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Abstract

Background: Alzheimer's disease (AD) is characterized by a decline in cognitive function and
accumulation of amyloid-f peptide (AP) in extracellular plaques. Mutations in amyloid precursor
protein (APP) and presenilins alter APP metabolism resulting in accumulation of AB42, a peptide
essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD.
However, the role of AB40, the more prevalent A} peptide secreted by cells and a major
component of cerebral AB deposits, is less clear. In this study, virally-mediated gene transfer was
used to selectively increase hippocampal levels of human AB42 and AB40 in adult Wistar rats,
allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD.

Results: Adeno-associated viral (AAV) vectors encoding BRI-A3 cDNAs were generated resulting
in high-level hippocampal expression and secretion of the specific encoded AP} peptide. As a
comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals
were tested for development of learning and memory deficits (open field, Morris water maze,
passive avoidance, novel object recognition) three months after infusion of AAV. A range of
impairments was found, with the most pronounced deficits observed in animals co-injected with
both AAV-BRI-AB40 and AAV-BRI-AB42. Brain tissue was analyzed by ELISA and
immunohistochemistry to quantify levels of detergent soluble and insoluble A} peptides. BRI-A342
and the combination of BRI-AB40+42 overexpression resulted in elevated levels of detergent-
insoluble AB. No significant increase in detergent-insoluble AB was seen in the rats expressing
APPsw or BRI-AB40. No pathological features were noted in any rats, except the AAV-BRI-A342
rats which showed focal, amorphous, Thioflavin-negative AB42 deposits.

Conclusion: The results show that AAV-mediated gene transfer is a valuable tool to model
aspects of AD pathology in vivo, and demonstrate that whilst expression of A42 alone is sufficient
to initiate AP} deposition, both AB40 and AB42 may contribute to cognitive deficits.
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Background

Alzheimer's disease (AD) is a prevalent neurodegenerative
disorder characterized by a decline in cognitive function,
accumulation of extracellular amyloid-f peptides (AB)
and intracellular neurofibrillary tangles, and neuronal
loss. Numerous AD-linked mutations in amyloid precur-
sor protein (APP) and presenilins (PS) [1-3] alter APP
metabolism resulting in accumulation of AB42, a 42-
amino acid product essential for the formation of paren-
chymal and vascular amyloid deposits [4], and proposed
to initiate the cascade leading to AD [3]. However, the role
of AB40, the more prevalent AB peptide secreted by cells
and a major component of deposits in the cerebral vascu-
lature of AD brain [5,6], is less clear.

Current transgenic models of AD utilize overexpression of
mutant human APP and PS1 to increase AB production
and recapitulate AD cognitive deficits and pathologies [7-
10]. However, overexpression of APP results not only in
increased production of both AB40 and AB42, but in ele-
vated levels of other APP fragments which can have neu-
roprotective [11,12], neurotoxic [13] or signaling
functions [14] and influence learning and memory [15-
18]. In this study we have used adeno-associated viral
(AAV) vectors, gene transfer agents that result in stable,
long-term transgene expression in neurons [19-21], to tar-
get expression of individual AB peptides to the hippocam-
pus of adult rats, allowing us to examine the role of each
in the pathology and cognitive deficits seen in AD models.
The use of viral vectors to overexpress genes implicated in
disease pathogenesis has already been successfully imple-
mented to generate non-transgenic rat models of both
Parkinson's [22,23] and Huntington's diseases [24,25],
with successful transfer of the method to a primate model
[26].

AAV1 vectors encoding BRI-AB cDNAs, fusions between
human A peptides and the BRI protein involved in amy-
loid deposition in British and Danish familial dementia
[27,28], were used to achieve high-level hippocampal
expression and secretion of the specific encoded AB pep-
tide [4,29] in the absence of APP overexpression. As a
comparison we also examined the effect of AAV-mediated
overexpression of APPsw (APP containing the Swedish
mutations, K670N and M671L). AAV-treated animals
were tested for development of cognitive deficits, and
brain tissue analyzed for AP levels and evidence of extra-
cellular AB deposition. The results show that AAV-medi-
ated gene transfer is a valuable tool to model aspects of
AD pathology in vivo, and demonstrate that whilst virally-
mediated overexpression of AB42 alone is sufficient to ini-
tiate plaque deposition, both AB40 and AB42 levels con-
tribute to the development of cognitive deficits in this
model.
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Results

Infusion of AAV-BRI-Af vectors increases hippocampal Aj
expression

AAV1 vectors encoding APPsw and BRI-AB42 or BRI-AB40
fusion proteins were generated and injected bilaterally
into the hippocampus of adult rats, alone and in combi-
nation. Brain tissue was examined for presence of trans-
gene expression three weeks later. As seen in Figure 1,
infusion of vectors resulted in widespread expression of
the transgene in neurons throughout the hippocampus,
detectable by immunohistochemistry using an antibody
to human A, residues 1-17 (6E10). AAV-BRI-AB42, AAV-
BRI-AB40 and combined AAV-BRI-AB40+42 injected
brains had extensive transgene expression in the rostral-
caudal axis, extending ~2 mm on either side of the injec-
tion site, and throughout the layers of the hippocampus.
In these brains the granule cell and molecular layers of the
dentate gyrus and pyramidal cells of CA1 were transduced
(Figure 1). More variable transduction levels were seen in
CA2-CA4 subfields and hilar interneurons. In contrast, no
transgene expression was observed in naive (non-
injected) rat brain. Given the lack of specific antibodies
for the furin-cleaved BRI protein, it is not possible to dis-
tinguish whether the staining reflects AR or the BRI-AB
fusion proteins. However, based on ELISA data (see
below) and previous studies in transgenic mice, it is clear
that the BRI-fusion proteins result in enhanced produc-
tion of the encoded AP peptide [4].

In AAV-APPsw brains, AR immunostaining extended as far
in the rostral-caudal direction as in BRI-AB fusion ani-
mals, but staining was not as widespread within the layers
of hippocampus. These brains contained much lower
expression levels in the granule cells of dentate gyrus and
CA1 (Figure 1) than that observed in BRI-AB fusion
brains, with no positive immunostaining in CA2-4 or
hilar interneurons. Distinctive sub-cellular expression pat-
terns were observed with the different vectors - transgene
detected following transduction with the BRI-AB40 and
BRI-AB42 vectors filled the cell bodies; transduction
obtained with the APPsw vector resulted in sparse trans-
gene expression within the cell soma but expression
extended out into the processes.

