
China). All animals were treated according to the United
States National Institutes of Health Guide for the Care
and Use of Laboratory Animals, and the protocol was
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approved by the corresponding ethics committee (no.
Ky2018-135).

Isolation and identification of TSCs and ADSCs

The isolation methods of ADSCs and TSCs were per-
formed as in previous studies [18, 19]. In brief, TSCs
were isolated from rat tendon and cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) (Invitrogen,
Carlsbad, CA, USA) containing 10% fetal bovine serum
(FBS) (Biological Industries, Kibbutz Beit-Haemek,
Israel) and 1% penicillin-streptomycin (Beyotime, Hai-
men, China). The multilineage differentiation potential
of TSCs, as well as the identification of surface markers
(CD90- and CD105-positive; CD106- and CD11b-
negative), was demonstrated in our previous study [19].
ADSCs were isolated from the subcutaneous fat of rats
and cultured in DMEM/F12 (Invitrogen) containing 10%
FBS and 1% penicillin-streptomycin. Flow cytometry was
used to identify surface markers. The adipogenic, osteo-
genic, and chondrogenic differentiation of ADSCs was
induced in a differentiation medium (Cyagen, Santa
Clara, CA, USA) to identify their differentiation
potential.

Isolation and identification of ADSC-Exos

At 80% confluence, the culture medium of the ADSCs
was changed to exosome-depleted medium (DMEM/F12
containing 10% exosome-depleted FBS (Biological Indus-
tries) and 1% penicillin-streptomycin) and incubated for
24 h. Then, the culture medium was collected without
ADSCs and centrifuged at 300xg for 10 min, 3000xg for
10 min, 10,000xg for 30 min, and 100,000xg for 2 h to
isolate the exosomes. Exosomes attached to the bottom
of the centrifuge tube were diluted with phosphate-
buffered saline. Nanoparticle tracking analysis (NTA),
transmission electron microscopy (TEM), and western
blotting were used to identify and evaluate the collected
€X0somes.

Cellular internalization of ADSC-Exos

ADSC-Exos were incubated with 1 puM PKH26
(Sigma-Aldrich, St. Louis, MO, USA) in Diluent C
(Sigma-Aldrich) for 5 min, and excess dye was re-
moved by ultracentrifugation. The labeled exosomes
were subsequently added to the serum-free medium
of TSC cultures and incubated overnight. The nuclei
were labeled with Hoechst 33342 (UE, China), and
photos were taken with an inverted fluorescence
microscope (Leica, Wetzlar, Germany).

ADSC-Exo release analysis

The ADSC-Exo release analysis was performed using the
BCA protein assay kit (Beyotime, China) as previously
described [20]. Briefly, gelatin methacryloyl (GelMA)
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loaded with 200 pg ADSC-Exos was immersed in PBS in
a 24-well plate. The supernatant was collected every 24
h for determining ADSC-Exo release, and new PBS was
added. The released ADSC-Exos were quantified and
expressed as the release percentage.

Treatment of TSCs with ADSC-Exos

First, to determine the effect of ADSC-Exo treatment
on TSCs, 1 x 10° TSCs were seeded into six-well cul-
ture plates for 24 h and divided randomly into four
groups. ADSC-Exos were added to the exosome-free
medium at 0, 25, 50, or 100 pg/mL and used to re-
place the TSC culture medium. Next, to further study
the related mechanisms, we randomly sorted TSCs
seeded in six-well culture plates into four groups as
follows: (1) control: exosome-free medium was used
to replace the TSC culture medium; (2) ADSC-Exos:
50 pg/mL ADSC-Exos was added to the exosome-free
medium and used to replace the TSC culture
medium; (3) ADSC-Exo0s+SB: 10 nM of the SMAD2/3
inhibitor SB431542 (MedChemExpress, Monmouth
Junction, NJ, USA) was added to the TSCs 30 min
before the addition of 50 pg/mL ADSC-Exos; and (4)
ADSC-Exos+DM: 10 nM of the SMAD1/5/9 inhibitor
dorsomorphin (MedChemExpress) was added to the
TSCs 30 min before addition of 50 pg/mL ADSC-
Exos. TSCs from all the experimental groups were
collected after 30 min or 24 h for western blotting. In
addition, EdU, scratch, and transwell assays were per-
formed after 24 h.

