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Abstract

Our ability to successfully intervene in disease processes is dependent on definitive diagnosis. In the case of autoimmune
disease, this is particularly challenging because progression of disease is lengthy and multifactorial. Here we show the first
chronological compendium of transcriptional and cellular signatures of diabetes in the non-obese diabetic mouse. Our data
relates the immunological environment of the islets of Langerhans with the transcriptional profile at discrete times. Based
on these data, we have parsed diabetes into several discrete phases. First, there is a type I interferon signature that precedes
T cell activation. Second, there is synchronous infiltration of all immunological cellular subsets and a period of control.
Finally, there is the killing phase of the diabetogenic process that is correlated with an NF-kB signature. Our data provides
a framework for future examination of autoimmune diabetes and its disease progression markers.
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Introduction

T1D is a T-cell dependent autoimmunity directed against the b-

cells of the pancreatic islets of Langerhans, a process where

autoreactive CD4+ T cells are directed to antigens of the b-cells[1–

4]. The most important genetic determinant of T1D incidence in

both humans and mice is the major histocompatibility complex

(MHC) [5,6]. Despite the strong genetic component of pre-

disposition to disease, concordance between monozygotic twins is

approximately 50% [1,7]. Beside the interplay of genes and

environment in the induction of T1D, there are complex

interactions between different immune system cells that determine

the outcome of disease [8].

Transcriptional profiling permits an unbiased examination on

a genome-wide scale. Thus, it is a powerful tool for analyzing

complex problems like T1D. Examination of islets of Langerhans,

islet infiltrating leukocytes, and pancreatic lymph nodes has been

conducted following several genetic, biological or chemical

manipulations[9–14]. Several important findings have come from

these types of studies. Global expression patterns distinguish

destructive versus innocuous inflammatory responses of islet

infiltrating leukocytes [9]. Chemically induced diabetes led to

upregulation of inflammatory genes with an interferon-c (IFN-c)

signature in islets of Langerhans [11]. The balance between

pancreatic destruction and repair was detected by examining

microarrays from T cell-receptor (TCR) transgenic NOD mice

[13]. Type I interferon inducible genes were detected in pancreatic

lymph node CD4+ T cells isolated from TCR transgenic mice

[14]. Transfer of diabetogenic T cells from TCR transgenic mice

induced an interferon signature that correlated with amplification

of the autoimmune process [12]. Finally, the genetic programs that

led to development of endocrine pancreas were examined using

global transcriptional analysis [10]. Despite these many studies,

a coherent view of the disease development and corresponding

sequence of inflammatory and developmental events in the context

of the spontaneous diabetes is lacking to this date.

A challenge of examining an inflamed islet of Langerhans is the

diversity of cell types in the sample and the ability to reliably detect

changes in levels of expression. Technological improvements in

automation, computation, and reduced cost have allowed an

expansion of reliable data gathering, annotation, and distillation

using microarray technology. The advent of carefully curated

resources such as the Immunological Genome Project provide

a framework for identifying genes related to specific cell types [15].

The increase in publicly available and user-friendly resources for

microarray data analysis also permits reproducible examination of

larger data sets [16]. We have leveraged the power of these

available resources to generate a dataset identifying the key

signatures of progression of T1D in NOD mice.

Here we present the first chronological examination of the

transcriptional landscape of T1D progression in the NOD mouse

from 2 wks of age until diabetes (,20–30 wks). Several striking

results were obtained from the dataset. First, infiltrating myeloid

cells begin to populate the islets of Langerhans as early as 4 wks of

age. This occurred at a time where the islet was still developing, as

determined by signatures of cell cycle and development. Next,

a type I interferon signature was detected between 4 and 6 wks of

age. This is followed by infiltration of islets by all major leukocyte

subsets and T cell activation at 8–12 wks of age. Following full

immunological activation, there was a progressive enhancement of

inflammatory signatures, culminating in the destruction of the islet
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of Langerhans. This data and its analysis provide a framework for

the study of islets of Langerhans and inflammatory responses

during the progression of T1D.

Results

Examination of Islets of Langerhans Reveals a Progressive
Entry of Leukocytes Subsets Throughout Diabetogenesis

Islets of Langerhans were isolated, purified, and then examined

by fluorescence microscopy and flow cytometry at ages ranging

from 2 wks up to newly diabetic. Our goal was to identify changes

in leukocyte infiltration, changes in adhesion molecules, and

immunoglobulin (Ig) deposition on b-cells (Fig. 1).