Animals treated with AAY vectors encoding BRI-A/[ fusions
develop cognitive deficits

Once hippocampal transgene expression had been con-
firmed in a small number of test animals, further animals
were injected with AAV vectors and tested for develop-
ment of cognitive deficits at 3 months post-infusion. In
the open field, naive animals crossed an average of ~130
lines in a 5 min period; BRI-AB42, BRI-AB40 and APPsw
animals crossed a comparable number of lines with mean
line crosses in these groups of ~140 (Figure 2A). However
BRI-AB40+42 animals crossed significantly more lines
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Figure |

Transgene expression in rat hippocampus, 3 weeks post-infusion. A group of test animals (n = 3 per group) was
injected with AAV vectors and brains analysed for transgene expression (anti-amyloid beta protein, Chemicon, MABI560,
6E10, specific for human AB). No AP expression was observed in naive rat brain. Infusion of AAVI vectors expressing BRI-
AB42 and BRI-AB40 fusions or APPsw resulted in extensive expression of amyloid 3 in the dentate gyrus and CAI fields of the
hippocampus, with distinctive expression patterns for each vector. Left panel: low magnification view of unilateral hippocam-
pus, scale bar 250 um. Middle panel: higher magnification view of dentate gyrus (DG), scale bar 50 um. Right panel: higher mag-
nification view of CAl, scale bar 50 um.
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than naive controls (203 vs 130 lines, p < 0.01) indicating
higher baseline locomotor activity than other groups.
Naive rats spent ~13% of their time in the open (center of
field) as did the BRI-AB40 animals, with a small reduction
in time spent in center field in both the BRI-AB42 and
APPsw groups relative to naive animals. The most marked
reduction in time spent in the open however, was in the
BRI-AB40+42 animals which spent on average only half
the amount of time in the open as naive controls (~6% vs
13%) (Figure 2B).

In the Morris water maze rats were required to learn the
location of the hidden platform over 5 training blocks,
with the start point varied between each trial so that the
task was difficult enough that differences in performance
would be measurable. As seen in Figure 3A, naive animals
learned the location of the platform faster than AAV-treat-
ment groups, with naive animals reaching a minimum
latency of ~18s by day 3 and not improving further
beyond that time. All AP treatment groups took longer to
reach the minimum latency than naive controls, with the
most notable difference between groups on day 3 when
BRI-AB40+42 animals displayed an increased latency to
find the platform. Over all 20 acquisition trials, naive rats
had a mean latency of ~26 sec (Figure 3B), with all AB
treatment groups having longer latencies than this, partic-
ularly BRI-AB40+42 animals which performed the worst
overall with a mean latency over 20 trials of ~37s (ANOVA
P = 0.07). Repeated measures ANOVA on pathlength
taken to find the platform during the five days of acquisi-
tion training confirms the results obtained with latency
data. Overall the difference between treatment groups was
not significant (P = 0.061) (Figure 3C) but BRI-AB40+42
animals took a significantly longer mean pathlength to
find the platform over all 20 trials, Figure 3D (ANOVA P
= 0.02; BRI-AB40+42 > naive, ** p <0.01).

Animals were put through a probe trial 24 h after the last
training trial to check retention of spatial learning (Figure
3E, F). Naive animals spend ~30% of their time in the tar-
get quadrant, as did the BRI-AB42, BRI-AB40 and APPsw
animals. BRI-AB40+42 animals spent the least amount of
time and distance in the target quadrant of any treatment
group (~20%) indicating less retention of platform loca-
tion than in other groups. Results from the visible plat-
form test demonstrated that visibility was not impaired in
treated animals compared to naive controls, with no dif-
ference in latencies to swim to a visible target (data not
shown).

In the passive avoidance test there was no difference in
baseline latencies to enter the dark chamber between the
treatment groups - on being placed in the light chamber
for the first time, animals took an average of ~18s to move
to explore the dark chamber, indicating no baseline differ-
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ences in anxiety between treatment groups in this behav-
ioral test (Figure 4A). AAV-BRI-AB40 animals had a
significantly reduced latency to re-enter the dark chamber
24 hr after receiving a shock as compared to naive controls
(~200s vs 5008, p < 0.05), indicating these animals had an
associational learning deficit. BRI-AB40+42 animals also
had a reduced latency (~240s vs 500s) to enter the dark
chamber but high variability between animals meant this
did not reach statistical significance. BRI-AB42 and APPsw
groups had reduced latencies (down by ~20% and 40%
respectively) but were not significantly different to con-
trols.

In the novel object recognition test, rats were habituated
to the test environment and then given two identical
objects to explore (O1, O2). In this first trial all groups
spent equal amounts of time exploring both objects, with
aratio O2/01 of ~1.2 for all groups. Rats were returned to
the test chamber 15 min later and presented with one
familiar (O3) and one novel (N) object. Animals in all
groups recognized and explored the novel object more
than the familiar object (with a ratio N/O3 of ~1.9-2 .4 for
all groups) (Figure 4C). However it is noticeable that BRI-
AB40+42, BRI-AB42, and APPsw animals all spent less
total time (O1+02+03+N) exploring objects than naive
controls (BRI-AB42 < naive, p < 0.05; APPsw < naive, p <
0.01; Figure 4B) suggesting these animals are less inclined
to explore but can still recognize a novel object when
encountered. In this behavioral assay BRI-AB40 animals
were comparable to naive controls, with similar explora-
tion times and similar ability to discriminate between
novel and familiar objects.

Overall, expressing APPsw or either one of the BRI-AB
fusions alone resulted in distinct cognitive deficits, but
interestingly animals expressing both AP species exhibited
more robust behavioral deficits.

Animals treated with AAV vectors encoding BRI-A/[ fusions
have elevated Af levels

Animals were killed and the dissected hippocampus
examined for levels of RIPA-soluble and RIPA insoluble
FA-soluble AB peptides (either AB40 or AB42) by ELISA to
assess the levels of AB present at the time of behavioral
testing (Figure 5A). Naive rats had negligible levels of
AB40 or AB42 in the hippocampus (all < 2 pmol/gm tis-
sue). AAV-BRI-AB40 injected animals had an increase in
both RIPA- and FA-soluble AB40 but no increase in RIPA-
or FA-soluble AB42. In AAV-BRI-AB42 animals there was a
marked increase in FA-soluble AB42 to ~72 pmol/gm but
only low levels of RIPA-soluble AB42 were detected in
these brains, suggesting that AB42 is accumulating in
insoluble deposits. AB40 levels (RIPA- or FA-soluble)
were not increased above baseline in AAV-BRI-AB42 ani-
mals suggesting an increase in AB42 production did not
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Figure 2

Behavior in the open field. 12 rats per group were used
for behavioral testing. A. BRI-AP40+42 animals crossed sig-
nificantly more lines than naive controls or any other treat-
ment group (ANOVA P = 0.027; BRI-AB40+42 > naive, **p <
0.01). B. Although overall there was no significant difference
between treatment groups (ANOVA P = 0.24), BRI-
AP40+42 animals spent the least amount of time in the
center of the field.

influence endogenous AB40 levels. Animals injected with
the combination of BRI-AB40+42 vectors had higher lev-
els of RIPA-soluble and FA-soluble AB40 than naive ani-
mals and an increase in FA-soluble AB42, but no increase
in RIPA soluble AB42. Interestingly, this level of insoluble
AP40 is higher than that observed in rats injected with
BRIAB40 alone. AAV-APPsw animals had an increase in
the level of FA-soluble AB40 (14.3 pmol/gm vs none
detected in naive) but levels of RIPA-soluble AB40 and
RIPA-soluble and insoluble AB42 were comparable to
naive controls.