EdU assay

For the cell proliferation analysis, TSCs were incubated
with 50 pM 5-ethynyl-2'-deoxyuridine (EAU) from an
EdU Assay Kit (UE) for 4 h. The TSCs were then fixed
with 4% paraformaldehyde and stained using the same
EdU assay kit. The nuclei were labeled with Hoechst
33342, and photos were taken with an inverted fluores-
cence microscope.

Scratch assay

TSCs at 2 x 10° cells/well were inoculated into a 6-well
plate for overnight culture. A straight-line wound was
made in the cultured cells using a sterile 200-uL pipette
tip. A serum-free medium with ADSC-Exos was then
added into each well. Images were obtained at 0 and 24
h after ADSC-Exo treatment using an inverted micro-
scope with an Axiocam 506 camera and ZEN 2011 soft-
ware (Zeiss, Oberkochen, Germany).

Transwell assay

TSCs at 1 x 10° cells/well were inoculated into the
transwell upper chamber, and ADSC-Exos were added
into the lower compartment. After culturing for 24 h,
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the TSCs were fixed with absolute ethanol, then stained
with crystal violet. Images were obtained under a light
microscope.

Western blot analyses

TSCs were lysed in radioimmunoprecipitation assay buf-
fer (Beyotime). Immunoblotting was performed using
the following rabbit primary antibodies: anti-CD9
(monoclonal; 1:2000; ab92726; Abcam, Cambridge, UK),
abti-TSG101 (monoclonal; 1:2000; ab125011; Abcam),
anti-Hsp70 (monoclonal; 1:1000; ab2787; Abcam), anti-
tenomodulin (anti-TNMD; polyclonal; 1:1000; ab203676;
Abcam), anti-collagen I (monoclonal; 1:1000; ab270993;
Abcam), anti-scleraxis (anti-SCXA; polyclonal; 1:500;
DF13293; Affinity Biologicals, Ancaster, ON, Canada),
anti-alkaline phosphatase (anti-ALP; polyclonal; 1:1000;
DF6225; Affinity Biologicals), anti-runt-related transcrip-
tion factor 2 (anti-Runx2; monoclonal; 1:1000; ab264077;
Abcam), anti-SMAD2/3 (monoclonal; 1:1000; 5678S;
Cell Signaling Technology, Danvers, MA, USA), anti-
phospho (p)-SMAD2/3 (monoclonal; 1:1000; 8828S; Cell
Signaling Technology), anti-SMAD1/5/9 (polyclonal; 1:
500; AF0614; Affinity Biologicals), anti-phospho-
SMAD1/5/9 (polyclonal; 1:1000; AF8313; Affinity Bio-
logicals), and anti-pB-actin (monoclonal; 1:5000; ab8226;
Abcam). Horseradish peroxidase-conjugated goat anti-
rabbit IgG (1:5000; BA1055; Boster, Wuhan, China) was
used as the secondary antibody. A chemiluminescence
imaging system (ChemiScope 6200T, Clinx Science In-
struments, Shanghai, China) was used for detection.

