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Abstract: Manual diagnosis of skin cancer is time-consuming and expensive; therefore, it is essential
to develop automated diagnostics methods with the ability to classify multiclass skin lesions with
greater accuracy. We propose a fully automated approach for multiclass skin lesion segmentation
and classification by using the most discriminant deep features. First, the input images are initially
enhanced using local color-controlled histogram intensity values (LCcHIV). Next, saliency is esti-
mated using a novel Deep Saliency Segmentation method, which uses a custom convolutional neural
network (CNN) of ten layers. The generated heat map is converted into a binary image using a
thresholding function. Next, the segmented color lesion images are used for feature extraction by
a deep pre-trained CNN model. To avoid the curse of dimensionality, we implement an improved
moth flame optimization (IMFO) algorithm to select the most discriminant features. The resultant
features are fused using a multiset maximum correlation analysis (MMCA) and classified using the
Kernel Extreme Learning Machine (KELM) classifier. The segmentation performance of the proposed
methodology is analyzed on ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets, achieving an accuracy
of 95.38%, 95.79%, 92.69%, and 98.70%, respectively. The classification performance is evaluated
on the HAM10000 dataset and achieved an accuracy of 90.67%. To prove the effectiveness of the
proposed methods, we present a comparison with the state-of-the-art techniques.

Keywords: skin cancer; melanoma; heuristic feature optimization; moth flame optimization; deep
features; feature fusion

1. Introduction

According to the World Health Organization (WHO), skin cancer accounts for one-
third of all types of cancers [1,2]. Each year, skin cancer cases increase and result in
a higher number of deaths. Currently, approximately 3 million non-melanoma and
132,000 melanoma skin cancer cases are diagnosed globally every year [3]. According to
the WHO, 9500 people receive a skin cancer diagnosis every day in the US alone, and two
people die every hour [4]. The average annual cost of treating such cases is USD 3.3 and 4.8,
respectively [5]. As per the statistics, the number of invasive melanoma cases has increased
by 47% in the last ten years [6]. In Europe, more than 100,000 new cases of diagnosed
melanoma are reported annually. In Australia, on the other hand, the number of annual
reported cases of melanoma is 15,229. However, the latest statistics show that the number
of skin cancer cases has been increasing since 1990. The current trend was explained by the
reducing ozone layer and the increased use of solariums and tanning beds [7].
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The biopsy method has been used in practice for examining skin cancers for a few
decades now. It is the simplest method available, but its reliability is questionable. Some of
the other screening methods include the ABCDE rule [8] and the seven-point checklist [9].
However, these methods require an expert dermatologist. In recent years, dermatologists
have used dermoscopy and microscopic images for diagnosing skin cancer [10]. The micro-
scopic images have a low resolution and can be seen through mobile cameras. Dermoscopy,
on the other hand, is a new imaging technology that improves diagnostic accuracy and can
assist in reducing the human mortality rate [11]. The images captured through dermoscopy
are of a high resolution and show deeper skin structures [12]. Expert dermatologists an-
alyze these images through visual inspection. This process requires skill and attention
and is time consuming [13]. Computer-aided diagnostics (CAD) systems bypass these
problems, consume little time, and provide much better accuracy than these manual tech-
niques [14,15]. CAD systems’ history is not very impressive because they work in several
interlocked steps, including preprocessing, handcrafted feature extraction, and then classi-
fication, which tend to constrain the overall classification accuracy (OA). These methods
initially remove bubbles and artifacts and then perform the next task. In contrast, deep
learning methods are superior to these techniques and manual examination. Convolutional
neural networks (CNNs) with multiple convolutional layers are typically used in deep
learning feature extraction [16,17].

A CAD system performs skin lesion detection using a segmentation approach and
skin lesion type classification. The lesion area’s location is detected using any segmentation
or deep CNN approach in the first phase. In contrast, in the second phase, the extracted
lesion needs to be classified in the relevant category, such as nevi, benign, melanoma, etc.
Both tasks, however, are challenging due to the following reasons: (i) the color difference
among healthy and lesion regions is not very strong, and sometimes, they both fall in the
same category; (ii) the low contrast of skin lesions makes correct detection hard for the
segmentation algorithm, and (iii) there are visual differences among the intra type skin
lesions. Many techniques have been proposed to resolve these issues, but they could not
achieve significant accuracy [18,19]. Skin cancer can be classified into numerous classes;
however, only the benign and malignant categories are required in clinical tasks. Typically,
benign and malignant lesions have many differences, and binary classification has a higher
accuracy rate [20]. It is believed that if one merges several skin lesion classes, the problem
of data augmentation could be resolved. However, in some cases, an overfitting problem is
observed, which researchers resolve using feature selection techniques along with fitness
functions such as KNN [21]. The latter are categorized into filter-based and wrapper-based
techniques. The filter-based techniques are much faster than the wrapper-based ones, but
the latter are still considered better for various reasons.

Recently, feature fusion and the best feature selection techniques showed an improved
accuracy. Many fusion and selection techniques have been introduced in the literature.
Most feature fusion techniques follow serial-based approaches and parallel-based ap-
proaches. The main purpose of the fusion techniques is to increase the information of an
object available from multiple sources. However, this step increases the number of predic-
tors, which has an impact on the computational time. Therefore, researchers of computer
vision introduced feature selection techniques for the selection of the best features. Feature
selection techniques are categorized as heuristic-based techniques and meta-heuristic ap-
proaches. Meta-heuristic techniques are more useful based on the selection process and
have a smaller number of predictors [22].

In this work, we use the HAM10000 dataset [23], which includes seven classes: basal
cell carcinoma (BCC), dermatofibroma (DF), melanoma (MEL), benign keratosis (BKL),
melanocytic nevi (NV), vascular (VASC), and actinic keratoses (AKIEC). The images in this
dataset are not balanced; therefore, it is a great challenge to train a CNN model with it.
This dataset includes 15 different attributes, such as hand, face, neck, foot, etc. Each class
consists of a different number of images. In the segmentation task, we use the ISBI 2016 [24],
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ISBI 2017 [25], ISBI 2018 [26], and PH2 datasets [27]. The key challenges while using these
datasets are the low-contrast lesions, high irregularity, and lesions on the boundary area.

This article presents a methodology for the segmentation and multiclass classification
of skin lesion images and contributes with several new methods as follows:

• For skin image enhancement, we propose a novel hybrid contrast stretching approach,
named local color-controlled histogram intensity values (LCcHIV). The method in-
creases the local contrast of a lesion region based on the color and histogram intensity
values.