Deposition of Aj plaques was detected only in
hippocampus of AAV-BRI-AS42 rats

The other hemisphere from each brain was immunos-
tained with anti-Ap to detect any deposits of AB. Only BRI-

http://www.molecularneurodegeneration.com/content/2/1/11

AB42 animals showed "amorphous" plaque-like struc-
tures within the hippocampus following immunostaining
with pan anti-Ap 1-16 antibody (Figure 5B). These depos-
its appeared to be diffuse, confirmed when they did not
stain with either thioflavin S or Congo Red (data not
shown). Even though there was evidence for significant
accumulation of RIPA-insoluble AB in the combined BRI-
AB40+42 expressing rats, these plaques were not seen in
the combined treatment group, any other treatment group
or the naive controls. Immunostaining performed on
adjacent sections to those with plaque deposition in the
BRI-AB42 rats showed no evidence of phosphorylated tau,
astrogliosis or microgliosis in the vicinity of these diffuse
plaques.

Discussion

To better define the contribution of individual AB pep-
tides to the cognitive deficits and amyloid deposition
observed in models of AD, virally-mediated gene transfer
of BRI-AB fusion proteins was used to increase hippocam-
pal levels of individual AP species. Use of BRI-AB fusions
results in enhanced AP secretion in the absence of APP
overexpression, and distinguishes this approach from
overexpression of A minigenes, a strategy that generates
high levels of intracellular AR but minimal secreted AP
[30]. Animals injected with AAV1 vectors encoding
APPsw, BRI-AB40 or BRI-AB42, alone and in combina-
tion, developed behavioral deficits in a distinct pattern.
AAV-APPsw and AAV-BRI-AB42 animals had reduced
exploration behavior during working memory evaluation
but no significant deficits in passive avoidance or acquisi-
tion and retention of spatial information. Animals
injected with AAV-BRI-AB40 alone were impaired in pas-
sive avoidance, but were comparable to age-matched
naive controls in the working memory task and were not
significantly impaired in the Morris water maze. However,
animals co-injected with both BRI-AB vectors showed the
most pronounced behavioral deficits with some impair-
ment in all tests. Despite measurable impairments occur-
ring in all groups, only BRI-AB42 animals developed
extracellular AR deposits. Taken together with the ELISA
and histology results, this behavioral data confirms obser-
vations from AD transgenic mouse models that measura-
ble behavioral deficits are not dependent on the presence
of AP plaques. Unexpectedly, the data shows develop-
ment of more pronounced cognitive deficits when AB42
and APB40 are co-expressed, and suggests a role for AB40,
along with AB42, in cognitive impairment.

In the current study only AAV-BRI-AB42 animals devel-
oped extracellular Af deposits, located within the hippoc-
ampus. These diffuse deposits were immuno-positive for
AB, but did not stain with thioflavin S or Congo Red and
were not associated with astrogliosis or proliferation of
microglia, indicating they are "non-cored" diffuse struc-
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Figure 3

Morris water maze. A. Repeated measures ANOVA on latency to find the platform during acquisition shows that overall the
difference between treatment groups was not significant (P = 0.12). However, naive animals took fewer trials to learn the loca-
tion of the platform than AAV treatment groups, reaching a minimum latency by day 3. BRI-A340+42 animals had a noticeably
higher latency on day 3 of acquisition than other groups. B. BRI-Af340+42 animals had the highest mean latency over all 20 trials
of all treatment groups (ANOVA P = 0.07). C. Repeated measures ANOVA on pathlength to find the platform during acquisi-
tion shows that overall the difference between treatment groups was not significant (P = 0.061). D. BRI-A40+42 animals took
a significantly longer pathlength to find the platform over all 20 trials (ANOVA P = 0.02; BRI-AB40+42 > naive, ** p < 0.01). E,
F. Animals were put through a probe trial 24 hr after the last training trial. BRI-A40+42 animals showed a non-significant
reduction in time (ANOVA P = 0.2) and distance (ANOVA P = 0.13) spent in the target quadrant.
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Figure 4

A. Passive avoidance. There was no difference in baseline
latencies between the treatment groups (ANOVA P = 0.97)
but at 24 hr BRI-AB40 animals had a reduced latency to re-
enter the dark chamber compared to naive controls
(ANOVA P = 0.03; BRI-AB40 < naive, *p < 0.05). B, C.
Novel object recognition. At 3 months post-injection
BRI-AB42, BRI-AB40+42 and APPsw animals spent less total
time (O1+02+03+N) exploring than naive controls (B) but
still explored the novel object (N) more than the familiar
object, O3 (C). Total exploration time: ANOVA P = 0.003;
APPsw < naive, p < 0.01, BRI-AB42 < naive, p < 0.05.
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A. Characterization of Aj} levels in hippocampus by
Ap sandwich ELISA. |2 rats per treatment were used for
biochemical and histological analyses. Naive rats have very
low levels of either AP species. AAV-BRI-AB40 injected ani-
mals display an increase in both RIPA- and FA-soluble A340
at 3 months post-injection. There is a marked increase in FA-
soluble (RIPA-insoluble) AB42 in AAV-BRI-A42 animals at 3
months. B. Amyloid pathology in AAV-BRI-A42 ani-
mals. Only BRI-A42 animals showed diffuse plaque-like
structures within the hippocampus following immunostaining
with pan anti-AB |1-16 antibody. These deposits did not stain
with thioflavin S or Congo Red (not shown). Magnification
100x.

tures. Expression for 9 months enhanced AB42 accumula-
tion but still did not result in formation of cored plaques
(not shown). Thus, these structures are similar to the dif-
fuse AP deposits observed in humans that are primarily
composed of AB42 and not associated with significant
reactive pathology. It is not clear why AAV-BRI-AB42 rats

Page 7 of 13

(page number not for citation purposes)



Molecular Neurodegeneration 2007, 2:11

do not develop cored plaques. BRI-AB42 transgenic mice
develop cored plaques in the cerebellum as early as 3
months of age [4], and both diffuse and cored plaques in
the forebrain by 12 months of age. However, in those ani-
mals brain levels of insoluble AB42 were markedly higher
than the levels achieved in the current study. In contrast
Tg2576 (APP4ysSWE) mice, which have a high ratio of
AB40 to AP42, predominantly develop cored plaques
[7,9,31]. Brain-region or species specific factors might reg-
ulate AP aggregation into diffuse or cored: in humans cer-
tain regions of the brain seem more prone to develop
diffuse deposits of AB, and other factors such as ApoE [32-
35] and complement [36,37] may also play a role in driv-
ing amyloid formation. In any case, the current study
shows that viral delivery of BRI-AB42 can foster consider-
able Ap accumulation in a relatively short time-frame, and
confirms both transgenic AB Drosophila [38] and trans-
genic BRI-APB mice studies [4] where visible AB deposits
were obtained only with AB42, but not AB40, overexpres-
sion.