Experimental protocols and surgical procedures

A total of 63 Sprague-Dawley rats were divided into
three groups of 21: (1) control: animals that underwent
surgery for partial resection of the patellar tendon; (2)
GelMA: animals that underwent surgery for patellar ten-
don partial resection and were inoculated with 30 pL
GelMA (EFL-GM-60, 10% w/v) over the tendon defect;
and (3) ADSC-Exos: animals for which the injured patel-
lar tendon was treated with 30 uL GelMA containing
200 pg of ADSC-Exos. The exosome content was deter-
mined according to previous studies [19]. Rats were
anesthetized with 0.3% sodium pentobarbital (30 mg/kg).
The right patellar tendon was surgically exposed, and
the central 1/3 of the tendon tissue was removed as in
previous studies [21]. GelMA was then inoculated into
the lesion and cross-linked into a gel state by ultraviolet
light. The skin incision was closed using 4-0 sutures.
The modeling process is shown in Figure S1. Animals
from each group (n = 6) were euthanized on day 7 for
immunofluorescence analyses and on days 14 or 28 for
immunohistochemical analysis.
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Histopathological and immunohistochemical analyses
Paraffin-embedded tendon tissues were sectioned at a
thickness of 4 pm. The tissues were then stained with
H&E for histopathological analysis. The stained patellar
tendons were evaluated according to a previously de-
scribed parallel fiber alignment scoring method using
light microscopy [22]. The scoring scale was as follows:
0, 0-25% parallel fiber alignment; 1, 25-50% parallel
fiber alignment; 2, 50—75% parallel fiber alignment; and
3, 75—100% parallel fiber alignment.

For immunohistochemical analyses, the paraffin sections
of tendon tissues were incubated with Immuno-Block re-
agent for 30 min after being deparaffinized and rehy-
drated. The sections were then incubated with the rabbit

primary antibodies: anti-CD146 (monoclonal; 1:250;
ab75769; Abcam), anti-TNMD (polyclonal; 1:100;
ab203676; Abcam), anti-collagen I (polyclonal; 1:100;
ab270993; Abcam), anti-SCXA (polyclonal; 1:100;

DF13293; Affinity), anti-ALP (polyclonal; 1:200; DF6225;
Affinity), and anti-Runx2 (monoclonal; 1:1000; ab264077;
Abcam). Horseradish peroxidase-conjugated goat anti-
rabbit IgG (1:500; 115-035-003; Jackson ImmunoResearch,
Ely, UK) was used as the secondary antibody. After coun-
terstaining with hematoxylin, the sections were dehy-
drated and fixed. The area of the positive signal was
determined using the Image] software.

For immunofluorescence analyses, the sections of ten-
don tissues were incubated with the rabbit primary anti-
bodies: anti-CCR7 (monoclonal; 1:200; ab32527;
Abcam), anti-CD163 (monoclonal; 1:100; ab182422;
Abcam), anti-IL-6 (monoclonal; 1:100; TA500067S; Ori-
gene), and anti-IL-10 (monoclonal; 1:100; ab33471;
Abcam). The sections were then incubated with second-
ary antibodies (1:200; SA00013; Proteintech, Rosemount,
IL, USA) for 1 h. The nuclei were labeled with 4',6-dia-
midino-2-phenylindole, and photos were taken with a
DM4 B microscope (Leica). Three fields per section were
selected randomly for statistical analysis. Positive signals
were quantified with the Image] software.

Biomechanical testing

At week 4, patellar tendon tissues from each group (n = 3)
were taken, and two bony ends of a healing tendon were
fixed on a universal material testing machine (Zwick,
Roell, Germany). The tissues were investigated using a
standard failure test with a testing speed of 5 mm/min.
Failure load (N) and stiffness (N/mm) were obtained by
the software of the testing machine. Young’s modulus (N
x 10°/mm?®) was calculated after measuring the cross-
sectional area (mm?) of the tendon with a vernier caliper.

Statistical analyses
All values are expressed as means + standard deviation.
Quantitative data for each group were analyzed by a
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one-way analysis of variance followed by the Tukey-
Kramer test. P < 0.05 was considered statistically
significant.

Results

Characterization of ADSCs

ADSCs exhibited long fusiform morphology (Figure
S2A) and differentiated into adipocytes, osteoblasts, and
chondroblasts in vitro (Figure S2B). Flow cytometric
analysis of ADSC surface markers revealed that the cells
were CD90- and CD105-positive, and CD34-, CD45-,
and CD11b-negative (Figure S2C).

