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Abstract: In melt blowing, microfibrous nonwoven material is manufactured by using high-speed air
to attenuate polymer melt. The melt-blown air jet determines the process of polymer attenuation
and fiber formation. In this work, the importance of lateral velocity on the fiber was first theoretical
verified. The lateral diffused characteristic of the air flow field in slot-die melt blowing was researched
by measuring the velocity direction using a dual-wire probe hot-wire anemometer. Meanwhile, the
fiber path was captured by high-speed photography. Results showed that there existed a critical
boundary of the lateral diffusion, however, air jets in the x–z plane are a completely diffused field.
This work indicates that the lateral velocity in the y–z plane is one of the crucial factors for initiating
fiber whipping and fiber distribution.
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1. Introduction

Melt blowing is an industrial approach for manufacturing nonwoven materials. Melt-blown
nonwoven materials have found a variety of advanced applications in areas of filtration, life science,
medicine, and industry [1,2], the fiber diameter is commonly in the range from about 1 µm to
several micrometers.

During the melt blowing process, the raw material of solid particles is melted by the effects of
heating and the screw’s shear stress, and subsequently extruded out through the orifice, the microfibers
are formed by attenuating the melt with high-velocity hot air (see Figure 1). Therefore, the air flow
field plays a decisive role on fiber attenuation (formation) during melt blowing. Shambaugh et al. [3–6]
have relatively early measured the air velocity and temperature by Pitot tube and thermocouples (or
infrared thermometer), respectively, in the condition of relatively low air velocity. Later, more-advanced
measuring equipment like laser Doppler velocimeters and hot-wire anemometers with one-dimensional
probes were applied for measuring the melt-blown air flow fields [7–11], the maximum air velocity they
measured increased to be about 150 m/s. By means of the high-frequency signal acquisition principle
of the hot-wire anemometer, Xie [11] measured the fluctuation of turbulence in melt blowing and
discussed the relationship between turbulence and fiber motion. It noted that, air velocity is a vector
and has the characteristics of directivity, however, these previous experimental measurements provided
the velocity along the spinning line, the directional information of velocity was unavailable, especially
for positions not along the spinning line, generally, these measured velocities were considered to have
a direction parallel to the spinning line. Therefore, the air flow field was researched with a lack of
information along the lateral direction.
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In melt blowing, the air is pushed out from air channels and ejected into the surrounding static
atmospheric, therefore, the melt-blown air flow needs to be a free jet and have the feature of diffusion,
that is, the cross-section of the air flow is ever increasing along the spinning line direction. The diffusion
of air flow could be demonstrated by a lot of Computational Fluid Dynamics (CFD) simulations [9,12]
and indirectly reflected by the splayed-out envelope of the fiber path, which is attributed to fiber
vibration or whipping in the process of melt blowing [13–15]. A bundle of fibers that appeared to be
splaying rather than a single fiber was firstly captured by Shambaugh [13]. This observation was similar
to that from the naked eye. Similar splayed-out envelopes of fiber paths were also experimentally
discovered by Bresee et al. [14] and Xie [15]. The increased envelope of the fiber path is assumed by
the lateral air velocity component (direction normal to the spinning line), however, until now, the
measurement of the lateral velocity component has not been reported and most of the air flow fields
were measured along the spinning-line direction.

In addition, the theoretical research on fiber motion is important, for it can deeply reveal the
stretching mechanism of fiber attenuation in the spinning process, not only for melt blowing but
also for other process such as electrospinning [16]. The theory of the bending instability of thin
liquid jets in air was developed and described by Yarin [17]. Rao [18] and Marla [19] built two- and
three-dimensional theoretical models for fiber attenuation in melt blowing, respectively. Compared
to the former one-dimensional model [20], the normal drag force was applied onto the fiber. Bates,
Kumar, and Macosko from the University of Minnesota [21–27] have done some theoretical and
experimental work on fiber formation, special applications, and innovative designing of melt blowing.
Kumar [23] firstly point out that, in melt blowing, the whipping-like motion of the fiber was due to
turbulent air, this guidance promoted our previous work on the turbulence of melt blowing [11,15].
Yarin et al. [28–32] have numerical modeled the process of fiber motion and predicted the structure
and properties of melt-blown nonwoven lay-down. Their works are assumed to have a crucial effect on
quality control in melt blowing. Sun [33] built a Euler–Lagrange model for the mechanics simulation
of fiber motion during the melt-blown process, and this model was improved to make the fiber path
more realistic by Xie et al. [34] These theoretical models focused on mechanical mechanisms, rather
than citing detailed air information of the whole air flow field. Therefore, the discovery of more
consummate flow field information will contribute to perfecting these theoretical researches.