The lack of correlation between presence of plaques and
severity of cognitive dysfunction observed in the current
study has been noted in a number of AD models [9,39-
41]. The current results are consistent with studies in
transgenic mice that demonstrate behavioral effects are
not correlated with visible plaques, but may correlate bet-
ter with other AP assemblies. Indeed, in Tg2576 mice the
appearance of behavioral deficits is associated with the
initial occurrence of insoluble Ap accumulation at a time
when no overt plaque formation is noted [9,42-48]. In the
current study, overexpression of APPsw resulted in a pat-
tern of deficits similar to that observed in the BRI-AB42
group but with no deposition of plaques or detectable
increase in insoluble AB42, also consistent with data that
changes in morphologic markers of synaptic integrity
such as dendritic spine density and onset of behavioral
deficits can precede a measurable rise in insoluble AB42
levels [48].

Data obtained from the combined vector animals suggest
some interplay between AB40 and AB42 levels resulting in
enhanced behavioral deficits when the two peptides are
co-expressed. The level of insoluble AB40 is higher in the
BRI-AB40+42 animals than in those injected with AAV-
BRI-AB40 alone. Despite an absence of AP deposits that
are visible by immunohistochemistry, the presence of
SDS-insoluble, formic acid-soluble AB indicates that the
combined expression of AB40 and AB42 peptides does
lead to insoluble AP accumulation, perhaps indicating
seeding of AP40 deposition by AB42. Over-expressing
both AB40 and AB42 in the absence of other APP frag-
ments could result in production of a transient assembly,
or a structurally distinct aggregate, that affects behavior to
a greater degree than either peptide alone, as seen in a

http://www.molecularneurodegeneration.com/content/2/1/11

recent study where cognitive dysfunction in Tg2576 mice
was linked to formation of a transient soluble assembly
[49]. The biochemical analysis of Ap species described in
the current study were conducted prior to these recent
reports; thus, the material has been extracted in a manner
that would prevent analysis of AR * and other oligomeric
AP species. The behavioral impairments observed in the
combined vector treatment group could also be explained
by increased anxiety and locomotor behavior - in the
open field these animals crossed significantly more lines
and spent less time in the open than all other groups.
Increased anxiety itself could be indicative of altered hip-
pocampal functioning or damage [50-53].

The exact role of AB40 in cognitive impairment is cur-
rently unclear. In human patients high plasma concentra-
tions of AB40 are associated with an increased risk of
dementia [54] and along with AB42, AB40 is known to
impair hippocampal LTP in rats [55-57] and to alter gluta-
mate receptor composition and trafficking and synaptic
function [58,59]. However, studies to date on specific
effects of AR on cognitive function in mammalian brain
have relied on non-specific pharmacological intervention
to increase AP levels [60] or infusion of AR peptides
directly into the hippocampus or ventricles [61-63] rather
than the prolonged and more physiologic secretion strat-
egy adopted here. The pathology of transgenic BRI-AB40
and BRI-AB42 mice has been characterized [4], but the
behavioral phenotype of these animals has not been
reported, and to date no behavioral phenotype has been
detected (E. McGowan, T. Golde, C. Janus personal com-
munication). A recent study of transgenic Drosophila sup-
ported a role for both AB40 and AB42 in age-dependent
learning defects [38], with a higher level of AB40 than
AP42 required to affect learning ability. Our data confirm
a potential role for both AB40 and AB42 in altering cogni-
tive impairment that, at least for AB40, appears to be dis-
sociable from overt plaque formation. The effects of AB40
and AB42 in AAV-BRI-A treated rats may reflect altera-
tions in glutamate receptors and synaptic assemblies, and
future work will include examination of synaptic markers,
NMDA receptor composition and PSD95 levels.

Conclusion

Overall, the results demonstrate that both AB40 and
AB42, not just AB42 alone, may contribute to the develop-
ment of distinct cognitive deficits in rats as co-expression
of AB40 and AP42 produced a more robust behavioral
phenotype then expression of either Af peptide alone.
The lack of correlation between severity of behavioral def-
icits and presence of Ap deposits confirms previous stud-
ies of mouse transgenic models in which cognitive deficits
precede visible AB deposition, but are associated with the
accumulation of detergent insoluble AB. These results
demonstrate that increasing AB levels by AAV-mediated
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gene transfer, allowing spatial and temporal regulation of
specific AP species, is a valuable tool to study AD patho-
genesis.

Methods

Study outline

AAV1 vectors encoding APPsw, BRI-AB42 and BRI-AB40
were generated and injected into the hippocampus of
adult rats. Transgene expression was confirmed immuno-
histochemically in a group of test animals (n = 3 per vec-
tor). The effects of long-term over-expression of BRI-A42,
BRI-AB40, combined BRI-AB42 + BRI-AB40, or APPsw in
the rat hippocampus were assessed, with animals tested 3
months post-infusion for development of cognitive defi-
cits and brain tissue examined for AP levels and presence
of AD pathology (n = 12 per group).

Expression constructs

cDNAs for APPsw (gift of D Selkoe) and BRI-AP fusions
[29] were sub-cloned into an AAV expression plasmid
under the control of a CBA (chicken beta-actin) promoter
and containing a SAR (scaffold attachment region) ele-
ment, WPRE (woodchuck hepatitis virus post-transcrip-
tional-regulatory element), and bovine growth hormone
polyadenylation signal flanked by AAV2 inverted terminal
repeats (ITRs).

Generation of AAV vectors

HEK293 cells were co-transfected with AAV and helper
plasmids using standard CaPO, transfection. Cells were
harvested 60 hr following transfection, and AAV1 vectors
purified from the cell lysate by ultracentrifugation
through an iodixanol density gradient followed by Q col-
umn purification, then concentrated and dialysed against
PBS [64,65]. Vectors were titered using real-time PCR (ABI
Prism 7700) and all vector stocks diluted to 1 x 10!3
genomes/ml.