Characterization and internalization of ADSC-Exos

TEM revealed that ADSC-Exos were round or elliptical
vesicular structures (Fig. la). The NTA revealed the
mean diameter of ADSC-Exos to be 109.6 nm (Fig. 1b).
Western blot analyses confirmed that the ADSC-Exo
surface markers CD9, TSG101, and HSP70 were posi-
tively expressed (Fig. 1c). In addition, ADSC-Exos were
internalized by TSCs and showed red fluorescence (Fig.
1d). Finally, the release behavior of ADSC-Exos loaded
in GelMA is shown in Fig. le.

ADSC-Exos promoted the proliferation, migration, and
tenogenic differentiation of TSCs

We first measured the effect of the different concentra-
tions of ADSC-Exos on the proliferation and migration
of TSCs. The EdU assay showed that ADSC-Exos pro-
moted TSC proliferation (Fig. 2a, B). Further, the trans-
well assay confirmed that ADSC-Exos promoted TSC
migration with increasing concentrations of exosomes
(Fig. 2¢, d). The scratch test showed results consistent
with these findings (Fig. 2e, f). Then, we investigated
whether ADSC-Exos affected the differentiation of TSCs.
Western blot analyses showed ADSC-Exos significantly
increased the protein expression of TNMD, collagen I,
and SCXA but had no effect on ALP or Runx2 (Fig. 2g—
1). These results suggest that ADSC-Exos promote the
tenogenic differentiation ability of TSCs but have no ef-
fect on osteogenic differentiation.

ADSC-Exos activated the SMAD2/3 and SMAD1/5/9
pathways

The SMAD signaling pathways play vital roles in regu-
lating stem cell activity. SMAD2/3 and SMAD1/5/9 are
two typical SMAD signaling pathways. Therefore, we ex-
amined the changes in these two pathways after ADSC-
Exo uptake by TSCs. Western blot analyses showed that
ADSC-Exos increased the p-SMAD2/3 and p-SMAD1/5/
9 expression in TSCs (Fig. 3a—c), suggesting that the up-
take of ADSC-Exos by TSCs activated the SMAD2/3
and SMAD1/5/9 signaling pathways. Furthermore, we
pretreated TSCs with the SMAD2/3 inhibitor, SB431542,
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or the SMAD1/5/9 inhibitor, dorsomorphin, for 30 min.
Western blot analyses showed that SB431542 and dorso-
morphin inhibited the phosphorylation of SMAD2/3 and
SMAD1/5/9, respectively (Fig. 3d—f).

ADSC-Exos regulated TSC proliferation, migration, and
tenogenic differentiation by activating SMAD2/3 and
SMAD1/5/9 signaling pathways

To investigate the regulatory effect of ADSC-Exos, we
evaluated their effects on the proliferation, migration,
and tendon differentiation of TSCs by pretreating them
with SB431542 or dorsomorphin. As expected, the pro-
liferation (Fig. 3g, h) and migration (Fig. 3i-1) of TSCs
were significantly decreased in the ADSC-Exos +
SB431542 and ADSC-Exos + dorsomorphin groups
compared with that in the ADSC-Exos only group. Simi-
larly, western blot analyses showed that pretreatment
with SB431542 or dorsomorphin significantly decreased
the expression of the tenogenic differentiation genes,
TNMD, collagen I, and SCXA, in TSCs (Fig. 3m—p).

ADSC-Exos regulated the early inflammatory response
during tendon healing

We investigated the in vivo effect of ADSC-Exos on
early healing of tendon injury. At week 1 after injury, the
level of CCR7 (M1 macrophage marker) decreased in
the ADSC-Exo group while the level of CD163 (M2
macrophage marker) increased (Fig. 4a, b). Furthermore,

IL-10 (an anti-inflammatory factor) increased, and IL-6
(a pro-inflammatory factor) decreased (Fig. 4c, d). Quan-
titative analyses showed there were more CD163" and
IL-10" cells in the ADSC-Exo group, while CCR7" and
IL-6" cells predominated in the control and GelMA
groups (Fig. 4e).