It is well known that the melt-blown air’s resultant velocity can be decomposed into vertical
and lateral components, i.e., their directions are parallel and normal to the spinning line, respectively.
The present work focused on discovering the lateral component of the air flow in slot-die melt
blowing. Firstly, the significance or necessity of measuring the lateral velocity was theoretical verified.
The theoretical result showed that the lateral component had high efficiency on fiber dragging, and
should not be ignored. Then, the air velocity direction was measured by a dual-wire hot-wire
anemometer, and the lateral air velocity component was obtained by processing the measured velocity
direction, meanwhile, the fiber path during melt blowing was captured by high-speed photography.
Finally, the characteristics of lateral diffusion were shown, and the potential effect of lateral diffusion
on fiber whipping was discussed.

2. Theoretical Verification the Importance of Lateral Velocity

Figure 1a shows the schematic process of melt blowing, in which microfibers are manufactured
by attenuating the polymeric melt with high-velocity hot air. As a whole, the fibers will fly along the
spinning line and downward to the collector. Figure 1b shows the microfiber nonwovens manufactured
by melt blowing. In this work, the spinning line is the indicated z-axis, and the lateral direction is
normal to the spinning line, i.e., along the x or y direction.

Intuitively, the lateral air component is very small, this may be the reason why the lateral
component was neglected by these previous works, which have been mentioned above. As will be
described below, the importance or necessity of lateral component measurement was firstly verified by
theoretical force analysis.
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Figure 1. (a) Schematic of commercial slot-die melt-blown process. (b) The microfibrous nonwovens 
produced by melt blowing. (c) Schematic of a fiber fragment near the die and the air velocity applied 
on it. 

This theoretical verification was carried out by analyzing the air force on the fiber. As shown in 
Figure 1c, a random tiny fragment of fiber was chosen for modeling. During the process of melt 
blowing, it was assumed that the fiber fragment has a two-dimensional resultant velocity, vf, which 
can decomposed into parallel and normal components with respect to the axis-direction of the fiber, 
i.e., vfP and vfN. Similarly, the air applied on the fiber fragment has a resultant velocity, vr, by 
decomposing vr into parallel and normal components with respect to axis-direction of the fiber, vP 
and vN are obtained. The angle between vr and the axis of the fiber is θ. The relative velocity of the air 
and the fiber, vrel, can decompose into 
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where CP and CN are the skin coefficient and the drag coefficient, respectively; ρa is the density of air; 
and df and lf represent the diameter and length of the fiber fragment, respectively. Additionally, there 
are also the following relationships [35–37]. 
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Figure 1. (a) Schematic of commercial slot-die melt-blown process. (b) The microfibrous nonwovens
produced by melt blowing. (c) Schematic of a fiber fragment near the die and the air velocity applied on it.

This theoretical verification was carried out by analyzing the air force on the fiber. As shown
in Figure 1c, a random tiny fragment of fiber was chosen for modeling. During the process of melt
blowing, it was assumed that the fiber fragment has a two-dimensional resultant velocity, vf, which can
decomposed into parallel and normal components with respect to the axis-direction of the fiber, i.e., vfP
and vfN. Similarly, the air applied on the fiber fragment has a resultant velocity, vr, by decomposing vr

into parallel and normal components with respect to axis-direction of the fiber, vP and vN are obtained.
The angle between vr and the axis of the fiber is θ. The relative velocity of the air and the fiber, vrel, can
decompose into

vrel,P = vr cos(θ) − v f P
(
0 ≤ θ ≤ 180

◦
)
, (1a)

vrel,N = vr sin(θ) − v f N
(
0 ≤ θ ≤ 180

◦
)
, (1b)

where vrel,P and vrel,N are the component velocities of the relative velocity, which are parallel and
normal to the axis of the fiber.

Components velocities of vrel,P and vrel,N, respectively, create accordingly a “parallel drag force”,
FP, and a “normal drag force”, FN, on the fiber [18]. The appropriate definitions for the two drag
forces are

FP =
1
2

CPρa(vrel,P)
2(πd f l f ), (2a)

FN =
1
2

CNρa(vrel,N)
2(d f l f ), (2b)

where CP and CN are the skin coefficient and the drag coefficient, respectively; ρa is the density of air;
and df and lf represent the diameter and length of the fiber fragment, respectively. Additionally, there
are also the following relationships [35–37].