Infusion of vectors

Animal studies were approved by The University of Auck-
land Animal Ethics Committee, and rats supplied by the
Animal Resources Unit, The University of Auckland. 250~
300 g male Wistar rats were used for all studies. Animals
were anaesthetized with sodium pentobarbitone (Nemb-
utal, Virbac Laboratories, 90 mg/kg, i.p.) and placed in a
Kopf stereotaxic frame. AAV1 vectors were infused bilater-
ally into the hippocampus at the following stereotaxic co-
ordinates: flat skull — anterior-posterior (AP) -4.0 mm, lat-
eral (L) 2.1 mm, and ventral (V) 4.5 mm from skull sur-
face, bregma = zero). 3 ul vector (3 x 1010 genomes) was
infused into each side at 70 nl/min. Animals receiving
both BRI-AB vectors still received a total of 3 x 1010
genomes in 3 pl (1.5 x 101° genomes of each vector) into
each side.

http://www.molecularneurodegeneration.com/content/2/1/11

Behavioral testing

All animals were pre-handled for 7 days prior to testing
and tests were carried out in the order described. All tests
were conducted by an experimenter blinded to the treat-
ments.

Open field

Movement in an open field was used to assess whether
AAV treatments had an effect on locomotor ability or anx-
iety, either of which may affect learning and memory
behaviors. Rats were placed in the center of a 1.8 m circu-
lar field divided into segments and allowed to move freely
for 5 min. The number of lines crossed and amount of
time spent within 20 cm of the perimeter were recorded as
measures of locomotor ability and anxiety. Time not

spent at the perimeter was defined as time spent "center
field".

Morris water maze

This test was used as a measure of spatial learning - the rat
must learn the location of a hidden platform by referring
to visual cues placed around the room. The platform loca-
tion was kept constant throughout training but the start-
ing point varied pseudorandomly between trials, with all
four start points used in each training block to ensure all
rats had to swim the same distance each day. The water
maze consists of a circular pool (1.8 m diameter and 0.6
m height) filled to a depth of 27 cm with 26 + 1°C water.
The escape platform is 17 cm in diameter and submerged
2 cm below the surface of the water. A small amount (5
ml) of non-toxic black textile dye was added to the water
to camouflage the platform. Visual cues (black cardboard
shapes on white curtains) were placed around the room
and remained constant throughout testing, removed only
for the visible platform test at the end of the run.

The test procedure consisted of three parts; acquisition
training, a probe (retention) trial, and visible platform
training. Acquisition training took place over 5 days, with
each rat given four trials per day. A trial consisted of allow-
ing the rat 90 sec to find the platform (if not located in this
time then the animal was guided to the platform by the
experimenter). The rat remained on the platform for 30
sec before being returned to the home cage for 60 sec,
when the next trial began. The latency and pathlength to
find the hidden platform were recorded for each trial
using Watermaze 4.0 Software.

On day six animals underwent a retention (probe) trial —
the platform was removed from the pool (visual cues still
visible) and the animal allowed to swim for 30 sec. Time
spent in the quadrant of the pool that previously held the
platform (target quadrant) was measured. On day seven
animals underwent visible platform training - visual cues
were removed from the wall and the platform placed in a
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different quadrant, raised above the waterline so it was
clearly visible to the rat. The time taken by the rat to swim
to the visible platform was recorded. This was to ensure
that any observed deficits in learning were not merely the
result of poor eyesight.

Passive avoidance

This was used as a test of associational learning. Equip-
ment consisted of two identical chambers (one well-lit,
the other dark) connected via a guillotine door. Rats were
placed in the light chamber and (baseline) time to enter
the dark chamber recorded. The door was closed and the
animal received a small electrical shock (1.0 mA for 3 sec)
whilst in the dark chamber and 10s later was returned to
the home cage. Animals were returned to the light cham-
ber 24 hr later and latency to enter the dark chamber was
recorded to a maximum of 600s.

Novel object recognition

This working memory test is based on the rat's natural
propensity to explore novel objects. The test chamber con-
sisted of a perspex box (dimensions 85 x 60 x 50 cm). Rats
were given two days to habituate to the test environment
- on days one and two animals were placed in the test
chamber for 5 min with no objects to explore. On day
three the rat was placed in the test chamber now contain-
ing two identical objects (O1 and O2; objects never
encountered before and of no natural significance). The
rat was placed equidistant from the two identical objects
and the time spent exploring each object (nose within 2
cm of object) recorded for 3 min. The rat was returned to
the test chamber 15 min later and given one familiar (O3)
and one novel (N) object to explore. Time spent exploring
each object was recorded over 3 min.

Statistical analyses

Behavioral data was analyzed using ANOVA (repeated
measures where appropriate) with Dunnett's post-hoc
analysis.

Tissue collection

Test rats (used to confirm transgene expression) were
euthanised with pentobarbitone and perfused transcar-
dially with 60 ml saline followed by 60 ml 4% parafor-
maldehyde in 0.1 M phosphate buffer (PFA). Brain tissue
was post-fixed for 24 h in 4% PFA, cryoprotected in
increasing concentrations (10, 20, 30%) of sucrose in PBS
and cut into 40 pm free-floating sections using a cryostat.
All other rats were sacrificed one week after the conclusion
of behavioral testing - animals were euthanised with
pentobarbitone and brains removed and dissected longi-
tudinally. One hemibrain was post-fixed in 4% PFA and
used for immunohistochemical and histological analyses;
the other half was frozen immediately on dry ice and used
for AP ELISAs.

http://www.molecularneurodegeneration.com/content/2/1/11

Immunohistochemistry

Sections from transgene expression brains were immu-
nostained with anti-Af 1-17 (Chemicon MAB1560,
6E10, specific to human AP 1-17) according to the fol-
lowing protocol. Sections were washed in 1 x PBS con-
taining 0.2% Triton (PBS-T), and incubated in 1% H,0,
in 50% methanol for 30 min to bind endogenous peroxi-
dase present in the tissue. Sections were washed exten-
sively in 1 x PBS-T, then treated with 70% formic acid for
30 min and again washed in PBS-T. 200 pl of primary
antibody diluted 1:1500 in immunobuffer (1 x PBS-T
containing 1% normal goat serum, 0.4 mg/ml methi-
olate) was applied overnight at room temperature on a
rocking table. The following day sections were washed in
1 x PBS-T and incubated in 200 pl of biotinylated anti-
mouse (Sigma; diluted 1:250 in immunobuffer) for 3 hr
at room temperature. Following further washes in 1 x
PBS-T, sections were incubated in 200 ul ExtrAvidin Per-
oxidase (Sigma; diluted 1:250 in immunobuffer) for 2 hr
at room temperature. Sections were washed in PBS-T and
antibody binding was visualised using 3', 3-diaminoben-
zidine (DAB; Sigma, St. Louis, MO) at 0.5 mg/ml DAB in
0.1 M phosphate buffer with 0.01% H,0,.