• For segmentation of the skin lesion regions, we propose a new deep learning-based
saliency approach, which is implemented using a custom 10-layer CNN. Saliency
maps are obtained by fusing 128 channels of the third convolutional layer of the CNN.
The fusion of these channels returns a saliency map, which is further converted into
binary using a thresholding function. Additionally, an active contour-based mask is
generated for localization of the segmented lesions.

• For deep feature extraction, we use transfer learning from two pre-trained CNN
models (ResNet101 [28] and DenseNet201 [29]), where the most important features
are selected using an improved moth flame optimization (IMFO) algorithm.

• Finally, we adopt a multiset maximum correlation analysis (MMCA) approach for
feature fusion, while the classification of fused features is performed using the Kernel
Extreme Learning Machine (KELM).

The rest of the manuscript is organized as follows: the proposed methodology is
explained in Section 2. The proposed method is presented in Section 3, with a detailed
mathematical explanation and visual results. Section 4 discusses the experimental setup
and results. Finally, the conclusions are given in Section 5.

2. Related Works

Several skin lesion segmentation and classification techniques exist in the literature—
using either conventional or deep methods. For example, Khan et al. [30] presented a novel
technique based on probabilistic distribution and feature selection for skin lesion detection
and classification. Normal and uniform distributions are implemented to segment the
lesion area. Later, the features are extracted from the segmented images, which are finally
fused using a parallel fusion strategy. For feature selection, the entropy-based technique is
combined with Bhattacharyya distance and variance formulation. The proposed technique
is evaluated on three publicly available datasets, including combined ISBI 2016 and ISBI
2017, ISIC, and PH2, achieving an accuracy of 93.2%, 97.75%, and 97.5%, respectively.

Tschandl et al. [31] trained a fully convolutional neural network (CNN) on the ISIC
2017 dataset and reused the ResNet34 layers to segment skin lesions. Pre-training and fine
tuning of ResNet34 improves the segmentation performance; therefore, the mentioned
steps were embedded.

Mahbod et al. [32] explored the image resizing effect on pre-trained CNN models
to classify skin lesions. The images were resized on six different scales to investigate the
classification results of three CNN architectures, namely SeReNeXt-50, EfficientNetB0, and
EfficientNetB1. They also developed and evaluated a multi-scale multi-CNN (MSM-CNN)
fusion technique based on the ensemble method. This approach utilized the three CNN
models trained on cropped images of different sizes. The MSM-CNN technique achieved
an 86.2% accuracy on the ISIC 2018 dataset. They also concluded that image cropping
yields better results as compared to image resizing.

To classify the skin lesion images into seven classes, the researchers in [33] proposed a
deep CNN architecture. They implemented GoogleNet and Inception-V3 to perform binary
classification. They improved the accuracy by up to 7% for the multiclass problem.

Chaturvedi et al. [34] presented an automated classification system for multiclass skin
cancer. They performed extensive experiments on pre-trained CNN models including
Xception, NASNetLarge, Inception-V3, InceptionResNet-V2, and ResNetXt-101 and the
ensembles of these models. These CNN architectures were fine-tuned on seven classes
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of the HAM10000 dataset using transfer learning. This proposed model achieved an
accuracy of 93.2% on the ResNetXt-101 model. The accuracy achieved on the ensemble of
InceptionResNet-V2 and ResNetXt-101 was 92.83%.

Al-Masni et al. [35] presented a hybrid model for multiple skin lesion classification
and segmentation. A full-resolution convolutional network (FrCN) was utilized for seg-
mentation of lesion parts. Deep CNN classification performed on the segmented skin
lesions. The presented technique was validated on three challenging skin datasets, ISIC
2016, ISIC 2017, and ISIC 2018, with proper data normalization of these datasets and
achieved improved results.

Xie et al. [36] presented a mutual bootstrapping deep convolutional neural network
(MB-DCNN) for efficient detection and classification of skin lesions. A coarse segmentation
network was utilized for enhanced segmentation of lesions and a mask-guided network
was implemented for classification. Bootstrapping coarse segmentation networks and
enhanced segmentation networks played a vital role in segmentation and classification.
The features of both networks were concatenated for efficient detection and classification.
The proposed technique was validated on the ISIC 2017 and PH2 datasets and achieved
mean area under the curve (AUC) values of 93.8% and 97.7%, respectively.

Jayapariya et al. [37] introduced a fully convolutional network-based model for
melanoma detection. The VGG16 [38] and GoogleNet [39] deep CNN models were used for
segmentation of lesions, followed by the feature extraction step. The deep CNN-extracted
features were fused for accurate segmentation. Later, they extracted handcrafted features
and concatenated them with a deep vector. The SVM was added at the end for a final
classification. The presented model was tested on the challenging ISIC 2016 and ISIC 2017
datasets, with an accuracy of 0.8892 and 0.853.

Xie et al. [40] focused on spatial features for lesions’ segmentation by introducing a
high-resolution CNN model. In this model, they extracted deep features without affect-
ing the spatial attributes and decreasing the noise effect. The proposed model robustly
segmented the lesions by overcoming the artifacts and hair distraction.

Miglani et al. [41] compared the performance of deep CNN models for the robust
classification of skin lesions. Transfer learning was performed using ResNet-50 [28] and
EfficientNet-Bo by fine-tuning their parameters. The HAM1000 dataset was utilized to
validate the performance of the deep CNNs. EfficientNet-Bo outperformed ResNet-50 by
achieving macro and micro AUC value of 0.93 and 0.97 for skin lesion classification.

Mahbod et al. [42] proposed using multiple pre-trained CNNs with different architec-
tures that are fine-tuned on dermoscopic skin lesion images. The deep features acquired
from each CNN were used to train different SVM classifiers. Finally, the prediction proba-
bility classification vectors were fused to provide a final prediction. The proposed method
achieved an 87.3% AUC using the skin lesion images from the ISIC 2017 dataset. Finally,
Mahbod et al. [43] analyzed the impact of various segmentation masks but observed no sig-
nificant difference between using manually or automatically created segmentation masks
on the images from the ISIC 2017 dataset.

In brief, the discussed techniques are mostly based on pre-trained CNN models for
feature extraction. Additionally, they used CNN segmentation models for lesion detection.
As mentioned earlier, the studies’ primary focus was to improve the accuracy of a system;
however, they did not focus on the system’s prediction time. In this work, we select
the optimal deep features and combine features based on the correlation-related fusion
approach. Most of the above-discussed articles used the SVM for the final classification
stage, but our target is a multiclass learner, and therefore, we utilized the Kernel Extreme
Learning Machine (KELM).