At 2 wks of age, islets showed no signs of pathology and no

detectable lymphocytes. The earliest time point where lympho-

cytes were identified inside islets occurred at 4 wks of age. CD4+ T

cells were found in ,10% of the islets in close apposition to the

islet resident CD11c+ cells (Fig. 1A–B). The resident

CD11c+CD45+ cells are the intra-islet myeloid cell found in all

strains of mice (reviewed in [17]). CD8+ T cells and B cells were

rarely identified. In control mice, lymphocytes were not detected

inside the islets, only an occasional one was found inside the blood

vessels (see below for control information). In 4 wk old NOD mice,

the islet distribution of the adhesion molecules ICAM-1 and

VCAM-1 showed the profile of a non-inflamed state [12]. ICAM-

1 was only found weakly expressed in the endothelium and

VCAM-1 was absent (Fig. 1B).

In 6 wk old NOD mice, CD4+ T cells were found in , 1/3rd of

the islets, at a median of 3 cells per islet, and always contacting the

islet CD11c+ cells (the number ranged from ,1 to 55 leukocytes

per islet; Fig. 1B–C). Low numbers of CD8+ T cells also were

found while B cells represented a minor component (Fig. 1C). At

about this time, many of the intra-islet vessels had higher ICAM-1

expression throughout most of the vessel wall, and about 10%

showed VCAM-1 expression (Fig. 1B). These changes in adhesion

molecules have been related to the entrance of diabetogenic T cells

[12,18]. IgG deposition was found on the b-cells in many of the

islets (Fig. 1B). The islets of normal mice never showed deposition

of IgG suggesting the presence of NOD-specific autoantibodies.

Major islet changes were found at 8 wks of age. The total

number of leukocytes rose ,7-fold, from ,2.7% to 18% of the

total islet cellularity (Fig. 1C). CD4+ T cells and CD8+ T cells were

found in about half of the islets but B cells only in a limited

number, about 10% (Fig. 1B). There was also an increase in the

number of CD11c+ cells at this stage (Fig. 1C). We found increased

expression of ICAM-1, even on the b-cells, VCAM-1 expression

on the vessels, and IgG deposition on the b-cells (Fig. 1B). At

12 wks of age, peri-insulitis, a leukocytic lesion on the pole of the

islets, was evident in some islets (Fig. 1A). By 18 wks, islets were

heavily infiltrated making quantification difficult (Fig. 1).

Figure 1. Examination of NOD islets throughout diabetogenesis. (A) Islets of Langerhans were isolated from NOD mice at the indicated ages
and stained for blood vessels (PECAM-1), intra islet myeloid cells (CD11c), and T cell (CD4). Shown are representative images obtained from a pool of 6
mice per age from two independent experiments. Insets show contacts between intraislet myeloid cells and T cells. White bars represent 50 mm. (B)
Islets were isolated and stained for the indicated markers and then scored for presence or absence of staining. Bars represent mean+/2S.D. of the
percentage of marker positive islets of Langerhans obtained from a pool of 6 mice per group from two independent experiments. (C) Islets of
Langerhans were dispersed and cells were examined by flow cytometry for the indicated cell surface markers. Bars represent the mean+/2S.D. of the
percentage of total islet cells identified in two independent experiments per age. Results were obtained from a pool of 8 to 10 mice per group.
doi:10.1371/journal.pone.0059701.g001
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Thus, between 4–6 wks the islets of Langerhans showed the first

signs of pathology with the entrance of T cells and signs of islet

reactivity. Starting at ,8 wks there was a progressive infiltration of

all major leukocyte subsets and signs of inflammatory marker

expression. The same biological replicates that were interrogated

by microscopy were analyzed for their transcriptional expression

profiles as detailed below.

Assembling the Compendium of Transcriptional Profiles
in the Context of Islet/Diabetes Development

To perform chronological analysis of the transcriptional profile,

the NOD strain was compared with several control strains. Islet

RNA was extracted from 3–6 replicates for each of seven time

points along the lifetime of NOD mice (2, 4, 6, 8, 12, 18 wks and

up to diabetics at ,20 wks) and compared to 6 replicates of 3

control strains. NOD.Rag12/2 mice at 2 and 6 wks of age were

used as a control because they lack the adaptive arm of the

immune response, but are otherwise genetically identical to NOD,

allowing us to trace non-immune developmental processes in islets.

Two additional controls strains were used in this study to increase

the robustness of the analysis. The B6.NOD-H2g7 strain (B6.g7)

was chosen because it expresses the MHC-II protein I-Ag7 on

a C57BL/6 background. This strain does not develop diabetes.

We also used C57BL/6 mice as our most normal control strain.

Examination of the entire data set by Spearman’s rank

correlation showed a low variance amongst all data (Fig. S1A,

Spearman’s Rank ,0.089). By Spearman’s Rank, the data was

grouped mainly by the age of the mice. Similarity in variance

amongst the 2 and 6 wk old mice was independent of background

strain. The outliers in the data set were the 8–18 wk NOD mice

and the newly diabetics. In particular the 8 wk NOD mice were

most distant in variance from the rest of the data.