Hemibrains from long-term animals were post-fixed in
4% PFA and stained for AP plaques as described previ-
ously [66]. Paraffin sections (5 um) were pretreated with
80% formic acid (FA) for 5 minutes, boiled in water using
a rice steam cooker, washed, and immersed in 0.3% H,0,
for 30 minutes to block intrinsic peroxidase activity. Sec-
tions were then incubated with 2% normal goat serum in
PBS for 1 hour, with 33.1.1 (Pan AB 1-16 mAb) at 1 pg/
ml dilution overnight, and then with HRP-conjugated
goat anti-mouse secondary mAb (1:500 dilution; Amer-
sham Biosciences) for 1 hour. Sections were washed in
PBS, and immunoreactivity was visualized by DAB
according to the manufacturer's specifications (ABC sys-
tem; Vector Laboratories). Adjacent sections were stained
with 4% thioflavin-S for 10 minutes. Additional sections
were immunostained for activated microglia using anti-
Ibal (1:3000; Wako Chemicals); astrocytes using anti-
GFAP (1:1000, Chemicon); phosphorylated tau with
CP13 (1:100) and PHF-1 (1:100; kindly provided by Dr
Peter Davies, Albert Finstein School of Medicine, Bronx,
NY).

A ELISA

Rat hippocampal and cerebellar tissue was homogenized
in radio-immunoprecipitation assay (RIPA) buffer and
ultracentrifuged to separate RIPA-soluble from insoluble
fractions. RIPA-insoluble proteins were extracted using
70% FA, neutralized with Tris base buffer and samples
diluted (from 10-5000-fold). Extracted A was then
measured using a sandwich ELISA system as described
previously [66] - AP42 capture with mAb 2.1.3
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(mADb40.2,) and detection with HRP-conjugated mAb
Ab9 (human AB 1-16 specific); AB40 capture with mAb
Ab9 and detection with HRP-conjugated mAb 13.1.1
(mAB40.1).

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions

PL carried out surgeries, behavioral testing, data analysis
and drafted the manuscript. RB participated in study con-
cept and design, generated constructs and AAV vectors and
helped draft manuscript. PD, RB, VH, and LS ran ELISAs
and histological analyses of brain tissue. BD performed
behavioral assays. MD and DY participated in concept,
design and manuscript preparation. TG participated in
concept, design, data analysis and manuscript prepara-
tion. All authors read and approved the final manuscript.

Acknowledgements
Supported by Health Research Council (NZ), NIA (USA) and Florida Alzhe-
imer Research Center.

References

I.  Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D,
Fidani L, Goate A, Rossor M, Roques P, Hardy ), et al.: Early-onset
Alzheimer's disease caused by mutations at codon 717 of the
beta-amyloid precursor protein gene. Nature 1991,
353(6347):844-846.

2. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B,
Lannfelt L: A pathogenic mutation for probable Alzheimer's
disease in the APP gene at the N-terminus of beta-amyloid.
Nat Genet 1992, 1(5):345-347.

3. Hardy, Selkoe DJ: The amyloid hypothesis of Alzheimer's dis-
ease: progress and problems on the road to therapeutics. Sci-
ence 2002, 297(5580):353-356.

4, McGowan E, Pickford F, Kim ], Onstead L, Eriksen J, Yu C, Skipper L,
Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G,
Wang R, Eckman CB, Dickson DW, Hutton M, Hardy ], Golde T:
Abeta42 is essential for parenchymal and vascular amyloid
deposition in mice. Neuron 2005, 47(2):191-199.

5. Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E,
Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K,
van Duinen SG, Maat-Schieman ML, Staufenbiel M, Mathews PM,
Jucker M: Abeta is targeted to the vasculature in a mouse
model of hereditary cerebral hemorrhage with amyloidosis.
Nat Neurosci 2004, 7(9):954-960.

6.  Gregory GC, Halliday GM: What is the dominant Abeta species
in human brain tissue? A review. Neurotox Res 2005, 7(I-
2):29-41.

7. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang
F, Cole G: Correlative memory deficits, Abeta elevation, and
amyloid plaques in transgenic mice. Science 1996,
274(5284):99-102.

8.  Borchelt DR, Ratovitski T, van Lare |, Lee MK, Gonzales V, Jenkins
NA, Copeland NG, Price DL, Sisodia SS: Accelerated amyloid
deposition in the brains of transgenic mice coexpressing
mutant presenilin | and amyloid precursor proteins. Neuron
1997, 19(4):939-945.

9. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P,
Wright K, Saad |, Mueller R, Morgan D, Sanders S, Zehr C, O'Campo
K, Hardy ], Prada CM, Eckman C, Younkin S, Hsiao K, Duff K: Accel-
erated Alzheimer-type phenotype in transgenic mice carry-
ing both mutant amyloid precursor protein and presenilin |
transgenes. Nat Med 1998, 4(1):97-100.

http://www.molecularneurodegeneration.com/content/2/1/11

10. Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett
KW, Connor K, Melachrino ], O'Callaghan JP, Morgan D: Time
course of the development of Alzheimer-like pathology in
the doubly transgenic PSI+APP mouse. Exp Neurol 2002,
173(2):183-195.

I'l.  Furukawa K, Sopher BL, Rydel RE, Begley ]G, Pham DG, Martin GM,
Fox M, Mattson MP: Increased activity-regulating and neuro-
protective efficacy of alpha-secretase-derived secreted amy-
loid precursor protein conferred by a C-terminal heparin-
binding domain. | Neurochem 1996, 67(5):1882-1896.

12.  Barger SW, Mattson MP: Induction of neuroprotective kappa B-
dependent transcription by secreted forms of the Alzhe-
imer's beta-amyloid precursor. Brain Res Mol Brain Res 1996,
40(1):116-126.

13. LuDC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM, Ye X, Salvesen
GS, Koo EH, Bredesen DE: A second cytotoxic proteolytic pep-
tide derived from amyloid beta-protein precursor. Nat Med
2000, 6(4):397-404.

14. LaFerla FM: Calcium dyshomeostasis and intracellular signal-
ling in Alzheimer's disease. Nat Rev Neurosci 2002,
3(11):862-872.

15. Dodart JC, Mathis C, Ungerer A: The beta-amyloid precursor
protein and its derivatives: from biology to learning and
memory processes. Rev Neurosci 2000, 11(2-3):75-93.

16.  Turner PR, O'Connor K, Tate WP, Abraham WC: Roles of amyloid
precursor protein and its fragments in regulating neural
activity, plasticity and memory. Prog Neurobiol 2003, 70(1):1-32.