3. Materials and Methods

This section discusses the benchmark datasets and the pre-trained models utilized in
the framework. To authenticate the proposed frameworks, results were generated from four
datasets including ISBI 2016, ISBI 2016, ISBI 2017, ISIC 2018, and PH2 and HAM10000. Sim-
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ilarly, two pre-trained models, namely ResNet101 [28] and DenseNet201 [29], were utilized
for feature extraction.

3.1. Datasets

The following datasets were used in this work for evaluation of the proposed method.
ISBI 2016 Dataset: This dataset [24] entails a total of 900 training images and 379 testing

images. The ground truth images are publicly available for validation of the segmentation
task. The training images include melanoma and benign classes. These images were
used for the training of a CNN model for the lesion segmentation task, while the rest of
the testing images were utilized for testing the newly implemented CNN model for the
segmentation task. Some sample images are reproduced in Figure 1.
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Figure 1. Sample images of ISBI 2016 for skin lesion segmentation.

ISIC 2017 Dataset: This dataset [25] consists of a total of 2750 dermoscopy images.
From those, 2000 images are used for training, 150 for validation, and 600 for testing [25].
The ground truth samples of this dataset are also publicly available, which were used for
validation of the segmentation algorithm. A few sample images are shown in Figure 2.
For the classification task, images were classified into three categories, namely melanoma
(374), seborrheic keratosis (254), and nevi (1372). As these classes are not balanced, we per-
formed data augmentation.
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Figure 2. Sample images of the ISIC 2017 dataset.

ISBI 2018 Dataset: This dataset consists of three parts—lesion segmentation, attribute
detection, and classification of the lesion into type [26]. For segmentation, a total of
2594 training images are provided along with ground truth images, whereas 1000 and
100 images are given for testing and validation, respectively. A few sample images along
with ground truth images are shown in Figure 3.
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Figure 3. Sample images for lesion segmentation task from ISIC 2018 challenge dataset [26].

HAM10000 Dataset: This dataset [23] includes a total of 10,015 dermoscopy images.
This dataset is known as one of the most complex imaging databases for multiclass skin
lesion classification. Seven different types of skin lesions are included, namely AKIEC,
BCC, BKL, DF, NV, MEL, and VASC. For each label, the number of images included is 327,
541, 1099, 155, 6705, 1113, and 142, respectively. Figure 4 shows few sample images from
this dataset.
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Figure 4. Sample skin lesion types collected from the HAM10000 dataset [23].

3.2. Proposed Framework

A fully automated system is proposed for lesion segmentation and multiclass clas-
sification using optimal deep learning features. The proposed framework incorporates
five primary steps: contrast stretching by implementing a hybrid approach named local
color-controlled histogram intensity values (LCcHIV). Later on, a deep saliency-based
technique is proposed, which initially computes the saliency map, which is refined through
the superpixel technique. After that, images are converted into binary form and mor-
phological operations are performed for refinement of the extracted lesions. In the third
step, the ResNet101 and DenseNet201 pre-trained networks are implemented and trained
through transfer learning (TL).

Features extracted from both models are optimized through an improved MFO algo-
rithm. This algorithm is separately applied on both extracted vectors, and resultant vectors
are fused using correlation analysis (CA). Finally, the fused vector is classified using the
KELM classifier and the results are evaluated on selected datasets. A detailed systematic
flow is shown in Figure 5 and described below.
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3.3. Lesion Contrast Stretching

For image quality assessment, contrast enhancement is one of the imperative require-
ments. Image enhancement is the process of improving image quality by increasing the
quality of a few features or decreasing haziness among distinct image pixels. The key
objective of this step is to improve the image quality compared to the original image.
Our main objective was to enhance the contrast of the lesion region to easily extract the
region of interest (ROI). Many techniques are presented in the literature, and one of the
most famous techniques is histogram equalization (HE) [44]. In HE, all image pixels are
increased, but lower and upper bounds are set to perform the enhancement only in the
specific region of the lesion.

Motivated by HE, we implemented a hybrid contrast stretching technique named local
color-controlled histogram intensity values (LCcHIV). In this approach, we initially create
a histogram of the input image to find the lesion pixels and then improve the pixel range
by multiplying variance values. The resultant variance value-based image is subjected to
HE for further refinement. Later, the intensity values are increased and adjusted according
to the lesion and background regions based on a fitness function. This process is described
as follows.

Consider an input image ξxy having dimensions N×M, where N = 512 and M = 512,
and (xy) ∈ R. Let ξ̃xy be the resultant contrast-enhanced image of the same dimensions as
the input image ξxy. First, the histogram of the image ξxy is computed as follows:

h f (k) = Oj (1)

where h f (k) is the histogram of an image ξxy, f represents the frequency of occurrences, Oj
represents the occurrence of gray levels, and j ∈ 0, 1, 2, . . . K− 1. Based on h f (k), we find
the range of infected pixels, represented by Equation (2).

h̃ f (k) = h f (k)
[
Ij
]

k1,kn
, (2)

where Ij represents the infected region patch and j represents the pixel values. The h̃ f (k) is
the entire infected region, and the range of the infected region is represented by k1 to kn.
Later, we compute the variance of the whole image ξxy using Equation (3).

σ2(ξxy
)
=

1
MN

M−1,N−1

∑
i=0, j=0

(
ξij
)2 − µ2, (3)
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µ =
∑N−1, M−1

i=0, j=0

(
ξij
)

MN
(4)

The output variance value is multiplied with Equation (2) as follows:

H̃ f (k) =
[

h̃ f (k)
]
×
[
σ2(ξxy

)]
(5)

After that, we fuse ξxy and H̃ f (k) to obtain an infected patch. Furthermore, histogram
equalization is applied on the infected patch and fused with the original image in Equation
(6).

F
(

ξxy, H̃ f (k)
)
=
[
ξxy
]

N×M

[
H̃ f (k)

]
N×M

(6)

The process results are visually shown in Figure 6b. In this figure, it is shown that
the infection regions are highlighted more as compared to the original images. However,
our interest is to separate the infection part from background based on contrast. Therefore,
we define two fitness functions in sequential order and obtain more relevant information.
Mathematically, the fitness functions are defined as follows:

Fitness(1) =↑
[

F
(

ξxy, H̃ f (k)
)]

+ L(5) (7)

Fitness(2) =↑ [Fitness(1)] + L(5) (8)Diagnostics 2021, 11, 811 9 of 27 
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These functions increase the range of pixel values by up to 5 times, each time in an
increment of 1. After the images are passed through both fitness functions, the resultant
images are more informative for correct lesion segmentation. The visual results of this step
are shown in Figure 6c,d. The final result shown in Figure 6d is utilized in the next step for
lesion segmentation.