The Earliest Transcriptional Difference between NOD and
Control Mice, Including NOD.Rag12/2 Mice, was an
Interferon Signature

First, we looked at transcriptional difference between the two

genetically closest diabetic and non-diabetic strains (NOD and

NOD.Rag12/2). Since the main difference between these mice is

the presence of an adaptive immune response, we reasoned that

only immune system dependent changes would be found between

the two strains. We performed pair-wise comparisons of NOD and

NOD.Rag12/2 mice at 2 and 6 wks of age (Fig. 2A–F). At 2 wks of

age, there were 19 detectable differences between NOD and

NOD.Rag12/2 mice. Overall, there were very few differences

between 2 wk old NOD and NOD.Rag12/2 mice and no obvious

differences related to immune responses.

By 6 wks of age, we found 24 significant differences between

NOD and NOD.Rag12/2 (Fig. 2B–C). We found 14 genes more

highly expressed in NOD than NOD.Rag12/2 and 10 genes more

highly expressed in NOD.Rag12/2 than NOD. The transcripts

with higher expression in NOD were all IFN-inducible transcripts.

For our study, interferon-inducible genes were defined based on

the microarray analysis of Liu, et al. [19]. The interferon signature

increased in magnitude over the time course of NOD de-

velopment, and was not found in any of the other control non-

diabetic mice (Fig. 2C). (Many of the expression differences

between 6 wk old NOD and NOD.Rag12/2 mice were detectable

as early as 4 wks of age in NOD; see below for details.).

Next we interrogated changes that took place between 2 and

6 wk old mice in NOD or NOD.Rag12/2 mice. There were

,1000 significant changes between 2 wk and 6 wk old NOD and

between 2 wk and 6 wk old NOD.Rag12/2 mice (Fig. 2D–E).

Gene ontology and promoter scanning of the genes commonly

upregulated in both strains showed that they were involved in cell

division, cell cycle, and cellular adhesion. They also included

promoter binding sites for early developmental regulators, such as

SP1 (Fig. 2F). This indicated that the islet of Langerhans was still

actively dividing and developing from 2 to 6 wks of age regardless

of diabetes susceptibility.

In addition to upregulated genes, a number of transcripts were

downregulated between 2 and 6 wk NOD and NOD.Rag12/2

mice. The level of downregulated transcripts was comparable in all

strains, including B6.g7 and C57BL/6 mice. Analysis of variance

of the 6 wk downregulated genes by Spearman’s rank grouped

most of the 6 wk samples together, and the main outlier was the

8 wk NOD (Fig. S1B). Analysis of the downregulated signature

showed an enrichment of transcriptional regulatory genes (Fig.

S1C). Euclidean distance and Pearson’s Correlation analysis did

not provide a discernible trend in the downregulation of

transcripts through the time course of NOD mice development

(Fig. S1D, Data not shown).

In summary, pairwise analysis of 2 and 6 wk old NOD and

NOD.Rag12/2 mice showed mostly a regulation of cell growth

and development, and an inflammatory response unique to NOD.

A surprising finding was the fact that as early as 6 wks of age an

interferon-dependent gene signature was already found in NOD

mice, but not in any of the 6 wk old controls. Many of the 6 wk

inflammatory changes were evident in NOD mice as young as

4 wks, as will be detailed below.

Principal Component Analysis Revealed that the Major
Source of Transcriptional Variance between NOD and
Control Mice was Immunological in Nature

Principal component analysis (PCA) was used to evaluate the

transcriptional changes responsible for the highest variance of the

dataset [20]. PCA discriminated our samples by both strain and

age (Fig. 2G). We extracted the top 1% of transcripts responsible

for the overall PCA variance and this yielded transcripts that

correlated with a progression in the age of NOD mice (Fig. S1C).

Two salient features were identified by PCA and noted in Fig. 2H.

The first was a group of genes selectively upregulated as early as

4 wks of age in NOD mice. These were immune response genes,

including the interferon inducible genes mentioned in Fig. 2C. A

second group of genes was selectively upregulated on or after

8 wks in NOD mice. This group was enriched for immune

response and a variety of leukocyte specific and interferon-

inducible genes. Key leukocyte cell surface markers, including Cd2,

Cd3e/d/g, Cd4, Cd8a, Cd19, Cd22, T cell receptor, B cell receptor

and immunologically important signaling components such as Lck,

Lat, and Cd79b, were identified by PCA. Analysis by Gene

Ontology and promoter scanning showed that genes identified by

PCA were significantly enriched for immune response and antigen

processing and presentation signatures and IRF1 was the most

significant transcriptional regulator (Fig. 2I).