CP = 0.78(ReDP)
−0.61, (3a)

CN = 6.96(ReDN)
−0.440(d f /d0)

0.404, (3b)

ReDP =
ρavrel,Pd f

µa
, (4a)
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ReDN =
ρavrel,Nd f

µa
, (4b)

where µa is the kinematic viscose of air; d0 is 7.8 × 10−5 m [37].
Substituting Equations (3a) and (4a) into Equation (2a), and substituting Equations (3b) and (4b)

into Equation (2b), FP and FN are

FP = 0.39π
ρa

0.39(vr cos(θ) − v f P)
1.39d f

0.39l f

(µa)
−0.61

(5a)

FN = 159
ρa

0.56(vr sin(θ) − v f N)
1.56d f

0.964l f

µa−0.440
. (5b)

Because the fiber velocity is much smaller than the air velocity [15], here, vf is simplified to be 0
m/s, i.e., vfP and vfN are all zero. Substituting ρa =1.293 kg/m3, µa = 0.297 × 10−4 Pa·s, and assuming
df = 0.42 × 10−3 m, lf = 10−3 m, and vr = 100 m/s in Equation (5), the relationships between FP, FN, and
θ are

FP = 6.81× 10−5 cos1.39(θ) (0 ≤ θ ≤ 180
◦
)

(6a)

FN = 1.40× 10−3 sin1.56(θ) (0 ≤ θ ≤ 180
◦
)
. (6b)

Figure 2 shows FP, FN with respect to θ under the same assumption. The FN is much higher
than the FP at the same θ, especially when θ is around 90◦. The force analysis of the fiber illustrates
that even if the lateral velocities, vx and vy, are not as large as the spinning-line-direction velocity
component, vz [11], lateral velocities have higher efficiency on dragging fibers. Additionally, the force
analysis shows the measurement of lateral diffusion is meaningful.
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3. Experiments

3.1. Melt-Blown Setups

The measurement of air velocity direction in this study was performed on the single-orifice slot-die
melt-blown device (if the multifibers, shown in Figure 1a, are changed to be single fiber, then the
single-orifice slot-die melt-blown process is shown). The structure of the slot die used in this work
is shown in Figure 3. Slot die is referred to as a blunt-edge with a nose-piece width (f ) of 1.28 mm,
a slot angle (α) of 30◦, and a slot width (e) of 0.65 mm, the orifice diameter for the polymer melt (d)
was 0.42 mm. Other details of this slot die can be found in the manuscript of Xie [15], this kind of die
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was also described by other researchers [3,10]. The coordinate system used is also shown in Figure 3,
all coordinates are relative to the die face. Its origin is at the center of the die face, the x direction is
along the major axis of the nose piece and slots, whereas the y direction is transverse to the major axis
of the nose piece and slots. The z direction is directed vertically downward.
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3.2. Air Velocity Direction Measurements

As shown in Figure 4a, the velocity direction below the die was online measured with a hot-wire
anemometer (Dantec StreamLine CTA90C10, Dantec Dynamics, Skovlunde, Denmark) in the absence of
the polymer stream. A gauge air pressure of 1.0 atm was supplied for measurement. This anemometer
is often called CTA or constant temperature anemometer with reference to the operating principle.
The CTA works on the basis of convective heat transfer from a hot wire to the surrounding fluid, the
heat transfer being primarily related to the fluid velocity, namely, the melt-blowing air takes away the
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heat of the wire, the temperature of the wire is kept constant by applying voltage on it. The relationship
between air velocity and the applied voltage is

E
Rw

= [
(Rw −R f )(A + Bv1/2)

α0R f Rw
], (7)

where E is the heating voltage applied on the wire; Rw and Rf are the resistance of the wire at
temperature of wire and air, respectively; A and B are constant numbers; v is the air velocity; and α0 is
the temperature coefficient of resistance.Polymers 2019, 11, x FOR PEER REVIEW 7 of 15 
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Figure 4. (a) Schematic of the constant temperature anemometer (CTA) device and melt-blown die
during air velocity direction measurement. The shown air flow field is obtained by Computational
Fluid Dynamics (CFD). (b) The structures of the dual-wire probe.