17. Bour A, Little S, Dodart JC, Kelche C, Mathis C: A secreted form
of the beta-amyloid precursor protein (sAPP695) improves
spatial recognition memory in OF | mice. Neurobiol Learn Mem
2004, 81(1):27-38.

18. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman
S, Carlson E, Sagi SA, Chevallier N, Jin K, Greenberg DA, Bredesen
DE: Reversal of Alzheimer's-like pathology and behavior in
human APP transgenic mice by mutation of Asp664. Proc Natl
Acad Sci U S A 2006, 103(18):7130-7135.

19.  During MJ, Young D, Baer K, Lawlor P, Klugmann M: Development
and optimization of adeno-associated virus vector transfer
into the central nervous system. Methods Mol Med 2003,
76:221-236.

20. Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M:
Recombinant AAV-mediated gene delivery to the central
nervous system. | Gene Med 2004, 6 Suppl 1:5212-22.

21. Wang C, Wang CM, Clark KR, Sferra T): Recombinant AAV sero-
type | transduction efficiency and tropism in the murine
brain. Gene Ther 2003, 10(17):1528-1534.

22. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka
N, Mandel R, Bjorklund A: Parkinson-like neurodegeneration
induced by targeted overexpression of alpha-synuclein in the
nigrostriatal system. | Neurosci 2002, 22(7):2780-2791.

23. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P: alpha -
Synucleinopathy and selective dopaminergic neuron lossin a
rat lentiviral-based model of Parkinson's disease. Proc Natl
Acad Sci U S A 2002, 99(16):10813-10818.

24. Senut MC, Suhr ST, Kaspar B, Gage FH: Intraneuronal aggregate
formation and cell death after viral expression of expanded
polyglutamine tracts in the adult rat brain. | Neurosci 2000,
20(1):219-229.

25. de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N: Lentiviral-
mediated delivery of mutant huntingtin in the striatum of
rats induces a selective neuropathology modulated by poly-
glutamine repeat size, huntingtin expression levels, and pro-
tein length. | Neurosci 2002, 22(9):3473-3483.

26. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel R}, Bjorklund A:
Nigrostriatal alpha-synucleinopathy induced by viral vector-
mediated overexpression of human alpha-synuclein: a new
primate model of Parkinson's disease. Proc Natl Acad Sci U S A
2003, 100(5):2884-2889.

27. Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J:
A stop-codon mutation in the BRI gene associated with
familial British dementia. Nature 1999, 399(6738):776-781.

28. Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Moller
M, Braendgaard H, Plant G, Ghiso }, Frangione B: A decamer dupli-
cation in the 3' region of the BRI gene originates an amyloid
peptide that is associated with dementia in a Danish kindred.
Proc Natl Acad Sci U S A 2000, 97(9):4920-4925.

Page 11 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1302033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1302033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12130773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12130773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15311281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15311281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15639796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15639796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8810256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8810256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11822882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11822882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11822882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8863493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8863493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8863493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8840019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8840019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8840019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10718147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10718147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10718147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12927332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14670356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16641106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16641106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12526166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12526166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12526166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12122208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12122208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12122208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11978824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11978824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11978824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12601150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12601150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12601150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10781099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10781099

Molecular Neurodegeneration 2007, 2:11

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Lewis PA, Piper S, Baker M, Onstead L, Murphy MP, Hardy |, Wang R,
McGowan E, Golde TE: Expression of BRI-amyloid beta peptide
fusion proteins: a novel method for specific high-level
expression of amyloid beta peptides. Biochim Biophys Acta 2001,
1537(1):58-62.

LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G: The
Alzheimer's A beta peptide induces neurodegeneration and
apoptotic cell death in transgenic mice. Nat Genet 1995,
9(1):21-30.

McGowan E, Eriksen ], Hutton M: A decade of modeling Alzhe-
imer's disease in transgenic mice. Trends Genet 2006,
22(5):281-289.

Fryer ]D, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M,
Holtzman DM: Apolipoprotein E markedly facilitates age-
dependent cerebral amyloid angiopathy and spontaneous
hemorrhage in amyloid precursor protein transgenic mice. |
Neurosci 2003, 23(21):7889-7896.

Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P,
Johnstone EM, Little SP, Cummins D), Piccardo P, Ghetti B, Paul SM:
Lack of apolipoprotein E dramatically reduces amyloid beta-
peptide deposition. Nat Genet 1997, 17(3):263-264.

Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman
CE, Delong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM: Apoli-
poprotein E is essential for amyloid deposition in the
APP(V717F) transgenic mouse model of Alzheimer's dis-
ease. Proc Natl Acad Sci U S A 1999, 96(26):15233-15238.

Fryer |D, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM,
Holtzman DM: Human apolipoprotein E4 alters the amyloid-
beta 40:42 ratio and promotes the formation of cerebral
amyloid angiopathy in an amyloid precursor protein trans-
genic model. | Neurosci 2005, 25(11):2803-2810.

Head E, Azizeh BY, Lott IT, Tenner AJ, Cotman CW, Cribbs DH:
Complement association with neurons and beta-amyloid
deposition in the brains of aged individuals with Down Syn-
drome. Neurobiol Dis 2001, 8(2):252-265.

Loeffler DA: Using animal models to determine the signifi-
cance of complement activation in Alzheimer's disease. |
Neuroinflammation 2004, 1(1):18.

lijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y: Dis-
secting the pathological effects of human Abeta40 and
Abeta42 in Drosophila: a potential model for Alzheimer's
disease. Proc Natl Acad Sci U S A 2004, 101(17):6623-6628.

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R,
Metherate R, Mattson MP, Akbari Y, LaFerla FM: Triple-transgenic
model of Alzheimer's disease with plaques and tangles:
intracellular Abeta and synaptic dysfunction. Neuron 2003,
39(3):409-421.

Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM: Amyloid
deposition precedes tangle formation in a triple transgenic
model of Alzheimer's disease. Neurobiol Aging 2003,
24(8):1063-1070.

Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D:
Behavioral changes in transgenic mice expressing both amy-
loid precursor protein and presenilin-l mutations: lack of
association with amyloid deposits.  Behav Genet 1999,
29(3):177-185.

Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall V),
Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG,
Hsiao KK: Impaired synaptic plasticity and learning in aged
amyloid precursor protein transgenic mice. Nat Neurosci 1999,
2(3):271-276.

Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K,
Kholodenko D, Malenka RC, Nicoll RA, Mucke L: Plaque-inde-
pendent disruption of neural circuits in Alzheimer's disease
mouse models. Proc Natl Acad Sci U S A 1999, 96(6):3228-3233.
Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin
SG: Age-dependent changes in brain, CSF, and plasma amy-
loid (beta) protein in the Tg2576 transgenic mouse model of
Alzheimer's disease. | Neurosci 2001, 21(2):372-381.
Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L,
Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH:
The relationship between Abeta and memory in the Tg2576
mouse model of Alzheimer's disease. | Neurosci 2002,
22(5):1858-1867.

Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L,
Hyman BT, Younkin S, Ashe KH: Reversible memory loss in a

http://www.molecularneurodegeneration.com/content/2/1/11

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.

mouse transgenic model of Alzheimer's disease. | Neurosci
2002, 22(15):6331-6335.

Middei S, Daniele S, Caprioli A, Ghirardi O, Ammassari-Teule M:
Progressive cognitive decline in a transgenic mouse model of
Alzheimer's disease overexpressing mutant hAPPswe. Genes
Brain Behav 2006, 5(3):249-256.

Jacobsen ]S, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M,
Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE:
Early-onset behavioral and synaptic deficits in a mouse
model of Alzheimer's disease. Proc Natl Acad Sci U S A 2006,
103(13):5161-5166.

Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher
M, Ashe KH: A specific amyloid-beta protein assembly in the
brain impairs memory. Nature 2006, 440(7082):352-357.
Bannerman DM, Grubb M, Deacon RM, Yee BK, Feldon |, Rawlins JN:
Ventral hippocampal lesions affect anxiety but not spatial
learning. Behav Brain Res 2003, 139(1-2):197-213.

Trivedi MA, Coover GD: Lesions of the ventral hippocampus,
but not the dorsal hippocampus, impair conditioned fear
expression and inhibitory avoidance on the elevated T-maze.
Neurobiol Learn Mem 2004, 81(3):172-184.

Bannerman DM, Rawlins N, McHugh SB, Deacon RM, Yee BK, Bast
T, Zhang WN, Pothuizen HH, Feldon J: Regional dissociations
within the hippocampus--memory and anxiety. Neurosci Biobe-
hav Rev 2004, 28(3):273-283.

Pentkowski NS, Blanchard DC, Lever C, Litvin Y, Blanchard R]:
Effects of lesions to the dorsal and ventral hippocampus on
defensive behaviors in rats. Eur | Neurosci 2006,
23(8):2185-2196.

van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM:
Plasma Abeta(1-40) and Abeta(1-42) and the risk of demen-
tia: a prospective case-cohort study. Lancet Neurol 2006,
5(8):655-660.

Chen QS, Kagan BL, Hirakura Y, Xie CW: Impairment of hippoc-
ampal long-term potentiation by Alzheimer amyloid beta-
peptides. | Neurosci Res 2000, 60(1):65-72.

Freir DB, Herron CE: Nicotine enhances the depressive actions
of A beta 1-40 on long-term potentiation in the rat hippoc-
ampal CAl region in vivo. | Neurophysiol 2003, 89(6):2917-2922.
Klyubin I, Walsh DM, Cullen WK, Fadeeva |V, Anwyl R, Selkoe DJ,
Rowan M]: Soluble Arctic amyloid beta protein inhibits hip-
pocampal long-term potentiation in vivo. Eur | Neurosci 2004,
19(10):2839-2846.

Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M,
Almeida OF: Soluble beta-amyloidl-40 induces NMDA-
dependent degradation of postsynaptic density-95 at gluta-
matergic synapses. | Neurosci 2005, 25(48):11061-11070.

Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn
AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P: Regulation
of NMDA receptor trafficking by amyloid-beta. Nat Neurosci
2005, 8(8):1051-1058.

Zou LB, Mouri A, Iwata N, Saido TC, Wang D, Wang MW, Mizoguchi
H, Noda Y, Nabeshima T: Inhibition of neprilysin by infusion of
thiorphan into the hippocampus causes an accumulation of
amyloid Beta and impairment of learning and memory. |
Pharmacol Exp Ther 2006, 317(1):334-340.

Miguel-Hidalgo J), Alvarez XA, Cacabelos R, Quack G: Neuropro-
tection by memantine against neurodegeneration induced
by beta-amyloid(1-40). Brain Res 2002, 958(1):210-221.

Li Y, Qin HQ, Chen QS, Wang JJ: Neurochemical and behavioral
effects of the intrahippocampal co-injection of beta-amyloid
proteinl-40 and ibotenic acid in rats. Life Sci 2005,
76(11):1189-1197.

Yamaguchi Y, Miyashita H, Tsunekawa H, Mouri A, Kim HC, Saito K,
Matsuno T, Kawashima S, Nabeshima T: Effects of a novel cogni-
tive enhancer, spiro[imidazo-[l,2-a]pyridine-3,2-indan]-
2(3H)-one (ZSET1446), on learning impairments induced by
amyloid-betal-40 in the rat. | Pharmacol Exp Ther 2006,
317(3):1079-1087.

Olson VG, Heusner CL, Bland R}, During M), Weinshenker D,
Palmiter RD: Role of noradrenergic signaling by the nucleus
tractus solitarius in mediating opiate reward. Science 2006,
311(5763):1017-1020.

Rashidian J, lyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S,
Bland R}, Slack RS, During M), Park DS: Multiple cyclin-dependent
kinases signals are critical mediators of ischemia/hypoxic

Page 12 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11476963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16567017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16567017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12944519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12944519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12944519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9354781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10611368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11300721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11300721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11300721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12895417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12895417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12895417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14643377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10195221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10195221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12151510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12151510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16541076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16541076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12642189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12642189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12642189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10723069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16319306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16319306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16319306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16025111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16025111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16382024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16382024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16382024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12468047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12468047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12468047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16474004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16474004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16474004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16166266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16166266

Molecular Neurodegeneration 2007, 2:11

66.

neuronal death in vitro and in vivo. Proc Natl Acad Sci U S A 2005,
102(39):14080-14085.

Levites Y, Das P, Price RW, Rochette M), Kostura LA, McGowan EM,
Murphy MP, Golde TE: Anti-Abeta42- and anti-Abeta40-specific
mAbs attenuate amyloid deposition in an Alzheimer disease
mouse model. | Clin Invest 2006, 116(1):193-201.

http://www.molecularneurodegeneration.com/content/2/1/11

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16166266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16341263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16341263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16341263
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Infusion of AAV-BRI-Ab vectors increases hippocampal Ab expression
	Animals treated with AAV vectors encoding BRI-Ab fusions develop cognitive deficits
	Animals treated with AAV vectors encoding BRI-Ab fusions have elevated Ab levels
	Deposition of Ab plaques was detected only in hippocampus of AAV-BRI-Ab42 rats

	Discussion
	Conclusion
	Methods
	Study outline
	Expression constructs
	Generation of AAV vectors
	Infusion of vectors
	Behavioral testing
	Open field
	Morris water maze
	Passive avoidance
	Novel object recognition

	Statistical analyses
	Tissue collection
	Immunohistochemistry
	Ab ELISA

	Competing interests
	Authors' contributions
	Acknowledgements
	References