Refined Staging of NOD-specific Transcriptional Changes
in the Islets of Langerhans

In order to better identify transcriptional changes positively

correlated with a progression toward diabetes, we performed k-

means clustering using uncentered Pearson’s correlation. Our goal

was to focus on genes with a positive Pearson’s correlation

throughout diabetogenesis and with lower relative expression in all

our controls.

The dataset was clustered as shown in Fig. S2A. Several clusters

contained groupings of genes with a positive correlation of

Transcriptome Analysis of Islets of Langerhans
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expression throughout diabetogenesis. The clusters that were

chosen were highlighted in red and demonstrated an increase in

gene expression intensity throughout diabetogenesis, but had

relatively lower expression levels in all controls. Using this analysis

Figure 2. Pairwise and principal component analysis of microarray data. (A–B) Scatter-plots of the normalized probe intensity of all
annotated microarray signals are shown. Each dot represents the mean of 6 independent biological replicates. Numbers in the box represent the
number of features that were at least 2-fold different at a 99% confidence interval by moderated t test with Benjamini-Hochberg false discovery rate
analysis. Data are plotted at a log2 scale. Panel (A) compares NOD.Rag2/2 mice versus NOD mice at 2 wks of age and panel (B) compares them at
6 wks of age. (C) Hierarchically clustered heat map (Euclidean row distance) of the 24 differentially expressed transcripts identified in (B). (D–E)
Scatter-plots as in (A–B) except the comparison is between 2 and 6 wk old NOD or 2 and 6 wk NOD.Rag2/2. (F) GO terms and transcription factor
binding analysis of the differences identified in (D–E). The two graphs on the left, labeled ‘Shared’ show signatures common to both NOD and
NOD.Rag2/2. The signatures on the right, labeled ‘NOD only’, show changes specific to the NOD strain. (G) Principal component analysis of
microarray samples. Each of 57 microarrays is summarized as a point and drop-line. Samples are color coded as indicated by the title of each group.
(H) Hierarchical clustered heat map (Euclidean distance) of the top 1% most variant genes identified by principal component. (i) GO and transcription
binding analysis of the top 1% most variant genes identified by principal component analysis.
doi:10.1371/journal.pone.0059701.g002
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we identified 888 genes that were selected for further analysis.

Pearson’s correlation excluded most of the developmental changes

mentioned previously, but included immune-related genes changes

missed by pair-wise analysis and PCA (Fig. S2C). Also, Spearman’s

rank correlation analysis of the genes identified by Pearson’s

showed a delineation of NOD mice at different ages (Fig. S2B).

The genes identified by Pearson’s were superimposed with pair-

wise comparisons performed between 2 wk old NOD and the age

in question. This allowed us to establish genes that were

significantly upregulated in NOD mice of different ages. For

example, there were 634 significantly upregulated genes between

2 wk and 4 wk old NOD mice (2-fold, 99% C.I.) and the

intersection of these changes with Pearson’s Correlation yielded 81

significant changes at 4 wks (Fig. 3A, Table S1). These 81 genes

included all 14 of the upregulated genes identified in Fig. 1A–C.

The remaining genes were upregulated $2-fold in NOD and to

a lesser extent in the controls (see below).

For subsequent time points, we combined the intersection of

Pearson’s Correlation with pairwise statistics at a given age (6, 8,

12, 18, and newly diabetic), but excluded changes already

significant at a previous time. Fig. 3B–C shows an example of

this for 12 wk and newly diabetic changes. In the case of the 12 wk

sample, 70 new significant changes were detected and in newly

diabetic mice 205 new significant changes were detected. We used

the changes identified this way to determine the presence of

immune signatures during diabetogenesis.

Detailed Analysis of Immune Signatures during T1D
To dissect the transcriptional profiles of T1D progression, we

combined transcription factor binding analysis (p-scan), gene

ontology, and the modules and regulators dataset of the

Immunogenetics Consortium (Immgen) [15,21–24]. The idea

was to add power to our approach by using groups of genes instead

of analyzing any single individual transcript. Based on this

approach, we parsed out the results previously shown in Fig. 3

and Table S1 as shown in Fig. 4.

At 4–6 wks of age NOD mice displayed an interferon

transcriptional signature, determined by the enrichment of IRF1

and IRF2 binding sites on the promoters of upregulated genes.

Cellular response to IFN-b and IFN-c were the two most enriched

GO Terms. There was also a significant but weak developmental

signature (RUNX1 and Myf; Fig. 4).