The CTA signal was acquired via an A/D converter board and saved as a data series in a computer.
Series of air velocities were obtained by converting the data series of voltages via Equation (7). Actually,
the so-called air velocity refers to the mean of the data series of velocities. As a core component of the CTA,
probes are available in one-, two-, and three-dimensional versions as single-, dual-, and triple-wire probes
referring to the number of wires. Since the wires respond to both magnitude and direction of the velocity
vector, information about both can be obtained, only when two or more wires are placed under different
angles to the flow vector. A dual-wire probe was attempted for the velocity-direction measurement in this
work, Figure 4b illustrates the structure of the dual-wire probe used in this measurement, the dual-wire
probe consisted of two systems of single-wire probes, each probe had a wire with a 5µm diameter and a 1.6
mm length spot-welded to needle-shaped prongs, made of stainless steel. The two planes which contain
the two wires and their corresponding prongs were parallel to each other, the projections on the parallel
planes of the two wires were vertical. Note that the arrangement of the two wires was very important
during measurement, for example, the plane which contains the two wires and its corresponding prongs
is in the x–z plane, with this arrangement, the angle between the projection of the air velocity in the x–z
plane and the z-axis is measured. In the present work, the projection of the air velocity in the x–z plane
was called velocity in x–z plane for short.

During the measurements of air velocity direction, the probe was positioned with a traversing
system, which permitted upward or downward motion along the z-axis in 2 mm increments.
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In consideration of probe protection, the minimum distance below the die was set to z = 6 mm.
The measurement was carried out on 384 discrete positions, these discrete positions were along eight
series lines, they were

Positions along line 1: [x = 0, y = 2, z = 6, 8, 10, . . . 100 mm]
Positions along line 2: [x = 0, y = 5, z = 6, 8, 10, . . . 100 mm]
Positions along line 3: [x = 0, y = 10, z = 6, 8, 10, . . . 100 mm]
Positions along line 4: [x = 0, y = 20, z = 6, 8, 10, . . . 100 mm]
Positions along line 5: [x = 2, y = 0, z = 6, 8, 10, . . . 100 mm]
Positions along line 6: [x = 5, y = 0, z = 6, 8, 10, . . . 100 mm]
Positions along line 7: [x = 10, y = 0, z = 6, 8, 10, . . . 100 mm]
Positions along line 8: [x = 20, y = 0, z = 6, 8, 10, . . . 100 mm]
Calibration is an indispensable process before all formal measurements, similarly, before the air

velocity direction measurement, the directional calibration was accomplished on a calibration device
at ambient temperature. Calibration establishes a relationship between the CTA output and the air
direction. As shown in Figure 5a, it was performed by exposing the probe to a known air velocity from
different angles, two responding voltages (E1 and E2) could be obtained for the dual wires. By the
principle of Equation (7), E1 and E2 were different, because of the angle of arrangement of the dual
wires. Figure 5b shows the calibration angle and its two responding voltages for the dual wires, which
is called the directional-calibration curve, the calibration angle, ϕ, was set from −40◦ to 40◦ with an
interval of 10◦. Here, the calibration angle and the ratio of E1 and E2 had a relationship of

ϕ =
1.0066− E1/E2

0.0023
R2= 0.9954. (8)

Later, during the formal measurement, the air velocity direction could be calculated from the
ratio of output of E1 and E2 according to Equation (8). In this measurement, the discovery of lateral
diffusion was carried out by measuring the velocity direction in two typical vertical planes, i.e., y–z
and x–z plane.
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3.3. Fiber Path Measurement

Polypropylene (SK, Seoul, Korea) with melt flow rate of 650 g/10 min was used in the fiber
spinning process. The base conditions were a polymer flow rate of 7.1 g/min, a polymer temperature
of 260 ◦C, and a gauge air pressure of 1.0 atm with room temperature.

The melt-blown fiber motion was online captured by a high-speed camera (Redlake Inc., San Diego,
CA, USA), which has the capability of recording images at a frame rate up to 100,000 partial frames/s.
The camera was equipped with a Nikon 24–85 mm, f 2.8 zoom lens. Two 2000 W lamps were added
as a light source to make the fiber more clear. Fiber paths in a region of 62.5 mm × 130 mm in the
y–z plane and the x–z plane were captured, respectively, at the frame rate of 1500 frames/s. Similar
measurements of the fiber path can be found in the previous work of Xie [15] or Shambaugh [38].