3.4. Deep Saliency-Based Lesion Segmentation

Segmentation of skin lesions is a crucial step for the localization of infected regions.
Many techniques are presented in the literature for lesion segmentation using saliency
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techniques and convolutional neural network-based techniques, to name a few [40,45,46].
The saliency-based techniques are simple, but not more accurate as compared to CNN-
based techniques. The techniques based on CNN [47,48] required a large number of
ground truth images for training a model, which is further utilized for the detection
process. However, in most medical applications, it is not possible to prepare the required
number of ground truth images (e.g., for skin cancer, stomach infections, COVID-19, and
lung cancer). Moreover, the existing techniques are also facing a few problems including
low contrast of lesions, complex lesion boundaries, and irregularity in lesion shapes [49].
We propose a new method named Deep Saliency Segmentation (DSS) for skin lesion
detection in this work. The proposed method works as follows: (i) a simple CNN model
is designed, which includes ten layers; (ii) features of the last convolutional layer are
visualized and concatenated in one image; (iii) superpixels of the concatenated image are
computed; (iv) a threshold is applied for the final segmentation; and (v) boundaries are
drawn on segmented regions using an active contour approach for the localization of skin
lesions.

Mathematically, this approach is formulated as follows: Given that ξ̃xy ∈ Fitness(2)
denotes output enhanced images with dimensions of 512× 512× 3, we utilized these
images to design a simple CNN model. The main use of this model is to learn and visualize
the features of an image. Visually, the designed model is shown in Figure 7. This model
includes several layers, such as one input layer, three convolutional layers along with the
ReLu layer, one max-pool layer, one fully connected layer (FC), one softmax layer, and,
finally, an output layer. The size of the input layer was 224× 224× 3; therefore, we resized
all images to this size. In the first convolutional layer, the filter size was [3, 3], the number
of channels was 3, the filter size was 64, and stride was [1, 1]. After this layer, we obtained
two feature matrices named the weight matrix and the bias matrix. The size of the weight
matrix was 3× 3× 3× 64, and the bias matrix was 1× 1× 64.
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The convolutional layer weight matrix and bias matrix are represented as follows:

CL
h = ∑

h
ξ̃xy ×WL

h + bL
h , (9)

where CL
h denotes features of the first convolutional layer, ξ̃xy is an enhanced image, WL

h is
the weight matrix of the lth layer, and bL

h is the bias matrix of the lth layer. After that, the
ReLu activation layer was applied. In the second convolutional layer, the filter size was
[3, 3], the number of channels was 64, the number of filters was 64, and stride was [1, 1].
The weights and bias of this layer were updated as follows:

WL
h (i + 1) =

−r
q

WL
h −

r
N

(
∂F
∂W

)
+ m̃ψWL

h (i), (10)
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bL
h (i + 1) = − r

N

(
∂F
bL

h

)
+ m̃bL

h (i), (11)

where WL
h (i + 1) is the updated weight matrix, bL

h (i + 1) is the updated bias matrix, r is the
learning rate, and m̃ is the momentum. The features of this layer were normalized using
the ReLu activation function. Next, a max-pooling layer was applied of filter size [2, 2]
and stride of [2, 2]. The main purpose of this layer was to obtain more active features and
minimize the feature length. Mathematically, this layer is formulated as follows:

ML
h (W) = max

{
WL

h (i + 1)
}

, (12)

ML
h (b) = max

{
bL

h (i + 1)
}

(13)

In the third convolutional layer, the filter size was [3, 3], the number of channels was
64, the number of filters was 128, and the stride was [1, 1]. The weights and the bias matrix
were updated using Equations (10) and (11). Later, the fully connected and softmax layers
were added and training was performed.

After training, the features of the third convolutional layer were visualized, and in the
output, 96 images were generated, as shown in Figure 8. Then, all 96 output images were
combined in one image to obtain a saliency map image. Visually, this resultant image is
shown in Figure 8. This figure shows that the output image is more informative, and the
lesion is highlighted. By utilizing this saliency map image, superpixels were computed and
the pixels were reconstructed. The main purpose of the superpixel technique is to group
the important image pixels of a meaningful object. The second purpose of this approach
is to remove image complexity. In this work, we used a simple linear iterative clustering
approach [50] for superpixel generation. This approach is shown in Figure 9. This figure
illustrates that initially, superpixels are generated, and then, they are combined based on
color pixels.
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After this technique, the constructed saliency map was clearer, which was further
passed through a threshold function for final segmentation. Mathematically, the threshold
function is defined as follows. Consider that ξ̃sal(x, y) is a final saliency mapped image
and τ represents a threshold value; then, the threshold function is formulated as follows:

τ = µ
(

ξ̃sal(x, y)
)

, (14)

ξ̃seg(x, y) =

{
1 f or ξ̃sal(x, y) > τ

0 f or ξ̃sal(x, y) ≤ τ
(15)

This threshold function converts images into binary format. Visually, the output is
shown in Figure 10 (binary image), which illustrates that the binary images include a few
holes that need to be refined. Therefore, we applied a filling morphological operation.
The final segmented images are shown in Figure 10a. We drew boundaries based on the
active contour approach (seen in Figure 10b). This figure illustrates that the boundaries
drawn on the original images are based on their segmented output. Hence, in the next step,
deep learning features were extracted through these localized regions.