ADSC-Exos improved the healing of tendon injury

We next assessed whether ADSC-Exos contributed to
the healing of patellar tendon injury in rats. H&E
staining showed the ADSC-Exo group had much
more regular alignment of the fibrous tissue in the
defect area at week 2 compared with the other groups
(Fig. 5a, o). At week 4, the collagen fiber alignment
in the ADSC-Exo group was more compact than in
the other groups (Fig. 5h).

Immunohistochemical analyses showed higher expres-
sion of TNMD, collagen I, and SCXA in the ADSC-Exo
group at week 2 than in the control and GelMA groups
(Fig. 5b—d). At week 4, the expression of these three
genes remained high in the ADSC-Exo group (Fig. 5i—k).
Furthermore, ALP and Runx2 expression were un-
changed among the three groups at both weeks 2 and 4
(Fig. 5e, f, I, m). The results of the quantitative analyses
are shown in Fig. 5g, n.

Biomechanical testing showed that the failure load,
stiffness, and Young’s modulus of the patellar tendon in
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(See figure on previous page.)

Fig. 3 ADSC-Exos promote the proliferation, migration, and tenogenic differentiation of TSCs via the SMAD2/3 and SMAD1/5/9 signaling
pathways. a-c¢ Western blot analysis of protein levels of p-SMAD2/3 and p-SMAD1/5/9 induced by different concentrations of ADSC-Exos. d-f
SB431542 and dorsomorphin inhibit the activation of SMAD2/3 and SMAD1/5/9 induced by ADSC-Exos, respectively. g, h EdU assay showed that
ADSC-Exos-mediated TSC proliferation was suppressed by inhibitors SB431542 and dorsomorphin. i-l Transwell assay and scratch assays showed
that ADSC-Exos-mediated TSC migration was suppressed by inhibitors SB431542 and dorsomorphin. m-p Western blot analysis of protein levels
of TNMD, collagen |, and SCXA promoted by ADSC-Exos was inhibited by inhibitors SB431542 and dorsomorphin. Bars, 100 um. Data are

represented as mean = SD. *vs control group; *vs ADSC-Exos group; n = 3. *P < 0.05, **P < 0.01, **P < 0.001, ***P < 00001, *P < 0.05, *P < 0,01,
P < 0,001, " P < 00001
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Fig. 5 ADSC-Exos improved the healing of tendon injury. a, h The H&E staining of tendon injury at week 2 and week 4. b—f, i-m The expression
of TNMD, collagen |, SCXA, ALP, and Runx2 were detected by immunohistochemistry assay at week 2 (n = 6) and week 4 (n = 6). g, n
Quantitative analysis of tenogenic and osteogenic related factors at week 2 (n = 6) and week 4 (n = 6). o Fiber alignment score in each group at
week 2 (n = 6) and week 4 (n = 6). p-s Results of biomechanical tests (failure load, stiffness, Young's modulus) at 4 weeks (n = 3). Bars (H&E), 100
um; bars (immunohistochemistry), 50 um. Data are represented as mean + SD. *vs control group; s GelMA group; n = 6. *P < 0.05, **P < 0.01,

P < 00001, *P < 0.05, P < 0.0001

the ADSC-Exo group were significantly increased com-
pared with the control and GelMA groups (Fig. 5p—s).

ADSC-Exos promoted TSC proliferation during tendon
healing

To investigate the mechanism by which ADSC-Exos
promoted tendon healing in vivo, we measured the num-
ber of TSCs in the tendon tissue during early healing.
CD146 was used as a marker of TSCs [23]. Immunohis-
tochemical staining showed that the number of CD146"
TSCs in the injured tendon increased with extension of
the healing time. Meanwhile, as expected, the number of
CD146" TSCs increased significantly in the ADSC-Exo
group (Fig. 6a, b).