4. Results and Discussion

4.1. Air Velocity Direction

Figure 6 shows the directional angle between the z-axis and the resultant velocity in the y–z plane
(here, resultant velocity in the y–z plane means the projection of the air resultant velocity on y–z plane),
at different positions along lines 1–4 (lines 1–4 correspond to the lines of y = 2, 5, 10, and 20 mm in the
y–z plane). The resultant velocity in the y–z plane consisted of the component velocities of vy and vz,
where vy was definitely the lateral component velocity.
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Figure 6. The directional angle between the z-axis and the resultant velocity in the y–z plane at different
position along lines 1–4. Lines 1–4 were defined as described in Section 3.2.

Along line 1 of y = 2 mm, the angle down from the z-axis, ϕ, was about −8◦ at z = 6 mm, and
increased to be a positive value at a critical position of z = 14 mm, the angle had a small increase in the
distance beyond z = 14 mm, but all of them were less than 5◦. Similarly, the angles along lines 2 and
3 of y = 5 and 10 mm, had minimum (negative) values at z = 6 mm, and increased with increasing
distance from the die, at critical positions of z = 50 and 72 mm, the values of their angle changed to be
positive. For the angle along line 4 of y = 20 mm, although the angle had a general increasing trend
with increasing distance from the die, there existed a large angle fluctuation near the die, especially in
the region of z < 40 mm, revealing that the velocity in the y–z plane became unstable in the lateral
region far away from the spinning line, i.e., the z-axis. The reason for the instability was deduced to be



Polymers 2019, 11, 788 9 of 14

caused by the collision of the air jet and the surrounding atmosphere. In Figure 6, the positive value
represents that the direction of the resultant velocity deviates from the z-axis, i.e, vy has a positive
direction along the y-axis. Similarly, the negative value meant the vy had opposite direction with the
y-axis. According to this illustration, an interesting phenomenon can be discovered, namely that there
exists a veer of lateral velocity in the slot-die melt-blown air flow field, which means that there exists a
critical boundary of the lateral diffusion of air flow in the y–z plane during slot-die melt blowing.

Figure 7 shows the directional angle between the z-axis and the resultant velocity in the x–z plane,
at different positions along lines 5–8 (lines 5–8 correspond to the positions of x = 2, 5, 10, and 20 mm
in the x–z plane). The resultant velocity in the x–z plane consisted of component velocities of vx

and vz, vx is also the so-called lateral velocity in this work. Unlike the profiles of angles shown in
Figure 6, all angles in Figure 7 are positive in value, indicating that the air jets in the x–z plane are a
completely diffused field. Moreover, the angles commonly decrease with increasing distance from the
die, implying that the lateral diffused effect decreases with increasing distance from the die.
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Figure 7. The angle down from the z-axis of the resultant air velocity in the x–z plane at different
positions along lines 5–8.

Figure 8 shows the fluctuant signals of the angle between the resultant velocity in the y–z plane
and the z-axis, at four lateral discrete positions, i.e., (y, z) = (2, 6), (5, 6), (10, 6), and (20 mm, 6 mm),
respectively. A time segment of 2 s was chosen for the demonstration of the angle’s fluctuation.
As shown in Figure 8, these fluctuant signals are irregular and different at different positions. These
fluctuation signals were expected to contain lots of potential information, however, the investigation of
the potential information of signals is not the topic of this work, therefore, the fluctuation signals at the
other 380 positions (the total positions in this work is 384) are not shown in this part. Even so, it is
certain that the polymeric fiber undergoes pulsating air force during melt blowing, which might be
one reason for initiating fiber instability during melt blowing.
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Figure 8. The fluctuant signals of the angle between the z-axis and the resultant velocity in the y–z plane
at the (y, z) positions of (a) (2 mm, 6 mm), (b) (5 mm, 6 mm), (c) (10 mm, 6 mm), (d) (20 mm, 6 mm).