3.5. Multiclass Lesion Classification

Multiclass skin lesion classification is a new research area in which researchers are
trying to improve the classification performance. Experiments have been performed on
the ISBI 2018 and HAM10000 datasets. However, the images in these datasets are very
similar to each other, and each dataset consists of seven classes, as mentioned in Section 3.1.
In the existing studies, the researchers faced high similarity, low contrast, and imbalanced
data. In this work, for the multiclass classification, we initially balanced the data using a
data augmentation step. For this purpose, we performed the following operations: right
flip, left flip, and transposition of the original and both flipped images. After balancing
the skin classes, we utilized two pre-trained deep learning models named ResNet101
and DenseNet201. We retrained both models by employing transfer learning for feature
extraction. A detailed description is given below.
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ResNet101 CNN Model: ResNet was proposed in 2015 [28]; see Figure 11A. In this
model, a few connections are simply skipped, and the direct connections are made between
the layers. In ResNet101, the “bottleneck” building blocks are used to reduce the parameters
(see Figure 11B). These blocks are formulated as follows:

Ŷ = R
(

ξ̃loc,
{

wj
})

+ ξ̃loc (16)

where Ŷ represents an output vector, R(.) is the residual mapping to be learned, and ξ̃loc
is input localized lesion pixels. This equation is utilized for short connections, but the
dimensions of input and output must be the same. However, if the input–output channels
do not have the same dimension, then linear projection is performed. Mathematically,
the linear projection is defined as follows:

Ŷ = R
(

ξ̃loc,
{

wj
})

+ φs

(
ξ̃loc

)
, (17)

where φs

(
ξ̃loc

)
represents a convolutional operation, which is utilized to adjust the input

dimensions. Visually, the architecture of ResNet101 is shown in Figure 12. The network in-
corporates five convolutional blocks: Conv1, represents the first convolutional layer; Conv2
includes three building blocks, and each block has three convolutional layers. The third
convolutional layer includes four building blocks. In the fourth and fifth convolutional
layers, there are 23 and 3 building blocks, respectively. Finally, the last layer is the FC layer
used for classification.
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DenseNet201: The main idea in ResNet101 was skipping the layers revised in the
DenseNet architecture [51]. In this architecture, all features are concatenated in sequential
order. Mathematically, the concatenation process is defined as follows:

z̃l = ϕ̃l([z̃0, z̃1, . . . , z̃l−1]), (18)

where ϕ̃l is a nonlinear transform defined as a composite function followed by a ReLu
activation function. The convolution operation of 3× 3 is [z̃0, z̃1, . . . , z̃l−1], which refers
to the concatenated features for layer l − 1. In this model, dense blocks are created for
downsampling. These dense blocks are separated by the transition layer.

The architecture of DesnseNet201 is illustrated in Figure 13. This figure describes that
the first convolutional layer has a filter size of 7× 7 and stride of [2, 2]. After this layer, a
max-pooling layer is added of a filter size of 3× 3. Afterward, a dense block is added and
each dense block includes a convolutional layer of filter size 1× 1 and 3× 3. The main
purpose of adding this 1× 1 convolutional layer is to reduce the feature map and decrease
the computational cost. A total of four dense blocks have been added to this architecture,
and for each dense block, convolutional bocks are added. The size of the convolutional
blocks is 6, 12, 48, and 32, respectively. After each dense block, a transition layer has been
added. After the fourth dense block, a global average pooling layer has been added of a
filter size of 7× 7, followed by an FC layer for final classification.

Transfer Learning-based model training: Transfer learning (TL) is a technique where an
existing pre-trained model is reused for a new classification task [52]. TL has been proven to
achieve good performance on many image classification tasks [53–56]. Visually, this process
is illustrated in Figure 14, where the pre-trained models are trained on large datasets such
as ResNet101 and DenseNet201 in this work. In TL, knowledge is transferred on a target
model, and the target datasets used were ISBI 2017 and HAM10000. After reusing both
models, two new models were obtained for the classification of multiclass skin lesions.
In the TL phase, we selected 70% images for training the model and the remaining 30%
were used for testing. The number of epochs was 20 and the learning rate was 0.0001.
The mini-batch size was set as 64. Mathematically, we can define TL as follows.

Consider that SD is a source domain and ST is a source task; then, it can be defined as
{(SD, ST)| i = 1, 2, 3, . . . , ms}. The target domain is denoted by TD and the target source
is denoted by TS; then, it is represented as

{
(TD, TS)

∣∣ j = 1, 2, 3, . . . , mT}. TL uses the
knowledge of the source domain and transfer in the target domain based on the following
objective function.

f Tj
(

j = 1, 2, 3, . . . , mT
)

(19)

We selected a global average pool layer of both architectures and extract features.
The feature matrix length of ResNet101 was N × 2048 and N × 2048, denoted by ϑv1 and
ϑv2, respectively.

Feature Optimization: Feature selection is the removal of irrelevant, noisy, and re-
dundant features from an original feature set. It improves machine learning algorithms’
performance in terms of faster training and ease of interpretation, cuts the complexity if
the best features are selected, and reduces overfitting [57].

In this work, we implemented an improved moth flame optimization (IMFO) to select
the best features from high-dimensional data. MFO emulates the navigation mechanism
of moths in nature [58]. Initially, in this algorithm, a population is assigned, denoted
by N, and feasible solutions are assigned (ϑi, i = 1, 2, 3, . . . N) with features dimension
ϑij, (j = 1, 2, 3, . . . , Dim). The search technique is defined as follows:

Ψm f o = (ΨIP, ΨUP, ΨSP), (20)
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where ΨIP denotes an initial phase, ΨUP is an updated phase, and ΨSP is the stopping
condition. In the initial phase, the population is randomly generated, where N = 20. The
fitness function is applied to evaluate the features by the following equation.

Fitness(ϑi) = r× Error(ϑi) + (1− r)×
(
|Ψi|
Dim

)
, (21)

where Error(ϑi) represents the fitness function. In the Cubic SVM, the selected kernel
function is cubic, and the method is one vs. all; r is a random value between [0, 1] used to
balance the classifier accuracy, ϑi denotes input features, and Ψi denotes selected features
in i− th iteration. After this operation, the moths are updated based on the flames, but first,
we employ an activation function for first-stage feature selection. The activation function is
defined as:
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Ψi =

{
1, f or 1

1+e−Ψi
> V

0, Otherwise
, (22)

where V is a value obtained after the mean operation of each selected feature set Ψi, and
it is updated in each iteration. In our work, the value of is mostly 0.4 to 0.48. In this
equation, 1 represents the feature that is selected for the next iteration and is considered
in the updated phase, whereas 0 represents the feature that is discarded from the next
iteration. Using this process, there is a chance that a few important features will be lost
but there is also a high probability of good features being transferred for the next iteration.
The features are updated through the following formulation.

Ψi = dielbcos(2πl) + Flame(u) × w + (1− w)× u, (23)

where i, u = 1, 2, . . . N, di =
∣∣∣Flame(u) −Ψi

∣∣∣, and l = [1,−1]. Based on this expression, the
new positions of moths are updated w.r.t flames. Here, l = −1 represents the new closest
position to the flame and l = 1 represents the farthest position. Later, the updated flames
are sorted in descending order, defined by Up(Ψi), and the entropy value H

(
Up(Ψi)

)
is

computed. The activation function is updated for the final selection of features in the first
iteration based on the entropy value.