Discussion

Improving the quality of healing after tendon injury re-
mains a major medical challenge. TSCs play an import-
ant role in tendon healing [24]. However, Zhang et al.
reported that culture-expanded TSCs were prone to lose
their phenotypic characteristics and exhibited reduced
regeneration ability [25]. Therefore, activating the prolif-
eration and differentiation of TSCs is key to improving
tendon healing.

We first studied the influence of ADSC-Exos on TSCs
in vitro. The results revealed that ADSC-Exos were in-
ternalized into TSCs and promoted their proliferation,
migration, and tenogenic differentiation. Implantation of
TSCs improves tendon healing in rats [26-29], and the
activity of TSCs determines the quality of this healing. It
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Fig. 6 ADSC-Exos promoted TSC proliferation in vivo. a Cellular expression of CD146" at week 2 and week 4 was evaluated by
immunohistochemistry assay. b Ratio of CD146" cells at week 2 (n = 6) and week 4 (n = 6). Bars, 50 um. *vs control group; *vs GelMA group;
n=6,*P < 005, ***P < 00001, *P < 0.05, **P < 00001
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is well-known that the SMAD family of the signaling
pathways plays important roles in regulating stem cell
functions, with two typical SMAD signaling pathways,
SMAD?2/3 and SMAD1/5/9, having potential significance
in regulating the activity of TSCs [30-32]. Accordingly,
we hypothesized that ADSC-Exos promoted the prolifer-
ation, migration, and tenogenic differentiation of TSCs
by activating the SMAD family signaling pathways. As
expected, ADSC-Exos increased the phosphorylation of
SMAD2/3 and SMAD1/5/9 in TSCs, which was later
found to be attenuated by the inhibitors, SB431542 and
dorsomorphin, respectively. We also found that the ap-
plication of these two inhibitors blocked the effects of
ADSC-Exos on the activity of TSCs. These results sup-
port the hypothesis that ADSC-Exos enhanced the pro-
liferation and migration of TSCs by promoting the
activation of the SMAD2/3 and SMAD1/5/9 signaling
pathways.

Tenogenic differentiation is a complex process. SCXA
is a key molecule in the early development of tendons. It
is responsible for the differentiation of TSCs into teno-
cytes and the positive regulation of TNMD expression
[33, 34]. Subsequently, the TNMD gene is necessary for
tendon maturation and has a positive effect on the self-
renewal of TSCs [35]. In addition, the expression of col-
lagen I determines the strength of tendons [36]. Because
abnormal ossification during tendon healing affects nor-
mal tendon functions, we hypothesized that ADSC-Exos
would be able to promote tenogenic differentiation and
inhibit osteogenic differentiation of TSCs. The results
showed that, indeed, ADSC-Exos increased TNMD, col-
lagen I, and SCXA expression in TSCs via activation of
the SMAD2/3 and SMADI1/5/9 pathways. However,
ADSC-Exos did not affect the expression of ALP or
Runx2 in TSCs. This suggests that ADSC-Exos could ef-
fectively promote tenogenic differentiation of TSCs, but
not inhibit osteogenic differentiation.

Scar formation caused by inflammation after tendon
injury is a major cause of histological changes affecting
tendon healing prognosis [37]. Therefore, inhibiting the
early inflammatory response of tendon injury is benefi-
cial to early healing. Recent studies reported that MSCs
can elicit immunoregulatory responses by modulating
the pro-inflammatory M1 macrophages to anti-
inflammatory M2 macrophage polarization, inducing
regulatory T cells, and producing anti-inflammatory cy-
tokines [38, 39]. Considering exosomes are the main
substances used by MSCs to exert their effectiveness, we
hypothesized that exosomes would recapitulate the im-
munomodulatory effects of their parent cells. In the
current study, we found that CD163+ M2 macrophages
were increased significantly in the ADSC-Exo group. In
addition, the M2-stimulating factor, IL-10, was increased
in the ADSC-Exo group. Furthermore, Shen et al. found
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that ADSC-Exos reduced the early inflammatory re-
sponse after tendon injury by regulating macrophages,
whereas some studies have confirmed that ADSC-Exos
were able to modulate macrophages from an M1 to M2
phenotype in vitro [10, 40-43]. Therefore, we suggest
that ADSC-Exos can alleviate early inflammation after
tendon injury by modulating macrophages.