Using Immgen’s modules and regulators we found 12 genes that

were myeloid specific and that we termed as an ‘‘early myeloid’’

signature (Fig. 4B). Most of the early myeloid signature was found

in all strains, but increased over time in NOD mice. The early

myeloid genes were not specific for any identifiable leukocyte, but

many were linked to antigen processing and presentation (H2-Ab1,

H2-Eb1, H2-Aa, and Cd74). This signature is compatible with an

intra-islet myeloid cell previously described by our group and

others [25–27].

By 8 wks of age, there was a significant upregulation in genes

regulated by SPI1 (myeloid regulator) and SPIB (B lymphocyte

regulator). At this time, all major leukocyte subsets implicated in

the development of diabetes were represented transcriptionally.

Gene ontology showed enrichment of chemotaxis and T cell

activation signatures. Definitive T cell specific genes including Cd2,

Cd3d, Cd3g and also a signature of T cell activation as defined by

Ctla4, Slamf1, Slamf6, Slamf7, Slfn1 (Shlafen1), and Cxcr5 was

defined. B cell specific genes, including the immunoglobulin and

Ig-associated genes Igk, Igl, and Cd79b were also detected (Fig. 4,

Table S1). Natural killer cells were identified by the induction of

genes belonging to the NK gene cluster (Klrc1, Klrd1, and Klra17;

Table S1) [28]. In 8 wk old NOD, we found 38 new myeloid

transcripts, which we termed the ‘‘late myeloid’’ and included

markers enriched on monocytes, macrophages, and dendritic cells,

such as 5 members of the c-type lectin family Clec4a1, Clec4a2,

Clec4a3, Clec4n, Clec12a (Fig. 4B and Table S1).

At 12 wks of age a second wave of IRF1/IRF2 response was

detected. This corresponded to a GO profile that included antigen

processing and presentation and positive regulation of T cell

mediated cytotoxicity (Fig. 4A). At 18 wks there was further

amplification of the response, increased IFNc and IL-2 dependent

gene expression, and a continued myeloid signature as evidenced

by SPI1 regulated transcripts. Finally, newly diabetic mice showed

an enrichment of NF-kB inducible transcripts (Fig. 4A).

Examination of transcriptional changes by Pearson’s correlation

and ANOVA demonstrated that the inflammatory gene upregula-

tion during diabetogenesis occurred in 5 major patterns. Co-

ordinated upregulation of various transcriptional groups was found

at 4, 8, and 18 wks as well as in newly diabetic mice. There was

also a steady upregulation profile (Fig. S3).

Chemokines are considered the drivers of specific immune cell

entry into tissues. We found 4 chemokine genes were upregulated

by 4 to 6 wks: Ccl3, Ccl5, Ccl19 and Cxcl9 (Fig. 4B). Of these, Ccl5

and Cxcl9 were higher in NOD than in controls. None of the

chemokine receptors for Ccl5 or Cxcl9 were detectable in 4 or

6 wks old NOD. The only chemokine receptor to be found

significantly upregulated in NOD at 4 and 6 wks was Ccr2,

a receptor enriched in blood monocytes but also expressed on

some populations of dendritic cells. Therefore, at 4 and 6 wks

there was not a detectable chemokine-chemokine receptor pairing

that could be responsible for the entry of any specific leukocyte

subset. However, by 8 wks of age there was NOD-specific

upregulation of 11 chemokines and 7 chemokine receptors

(Fig. 4B). The chemokines included ligands for recruitment of

naı̈ve (Ccl19), memory (Cxcl9/10), and activated ab T cells (Cxcl9/

10). We also detected at least one ligand for the recruitment of cd
T cells (Ccl22), regulatory T cells (Ccl22), B cells (Cxcl13), NK cells

(Ccl4, Cxcl11), conventional and plasmacytoid DC (Cxcl11, Ccl4),

blood monocytes (Ccl2), macrophages (Ccl2, Ccl5), and neutrophils

(Xcl1). Chemokine receptors for all major leukocyte populations

were also found, with the exception of granulocytes. The pattern

of chemokine and chemokine receptors remained mostly un-

changed after 8 wks of age, except for the increase of Cxcr4 and

Cxcr6 at 12–18 wks of age. The data show that at the chemokine/

chemokine receptor expression level the ability to recruit all major

leukocyte subsets involved in the progression of diabetes was in

place by 8 wks of age.

Our approach detected 5 significantly upregulated adhesion

molecules: Glycam1, Vcam1, Icam1, L1cam, and Amica1. All adhesion

factors were significantly upregulated only in the NOD mice.

Vcam, Icam1 and L1cam were upregulated by 4 to 6 wks of age,

Amica1 was upregulated by 8 wks of age and Glycam1 was

upregulated by 12 wks of age. Glycam1 was the most upregulated

adhesion factor throughout diabetogenesis. Integrins that were

significantly upregulated after 12 wks of age included Itgb2

(CD18), Itgae (CD103), Itgax (CD11c), Itga4 (CD49d), and Itgb7.