Ψi =

{
1, f or 1

1+e−Up(Ψi)
> H

(
Up(Ψi)

)
0, Otherwise

(24)

The features passed in this function are again evaluated in the fitness function, and
this process continues until the iterations are completed. In this work, the numbers of
iterations was set to 100. This algorithm was applied on both deep feature vectors, and
in the output, two optimized vectors were obtained. The length of the optimized feature
vectors was N × 1262 and N × 826, denoted by Ψi

f 1 and Ψj
f 2, respectively.

Later on, we fused both vectors and obtained a more informative feature matrix. The
main purpose of feature fusion is to improve accuracy, but, on the other side, the compu-
tational time increases. For feature fusion, we first found the length of both vectors and
then selected the feature vector of the maximum length. Based on the maximum length, we
found the entropy of fewer length feature vectors and performed padding. After padding,
we computed the correlation among pairs of features and selected only those features for
the fused vector that have a maximum correlation. Mathematically, it was formulated as
follows.

Given two optimal feature vectors Ψi
f 1 and Ψj

f 2 of dimension N × 1262 and N × 826,
respectively, consider that we have a fused feature vector Ψk

f u of dimension N× k3, where
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k3 represents the feature dimension of the fused vector. Initially, the maximum dimensional
feature vector is found by employing the following equation:

Max(length) = Max
(

Ψi
f 1, Ψj

f 2
)

, (25)

This equation returns a maximum length feature vector of dimension N × klen, where
klen = 1262; hence, it is required to equal the length of other feature vectors according to
the length of the resultant vector. Mostly, zero padding is performed for an equal length of
feature vectors, but we computed the entropy value of fewer feature vectors and performed
padding. After this step, the maximal correlation coefficient was computed among pair
features (i, j) as follows:

Y(i, j) = Ỹρ
(

Ψi
f 1, Ψj

f 2
)

, (26)

ρ(i, j) =
Cov(i, j)√

σ2(i)
√

σ2(j)
, (27)

where Cov(i, j) is the covariance among i and j, Ỹ is a supremum function [59],
(

Ψi
f 1, Ψj

f 2
)
∈

R, and the interval is [−1, 1], where−1 represents a strong negative correlation among features
and 1 represents a strong positive correlation. Hence, we selected only those pair of features
that have a maximum correlation (1 or near to 1). Selecting pairs of features through this
process plays a key role in obtaining the optimal values. This process of selecting the features
was continued until Y(i, j) was calculated for all feature pairs (1262 pairs). Finally, the resultant
fused vector was obtained, and the dimension of Ψk

f u was N × 1632. This final vector
was classified using the KELM [60]. The classification results are shown in Figure 15 as
labeled images.Diagnostics 2021, 11, 811 18 of 27 
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Figure 15. Proposed lesion localization and labeled results. Lesions are labelled as actinic ker-
atosis/Bowen’s disease (intraepithelial carcinoma) (AKIEC), basal cell carcinoma (BCC), benign
keratosis (solar lentigo/seborrheic keratosis/lichen planus-like keratosis) (BKL), dermatofibroma
(DF), melanoma (MEL), and melanocytic nevus (NV).

4. Experimental Results
4.1. Experimental Process

The experimental results of the proposed framework are presented in this section.
Results were computed for two different tasks—lesion segmentation and lesion type clas-
sification. In the segmentation of skin lesions, two measures were considered—accuracy
and error rate. The execution time was also noted for all testing images after the final
segmentation. In the classification phase, multiple classifiers were tested to compare the
performance of the KELM. These classifiers included Naïve Bayes (NB), Extreme Learning
Machine (ELM), multiclass SVM (MSVM), and Fine K-Nearest Neighbor (KNN). Two mea-
sures were computed for each classifier—negative rate (FNR) and accuracy. The average
classification time was also noted.
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4.2. Experimental Setup

In this section, we discuss the steps and parameters that were employed during the
computation of results. In the skin lesion segmentation process, we tested the implemented
CNN architecture. In the testing process, we first trained the model on 50% of the images,
which were ground truth images that are publicly available for research purposes. Then,
the rest of the images were utilized for testing the implemented CNN segmentation model.
In the classification phase, a ratio of 50/50 was employed and 10-fold cross-validation
was performed. In the validation phase, several classifiers were used. The first one was
Naïve Bayes. In this classifier, the Gaussian function is employed. In the MSVM, the RBF
kernel function along with the one vs. all method is employed. In fine KNN, the Euclidean
distance method is employed, where the number of neighbors was 10. In the learning
process, we opted for a learning rate of 0.001 and a mini-batch size of 28. All simulations of
the proposed framework were implemented on a desktop computer with 16 GB RAM and
256 GB SSD. MATLAB 2019b (MathWorks Inc., Natick, MA, USA) was used as a simulation
tool. A 16-GB graphics card was also employed to speed up the proposed framework
execution time.

4.3. Lesion Segmentation Results

Here, the lesion segmentation numerical results are presented along with visual seg-
mented images. Additionally, a comparison is conducted with recent techniques in terms of
accuracy value. Table 1 presents proposed lesion segmentation results for the selected datasets.
The results presented in this table were calculated in terms of average accuracy for all selected
images of one dataset. Visually, a flow diagram is shown in Figure 16, which shows that
original testing images were put in the database and the contrast stretching technique was
performed. After segmentation using the newly implemented CNN model, the resultant image
was compared with given ground truth images. This process was continued for all images
added to the database. After that, the average accuracy, FNR, and overall execution time
were obtained for each dataset. As given in Table 1, the average accuracy of the proposed
segmentation scheme on ISBI 2016 was 95.38%. The error rate was 4.62% and the testing time
of lesion segmentation was 51.3642 (s). Similarly, the accuracy achieved for ISBI 2017 was
95.79% along with an error rate of 4.21%. The noted testing time for this dataset was 59.4160
(s). ISBI 2018 is another challenging dataset, and the achieved accuracy was 92.69%. The error
rate and executing time were 7.31% and 67.4003 (s), respectively. Finally, the performance of
the PH2 dataset is presented. The achieved accuracy was 98.70% and the error rate was 1.3%.
The execution time was 29.3046 (s). Based on the results, it can be observed that the execution
time increased according to the size of the dataset. For example, as shown in Table 1, the PH2
dataset, which contained only 100 images, only took 29.3046 (s).

Table 1. Accuracy of the proposed lesion segmentation method by employing the contrast enhance-
ment approach.