Tissue integrity is the standard for evaluating the qual-
ity of tendon healing. We used the central 1/3 patellar
tendon injury rat model to evaluate tendon healing.
H&E staining showed that collagen fibers in the ADSC-
Exo group were more regular compared to those in the
control and GelMA groups. In addition, the biomechan-
ical properties of the tendon tissues in the ADSC-Exo
group were significantly improved at 4 weeks. We also
investigated the regulatory effect of ADSC-Exos on TSCs
in vivo. Immunohistochemical analyses showed that
ADSC-Exos promoted the expression of tenogenic dif-
ferentiation genes in vivo but did not inhibit the expres-
sion of osteogenic differentiation genes in the injured
area.

In previous reports, CD146 has been used as a sur-
face marker of TSCs; CD146" TSCs switch to an acti-
vated state during tendon-injury healing and increase
their proliferation, migration, and tenogenic differenti-
ation ability [44]. Our results showed that the expres-
sion of CD146" TSCs in the ADSC-Exo group was
the highest among the three groups. This indicated
that ADSC-Exos promoted the proliferation ability of
CD146" TSCs.

Exosomes are generally used to repair tissues by intra-
venous or local injection. However, due to difficulty in
their local retention, exosomes are unable to exert their
full biological efficacy. GeIMA is a photosensitive biohy-
drogel with excellent biocompatibility and degradability
and is widely used in various tissue engineering applica-
tions [45, 46]. GelMA exists in a liquid state at 37°C and
becomes cross-linked under ultraviolet light to form a
gel state with ECM properties. Because of its mild re-
sponse to environmental conditions, GelMA has great
advantages for use in biomedicine and is expected to be
applicable for various clinical treatments [47]. For in-
stance, Aubin et al. attempted to change the proliferative
arrangement of different cells using micropatterned
GelMA to provide a theoretical basis for constructing
functional tissues in vitro [48]. Zou et al. used GelMA to
construct biomimetic bone with a trabecular bone struc-
ture, and Hu et al. used GeMA microspheres loaded
with small extracellular vesicles to promote cartilage re-
generation [20, 49]. In the current study, GelMA was
used as a carrier of ADSC-Exos to provide a good
microenvironment for exosome storage and their grad-
ual absorption. The ADSC-Exo-loaded GelMA attached
to the defect of the patellar tendon in a gel-like manner
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after cross-linking, and it was gradually absorbed by the
body. Therefore, ADSC-Exos loaded into GelMA is a
promising treatment for tendon injury.

The current study does have some limitations. First,
we selected only one time point to analyze phosphoryl-
ation in TSCs. Phosphorylation is a continuous process,
and the 30-min time point selected may not be optimal
to detect TSC phosphorylation. Second, we only evalu-
ated short-term tendon healing. The long-term thera-
peutic effect of ADSC-Exos on tendon healing (scar
formation) requires further study. Third, the optimal
dosage of exosomes for tendon repair warrants further
study. In addition, as exosomes contain various proteins,
mRNA, and miRNA, further exploration is required to
determine the specific substance in exosomes that exerts
the therapeutic effect.

Conclusions

Overall, our results showed that ADSC-Exos were
absorbed by TSCs and promoted their proliferation, mi-
gration, and tenogenic differentiation via the SMAD2/3
and SMAD1/5/9 signaling pathways. In addition, ADSC-
Exos alleviated early inflammation and promoted tendon
healing. These findings suggest the potential clinical
value of ADSC-Exos in treating tendon defects and pro-
vide a new approach for the treatment of tendon
injuries.
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