4.2. Lateral Velocity Components: vy and vx

Figure 9 shows the distribution of the lateral velocity, vy, along lines 1–4 of y = 2, 5, 10, and 20 mm,
in the corresponding y–z plane. Here, the lateral velocity component was calculated via multiplying
resultant velocity by the angles, which are shown in Figures 6 and 7. It should be pointed out that
Figure 9 has a double abscissa, the upper and the lower abscissa are vy and y positions, respectively.
For the vy along line 1 of y = 2 mm, the vy had a magnitude of 28 mm/s and had back-diffusion direction
within the positions above the point “a” signed in this figure, however, the vy had a lateral diffused
direction at positions below the critical point “a”. Here, ”a” is deemed to be the so-called boundary of
veer, which has been mentioned above. At positions along lines 2 and 3 of y = 5 and 10 mm, vy has
similar profiles to vy along line 1, moreover, the maximum value of vy decreased laterally far away
from the z-axis, and the boundary points of veer are signed “b” and “c”, respectively. However, for
the vy along line 4 of y = 20 mm, all vy has back-diffusion direction, even though the maximum vy is
as small as about 4.5 m/s. In a word, as shown in Figure 9, air flow has the characteristic of lateral
diffusion in region A (yellow region), and lateral back-diffusion in the region B (green region). To
further represent the lateral diffused characteristic of air flow in the y–z plane, a diffused envelope
angle, β, is built, which is defined by Equation (9) below. Furthermore, β is calculated to be about 17.1◦.

β = 2
(
β1 + β2 + β3

3

)
, (9)

where β1 is the angle between the z-axis and the line segment of origin and “a”; similarly, β2 is the
angle between the z-direction and the line segment of “a” and “b”, and β3 is the angle between the
z-direction and the line segment of “b” and “c”. Here, the y–z coordinates of “a”, “b”, and “c” are
(2, 14), (5, 50), and (10 mm, 72 mm).

Figure 10 shows the distribution of lateral velocity, vx, along lines 5–8 of x = 2, 5, 10, and 20 mm in
the x–z plane. Unlike the distribution of lateral velocity, vy, shown in Figure 9, all vx have direction
along positive the x direction, showing that there is no critical boundary of lateral vx in the x–z plane.
At the position nearest to the orifice of the die face, the maximum value of vx is about 15 m/s, which is
approximately half of vy = 28 m/s, indicating that the polymer melt, which has just been squeezed
out from the orifice, undergoes higher lateral velocity along y direction than along x direction. This
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phenomenon deserves to be an import reason for the anisotropic distribution of fiber path in the
x–y plane, which will be further discussed below.
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4.3. Fiber Path in Melt Blowing

Figure 11 shows the fiber paths below the melt-blown slot die. It is obviously that the cross-section
of the fiber path in the x–y plane is not round (but more likely to be elliptical), the amplitude of
the fiber path in the y–z plane is larger than that in the x–z plane. The envelope angle of the fiber
path in the y–z plane, βf1, is about 16.3◦, while, the envelope angle in the x–z plane, βf2, is 9.1◦. It is
worth noting that βf1 = 16.3◦ is fairly consistent with the air diffused envelope angle, β = 17.1◦ in the
y–z plane, indicating that the critical boundary of the air lateral diffusion might control the lateral fiber
distribution during melt blowing, or at least they have a close relationship.

During melt blowing, fiber whipping occurs as soon as the polymer melts out from the orifice,
according to Yarin’s theory [17], when the flow velocity incident on a jet, exceeds a critical velocity,
a small disturbance of the jet will grow and develop into a bending instability. Figures 9 and 10 provide
an extra clue for initiating fiber whipping, fiber is driven directly by the lateral velocity all the time
without critical velocity mentioned by Yarin [17]. In consideration of the high drag efficiency of lateral
velocity on the fiber (shown in Figure 2), there are reasons to believe that the small lateral velocity still
has a crucial effect on initiating instability or whipping of the polymeric fiber during melt blowing.
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5. Conclusions

In this work, the necessity of measuring the lateral velocity in melt blowing was first theoretical
verified. Then, the velocity direction of the air flow in slot-die melt blowing was measured using
a dual-probe hot-wire anemometer, and the fiber path was captured by high-speed photography.
The results of the air velocity direction show that there exists a critical boundary of air lateral diffusion
in the y–z plane. However, the air flow in the x–z plane is a completely diffused field. In addition, the
fluctuating signal of the velocity direction is also shown, which might be a reason for initiating fiber
instability. Finally, the relationship between the air lateral diffusion and the fiber whipping path was
compared and discussed.

This work provides an extra clue for initiating fiber whipping, the lateral velocity plays crucial
effect on initiating instability or whipping of the polymeric fiber, even though it is much smaller than
the vertical velocity. This work indicates that, the air lateral diffusion deserves to be further discovering
for detailed melt-blown research.
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