Dataset

Calculated Measures

Accuracy (%) Error
(%) Testing Time (s)

ISBI 2016 95.38 4.62 51.3642
ISBI 2017 95.79 4.21 59.4160
ISBI 2018 92.69 7.31 67.4003

PH2 98.70 1.3 29.3046
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Figure 16. Flow diagram of testing lesion segmentation accuracy using the proposed scheme.

To analyze the importance of the contrast stretching step, we also performed segmentation
without considering the contrast stretching step. A flow diagram is shown in Figure 17. Note
that the contrast stretching step is removed from the original architecture and segmentation is
performed. The output results are noted in Table 2. According to this table, the accuracy of
ISBI 2016 was 89.37%, which shows that it decreased by an average of 6% as compared to the
result in Table 1.

Diagnostics 2021, 11, 811 20 of 27 
 

 

However, our method achieved an accuracy of 95.38% for the same dataset and 95.79%, 

92.69%, and 98.70% for the others. 

 

Figure 17. Evaluation of lesion segmentation performance without using contrast stretching step. 

Table 2. Lesion segmentation accuracy without employing contrast enhancement approach. 

Dataset 

Calculated Measures 

Accuracy (%) 
Error 

(%) 
Testing Time (s) 

ISBI 2016 89.37 10.63 46.0923 

ISBI 2017 90.46 9.54 51.4206 

ISBI 2018 82.09 17.91 56.3782 

PH2 91.30 8.7 23.5417 

Table 3. Comparison of segmentation accuracy of the proposed method with existing methods. 

Reference Dataset Segmentation Accuracy (%) 

[61] ISBI 2016 94.79 

[61] ISBI 2017 94.92 

[61] PH2 95.86 

[62] ISIC 2017 94.98 

[62] PH2 95.41 

[63] ISIC 2017 94.08 

Proposed 

ISBI 2016 95.38 

ISBI 2017 95.79 

ISBI 2018 92.69 

PH2 98.70 
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Table 2. Lesion segmentation accuracy without employing contrast enhancement approach.

Dataset

Calculated Measures

Accuracy (%) Error
(%) Testing Time (s)

ISBI 2016 89.37 10.63 46.0923
ISBI 2017 90.46 9.54 51.4206
ISBI 2018 82.09 17.91 56.3782

PH2 91.30 8.7 23.5417

Similarly, for ISIC 2017, ISBI 2018, and PH2, the achieved accuracies were 90.46%,
82.09%, and 91.305, respectively. The change in the results without using the contrast
stretching step shows a huge impact on the segmentation accuracy. Overall, an average
decrease of 7% in accuracy was shown when we skipped this step for our proposed scheme.
Table 3 describes the comparison with existing techniques on the same datasets. According
to this table, the previous best noted accuracy on ISBI 2016 was 94.79% [61]. However,
our method achieved an accuracy of 95.38% for the same dataset and 95.79%, 92.69%, and
98.70% for the others.
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Table 3. Comparison of segmentation accuracy of the proposed method with existing methods.

Reference Dataset Segmentation Accuracy (%)

[61] ISBI 2016 94.79
[61] ISBI 2017 94.92
[61] PH2 95.86
[62] ISIC 2017 94.98
[62] PH2 95.41
[63] ISIC 2017 94.08

Proposed

ISBI 2016 95.38
ISBI 2017 95.79
ISBI 2018 92.69

PH2 98.70

4.4. Multiple Skin Lesion Types Classification

Multiple skin lesion classification results are presented in this section. The results were
computed using the proposed framework and the resultant values are given in Table 4.
The KELM classifier was utilized in the proposed framework, and other classifiers such
as Naïve Bayes, ELM, MSVM, and Fine KNN are used for comparison. According to this
table, KELM achieved an accuracy of 90.67% and an FNR of 9.33% and the noted time was
133.4406 (s). MSVM achieved the second best accuracy of 85.50% along with an FNR of 85.50%
and a time of 121.5200 (s). The time of the MSVM during the testing process was better as
compared to the KELM, but there was a large gap among them. The achieved accuracy for
Naïve Bayes, ELM, and Fine KNN was 81.34%, 84.92%, and 82.08%, respectively. Table 5
describes the confusion matrix of the KELM. This table can be utilized to verify the proposed
accuracy of the KELM. Additionally, in this table, we computed the sensitivity rate of the
KELM. The computed sensitivity rate of the KELM was 90.20%. Additionally, this table shows
that the skin classes such as BCC, BKL, and MEL had correct prediction rates of 94.60%, 93.04%,
and 90.64%, respectively. The worst prediction rate was 84.30% noted for DF.

Table 4. Proposed multiple skin lesion type classification results using HAM10000 dataset. Best
values are shown in bold.

Classifier

Performance Measures

Accuracy (%) Sensitivity (%) FNR (%) Prediction Time
(s)

Naïve Bayes 81.34 81.24 18.66 157.3042
ELM 84.92 84.90 15.08 138.5049

KELM 90.67 90.20 9.33 133.4406
MSVM 85.50 85.42 14.50 121.5200

Fine KNN 82.08 82.00 17.92 139.3896

Table 5. Confusion matrix of the KELM for multiple skin lesion type classification.

Actual
Class

Predicted Skin Lesion Type

AKIEC BCC BKL DF NV MEL VASC

AKIEC 90.42% 2% 4% 2% <2%
BCC 94.60% 5% <1%
BKL <2% 93.04% 5%
DF 2% 1% 84.30% 4% 7% 5%
NV 2% 2% 88.92% <1% 7%

MEL 65 1% 2% 90.64% <1%
VASC 5% 4% 1% 89.50%

4.5. Analysis

To analyze the classification performance using the proposed framework, we con-
ducted a few experiments:
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• Classification performance of ResNet101 using TL;
• Classification performance of DenseNet201 using TL;
• Classification performance using optimal ResNet101 deep features;
• Classification performance using optimal DenseNet201 deep features.

Table 6 describes the classification performance of ResNet101 deep features. The ResNet101
deep features were extracted after TL and showed the best accuracy of 80.46%. MSVM gave the
second best accuracy of 77.50%; however, it is noted that only the prediction time for ResNet101
features increased. As presented in Table 4, the best noted time was 121.5200 (s), but in this
experiment, the optimal time was 136.3604 (s). The main reason behind an increase in the
prediction time is the number of extracted features. Similarly, the classification performance
while using only DenseNet201 deep features is given in Table 7. The best accuracy in this
experiment was 79.34%, while the worst accuracy was 74.30%. After that, we applied the
proposed feature selection approach on each extracted deep feature vector separately, and the
results are given in Tables 8 and 9.