Overall the adhesion factor and integrin signature points to an

enrichment of myeloid cell types. A concomitant upregulation of

expression of the pan-leukocyte marker Prptc (CD45) and modest

changes in islet-specific genes were also detected (Fig. S4).

Examination of Interferon and Interferon-inducible Gene
Expression by Quantitative RT-PCR

We validated 8 candidates genes that were significantly

upregulated between 4 and 8 wks in our microarray data set

using qRT-PCR: Cxcl9, Stat1, Gbp2, Iigp1, Rtp4, Gpr18, Oasl2 and

Transcriptome Analysis of Islets of Langerhans
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Tgtp1. Fig. 5 shows the results of the RT-PCR data (Panel A) and

microarray data (Panel B) for the 8 validated targets. By RT-PCR

there was significant upregulation of all 8 transcripts in 4 to 6 wk

old NOD mice when compared to 2 wks. Cxcl9 and Gbp2 were

significantly upregulated from 2 to 4 wks in NOD and were

significantly different from all control strains at 6 wks of age

(Fig. 5). As with our microarray results, certain genes, like Rtp4

were upregulated in NOD from 2 to 4 wks, but had comparable

expression levels with controls at 6 wks of age. Both of these

observations were in agreement with the microarray results and

support the idea that there is an entry of leukocytes that is

universal to all strains of mice and a second signature that is

interferon-inducible enriched and specific to NOD (Fig. 5B, Table

S1).

We wanted to determine which interferons were transcribed in

the islets of Langerhans. We reliably found a ‘‘tonic’’ transcript for

Ifna in the islets, pancreatic lymph nodes and spleens of all strains

of mice and at all times examined (Fig. 5C which only shows data

from islets). There was a small level of upregulation from 2 to

4 wks in NOD mice, but expression levels were 10 to 100-fold

higher than in the three control strains. Ifnb transcripts also were

reliably detectable in the islets of all mice, and sporadically in the

spleens and lymph nodes of NOD (Fig. 5C, data not shown). The

levels of Ifnb expression did not go above the tonic expression level

until 6 wk of age. At this time there were .10 fold more

detectable transcripts in NOD than in C57BL/6, B6.g7 or

NOD.Rag12/2 mice islets. To note, pancreatic lymph nodes of

NOD mice contain a detectable expression of type I interferon in

plasmacytoid DC, as early as 3 wks of age [14].

In contrast to type I interferon, we did not detect tonic

expression of Ifng in the spleens or lymph nodes of NOD or the

control mice (Fig. 5C, and data not shown). Reliable expression of

Ifng was only detected at 8 wks with maximal expression at 12 wks

in NOD. This coincided with the first detectable Ifng by

microarray. Based on this data, we conclude that type I interferon

was expressed before Ifng during diabetogenesis. The timing of

significant upregulation of Ifna and Ifnb appears to be simulta-

neous.

Integration with Protein-protein Interaction Networks
Shows Immune Subnetworks Dominating Across
Diabetes Development

We related the islet gene expression data in the context of

established protein-protein interaction networks. First, we dissect-

ed the temporal changes in gene expression of our dataset by

computing pairwise p values for all permutations of samples. This

was done in order to identify the genes that became involved in

diabetogenesis at a given age. For example, at 8 wks of age, we

looked for differential expression from 2 to 6 wk NOD versus 8 to

newly diabetic NOD. By this analysis, only genes that became

significantly upregulated at 8 wks, but were not significant at all

previous times were analyzed.

Subnetworks of genes upregulated at 6 wks contained a cluster

of AP-1 related immune genes specific for myeloid lineage (Fos,

Junb, Jun, Fosb, etc). The 8 wk subnetwork was strongly enriched

for ‘‘Genes involved in Signaling in Immune system’’ (Reactome,

hypergeometric p value ,10212) and ‘‘T Cytotoxic Cell Surface

Molecules’’ (Biocarta, hypergeometric p value ,10210). The 18-

wks subnetwork showed strong enrichment in members of both T-

cell and B-cell receptor pathway (hypergeometric p values of 1026

and 1025, respectively; Fig. 6).

We expanded these observations by cross-referencing time point

specific genes with profiles available in the Immgen database [15].

Since Immgen-derived transcriptional modules available online

are defined based on the human immune cell types, we used the

enrichment score strategy introduced in Benita, et. al. to compute

the representation of murine immune cell types within transcrip-

tional signatures of infiltration [29]. Consistently, the 4 wk NOD

signature did not show statistically significant enrichment in

immune cell types, while the 6 wk NOD signature showed non-cell

type specific increase of immune cell types illustrated by

hematopoietic progenitor transcriptional signatures. Strikingly,

the 8, 12, 18 wk, and newly diabetic NOD mice showed a specific

sequence of immune infiltration. In 8 wk NOD mice transcripts

infiltration by CD8 and cdT cells was enriched (Fig. 6 and Fig.