Table 6. Multiple skin lesion type classification results using only the ResNet101 CNN model after
transfer learning. Best values are shown in bold.

Classifier
Performance Measures

Accuracy (%) FNR (%) Prediction Time (s)

Naïve Bayes 73.64 26.36 171.6642
ELM 76.24 23.76 146.3290

KELM 80.46 19.54 149.5046
MSVM 77.50 22.5 136.3604

Fine KNN 74.94 25.06 148.9920

Table 7. Multiple skin lesion type classification results using only the DenseNet201 CNN model after
transfer learning. Best values are shown in bold.

Classifier
Performance Measures

Accuracy (%) FNR (%) Prediction Time (s)

Naïve Bayes 75.36 24.64 172.6420
ELM 76.42 23.58 148.9260

KELM 79.34 20.66 145.3364
MSVM 78.16 21.84 132.2064

Fine KNN 74.30 25.7 145.3092

Table 8. Multiple skin lesion type classification results using optimal ResNet101 deep features. Best
values are shown in bold.

Classifier
Performance Measures

Accuracy (%) FNR (%) Prediction Time (s)

Naïve Bayes 77.84 22.16 114.4534
ELM 78.36 21.64 101.5426

KELM 83.04 16.96 103.9962
MSVM 80.12 19.88 96.3248

Fine KNN 76.04 23.96 107.9040
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Table 9. Multiple skin lesion type classification results using optimal DenseNet201 deep features.
Best values are shown in bold.

Classifier
Performance Measures

Accuracy (%) FNR (%) Prediction Time (s)

Naïve Bayes 78.14 21.86 110.3044
ELM 80.29 19.71 96.5409

KELM 84.04 15.96 98.3667
MSVM 81.30 18.7 90.2014

Fine KNN 80.49 19.51 97.2436

In Table 8, the optimal ResNet101 features are used and achieved an improved perfor-
mance as compared to the results in Table 6. The best accuracy achieved in this experiment
was 83.04% on the KELM classifier, whereas the worst accuracy was achieved by Fine KNN
of 76.04%. Additionally, the prediction time was minimized after this experiment due to
the reduction in irrelevant features. The best time of this experiment was 96.3248 (s) on
MSVM, whereas the KELM was executed in 103 (s).

Similarly, Table 10 describes the classification performance of optimal DenseNet201
features and the attained maximum accuracy of 84.04%. Based on these experiments,
it is shown that the optimal solutions provided improved accuracy, but the best time
performance was not reached by the proposed framework. This experiment shows the
importance of each step based on the results.

Table 10. Comparison of the proposed method with the existing techniques.

Reference Year Dataset Accuracy (%) Sensitivity (%)

[64] 2020 HAM10000 83.0 83.0
[33] 2020 HAM10000 - 75.57

Proposed 2020 HAM10000 90.67 90.20

Lastly, we also compared the performance of different neural networks to analyze
the selection of ResNet101 and DenseNet201. Figure 18 shows the classification perfor-
mance of various neural networks for the HAM10000 dataset. Neural networks such as
VGG16, VGG19, AlexNet, GoogleNet, ResNet32, ResNet50, ResNet101, Inception V3, and
DenseNet201 achieved an accuracy of 73.4%, 74.86%, 71.24%, 71.06%, 74.96%, 75.16%,
80.46%, 77.39%, and 79.34%, respectively. These networks were trained on extracted skin
lesion types and the results were computed without any feature optimization.
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Figure 19 shows the classification results achieved after employing the proposed
feature optimization approach. The accuracy was improved by an average of 3%, and the
computation time was decreased; thus, the optimization of features improves the system
performance. We compared these results with those in Table 3, which showed that the
proposed optimal feature fusion framework gives a better performance as compared to the
individual feature vectors.
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A comparison with the previous approaches is given in Table 10. Here, the authors
of [64] used the HAM10000 dataset and achieved an accuracy of 83% and a sensitivity rate
of 83.0%. In [33], the authors presented an assisted deep learning framework for multiclass
classification and achieved a sensitivity rate of 75.57%. The proposed method provided an
improved accuracy as compared to existing techniques using the improved MFO (IMFO).
Additionally, to support the performance of the IMFO, we computed the results on the
original MFO, and the results are given in Table 11. In this case, the original MFO algorithm
was added in the proposed flow and the KELM and softmax classifiers were evaluated.
Based on the results, the IMFO algorithm increases the classification accuracy. The time
complexity of the IMFO algorithm was O

(
n2).

Table 11. Comparison of the proposed improved MFO with original MFO. Best values are shown in
bold.

Method/
Optimization Technique

Evaluation Measures

Accuracy (%) Sensitivity (%) Error (%)

KELM/MFO 86.24 86.20 13.76
KELM/IMFO 90.67 90.70 9.33
Softmax/MFO 82.96 82.94 17.04
Softmax/IMFO 87.45 87.52 12.55

5. Conclusions

This article proposed a fully automated system for multiclass skin lesion classifica-
tion. In the framework, a deep learning-based saliency segmentation method and CNN
feature optimization using an improved moth flame optimization (IMFO) algorithm were
described. The proposed method was evaluated on the well-known ISBI 2016, ISBI 2017,
ISBI 2018, and PH2 datasets for the segmentation task and on the HAM10000 dataset
for the multiclass skin lesion classification task. The results, upon comparison with the
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existing methods, show an improved performance. Specifically, the contrast stretching
step improves the segmentation accuracy, which is useful for accurate lesion segmentation.
Using the segmented lesions, the pre-trained deep learning models used for the extraction
of relevant features cannot achieve high segmentation accuracy. To overcome this problem,
we removed irrelevant and redundant deep features using an IMFO algorithm, which al-
lowed to achieve improved accuracy. However, one of the constraints in our work is the
computational time, which will be addressed in future work. Furthermore, to avoid getting
our deep models trained on irrelevant image features, in future work, we will be extending
our segmentation technique.
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53. Urbonas, A.; Raudonis, V.; Maskeliunas, R.; Damaševičius, R. Automated identification of wood veneer surface defects using
faster region-based convolutional neural network with data augmentation and transfer learning. Appl. Sci. 2019, 9, 4898.
[CrossRef]

54. Nanni, L.; Interlenghi, M.; Brahnam, S.; Salvatore, C.; Papa, S.; Nemni, R.; Castiglioni, I. Comparison of transfer learning and
conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of alzheimer’s disease.
Front. Neurol. 2020, 11. [CrossRef] [PubMed]
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