S5). This was followed by a myeloid cell re-infiltration at 12 wks,

and B cell infiltration at 18 wks. Finally, newly diabetic NOD mice

had strong cytotoxic helper T cell signature. This was consistent

with both direct observation of islet-infiltrating cell-types and

strongest interacting subnetworks identified in the data (Fig. 6),

and showed that expression profiles were informative for dissecting

heterogeneous cell populations.

Discussion

Several important milestones in the development of diabetes

were derived from a chronological transcriptional analysis that was

complemented by cytological analysis of the islets. Examination of

individual genes can introduce observational bias. However the

addition of Immgen, promoter scanning, ontology analysis, and

modeling added an important layer of additional information.

This approach allowed us to parse complex lists of genes and cells

into an improved definition of the steps leading to T1D and to

identify different stages in its progression. Previous microarray

analyses of T1D used either accelerated methods for inducing

disease or interrogated a subset of the pancreatic infiltrate[9,11–

13,30]. Thus, the events leading to diabetes were temporally

compressed or only a subset of the response was analyzed. Despite

these limitations, important candidate markers for diabetes were

identified, including genes that distinguish progressive versus non-

progressive disease [30]. We have greatly expanded on our

available datasets and present the first complete analysis of the

entire natural diabetic program.

The time at which NOD mice become diabetic is heterogeneous

and gender dependent. Despite the stochastic endpoint, the

progression of the program that culminates in overt disease was

Figure 3. Identification of significant gene changes in different aged NOD mice. Examination of transcriptional changes that took place
between 2 wks and either (A) 4 wks, (B) 12 wks, or (C) newly diabetic NOD mice. The red portion of each Venn diagram shows the genes identified
by Pearson’s correlation as following a positive correlation throughout diabetogenesis. The green portion of each Venn diagram shows statistically
significant changes from 2 wks to the given wk as determined by 2-fold upregulation and 99% confidence interval by moderated t test with
Benjamini-Hochberg false discovery rate analysis. The blue portion of the Venn diagrams is the intersection of all the pairwise statistically significant
differences from 2 wks to the indicated ages. Hierarchically clustered heat maps show the Euclidean distance of genes identified by the yellow
intersection in the Venn diagrams. Those were the genes that showed both a positive correlation by Pearson’s correlation and a pairwise fold and
statistical change at the indicated time. Gene names in red are type I interferon-inducible and those in green are inducible by both type I and type II
interferons.
doi:10.1371/journal.pone.0059701.g003
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relatively conserved and several important milestones were

identified. During the first 4 wks of life, myeloid cells populated

the islets, independently of diabetes susceptibility. The first major

transcriptional event that differentiated the NOD from control

mice was the expression of type I interferon, reliably detected by

the 4th wk of age. The expression of type I interferon was

correlated with a discrete appearance of CD4+ T cells inside the

islets. The second milestone was the coordinated infiltration of

islets by all major inflammatory cells by the 8th wk of life. This

event was synchronous with markers of T cell activation and

a dramatic change in islet-specific gene expression. Between the 12

and 18th wk there was further diversity in the expression of genes

linked to cytotoxicity, many of which were NF-kB inducible.

Despite a prolonged inflammatory infiltrate starting at 8 wks, mice

did not become diabetic until after 20 wks of age, indicating

a partial level of control for a period of time.

The earliest expression of the autoimmune state was the type I

interferon signature, its importance cannot be underestimated. It

was not unexpected to find a level of constitutive type I interferon

in the islets as well as in other tissues [31,32]. The key event

however was the marked upregulation at 4 to 6 wks of age. Future

experiments will need to address the causes and effects of the type I

IFN expression. For one, we need to explain the relationship

between type I IFN production and the finding of early infiltrating

T cells, the specificity of which needs to be examined. Because of

their striking contact with islet APC these T cells should be

recognizing b-cell antigens. Surprisingly, genes linked to T cell

activation were not detectable until 8 to 12 wks of age in NOD.

The type I interferon induced Cxcl9 that develops early in NOD

has the ability to recruit both pathogenic and regulatory T cells

that bear the Cxcr3, the receptor for Cxcl9. It is possible that the

naı̈ve T cell is incapable of being diabetogenic until it has been

converted to an effector/memory phenotype at distal sites, such as

the pancreatic lymph node, a site which has been shown important

in diabetes development [33,34]. T cells that initiate the diabetic

process may become regulated at 8 wks, but the entry of effector

memory cells that are conditioned in the lymph node may cause

the process to move forward starting at ,12 wks.

Concerning other stimuli, we have no evidence for viral

infections in our colony, an issue that has been examined with

care. But pointedly, gnotobiotic NOD mice still developed

diabetes, although the microbiome did influence its development

[35]. Nucleic acids have been defined as the most potent agonists

of type I interferon production [36]. DNA released by apoptotic b-

cells could activate nucleic acid sensor pathways for the induction

of type I interferon. Inflammatory nucleic acids may result from

the developmental changes that were detected during the first

4 wks. Importantly, an early apoptotic event has been discussed as

a possible inductive phase of diabetes [37]. Alternatively, multiple

signals may be required for the type I interferon burst which

coincides with the initiation of immune infiltration. This hypoth-

esis has been recently postulated for the induction of lupus, a type I

interferon mediated autoimmunity [38]. Careful evaluation of

different nucleic acid sensor pathways in NOD is lacking and is an

important future direction.

Finally, we note some of the reports in the literature that

reinforce the importance of a type I interferon response. Analysis

of RNA isolated from whole pancreatic lymph nodes demonstrat-

ed an upregulation of type I IFN in NOD mice from 2 to 3 wks

[14]. However, it is not clear if this upregulation is unique to NOD

mice. Treatment of mice with type I interferon neutralizing

antibodies delayed disease incidence. Higher level of Ifna

expression was found in the pancreases of human T1D patients

with end-stage disease when compared to normal controls [39].

Diabetes prone BB rats and mice treated with streptozotocin had

expression of type I interferon in their pancreatic islets [40]. There

are reports of patients treated with type I interferon for chronic

viral infections that then developed diabetes [41]. In the case of

mice, enforced expression of type I interferon in islets caused

autoimmune diabetes [42,43]. The transcription factor Irf7, a key

regulator of type I interferon upregulation, has been linked to T1D

by genome-wide association studies [44]. There is an abundance

of data demonstrating the importance of type I interferon in other

autoimmune diseases [45].

The microarrays at 8 wks of age not only marked the detection

of all major leukocyte subsets, but also showed changes in islet

specific gene expression. We detected downregulation of tran-

scription factors essential for islet development and function.

Additionally, by variance analysis these arrays were more distant

from all other arrays regardless of whether the genes were

unfiltered, selected by PCA, or by Pearson’s correlation. We

believe, as do others, that this is due to a control mechanism

established in the islets that must be overcome before disease can

progress [30]. Multiple genes involved in T cell regulation such as

Ctla4, Cd52, Havcr2, Cd244, Btla, Cd200, and Cd274 were

upregulated at 8 wks of age, indicating the potential presence of

a control mechanism. By microscopy we were able to detect

FoxP3+ regulatory T cells in the islets of NOD mice at 8 wks of

age. The demonstration of the importance of regulation in control

of disease was shown in NOD mice deficient in functional FoxP3,

which developed diabetes at a faster rate than wild-type control

mice [46,47]. The concept of a regulatory balance at ,8 wks has

been shown by altering Treg:Teff levels using IL-2 treatment [48].

Removal of Foxp3+ Tregs in a BDC2.5 TCR transgenic model of

T1D revealed an increase in Ifng signatures, which was associated

with progression of disease [49].

In addition to T cell/Treg specific signatures, examination of

NOD mice showed that macrophage gene expression profiles, in

particular the expression of Vsig4 (CRig), was predictive of pro-

gression to disease [30]. The presence of a CRig+ macrophage at

10 wks was indicative of a resistance phenotype, and modulation of

this population by CRig-Fc treatment protected NOD mice from

becoming diabetic. It will be interesting to determine if the

inflammatory changes detected between 8 and 12 wks are related

to the loss of the protective macrophage signature and whether this is

the final trigger that leads to overt diabetes.

Concerning Ifng, we found expression at 8 wks in NOD mice,

but the maximal signal was not detected until 12 wks of age.

Signaling induced by this cytokine results in different biological

effects depending on the cellular targets and their activation state.

In NOD protective as well as proinflammatory responses have

been reported [50,51]. Whether Ifng expression in early versus late

diabetogenesis results in different biological responses remains an

issue for future consideration.

Figure 4. Analysis of inflammatory genes changes throughout diabetogenesis. Differentially expressed genes identified in Figure 3 and
Supplemental Table 1 were interrogated for transcriptional regulation signatures and gene ontology (A) or for their immunological role (B). (A) Cell
enrichment, transcription factor binding, and gene ontology analysis were performed. Numbers in parentheses indicate the number of cell type
specific genes identified as statistically significantly changed at the given age. (B) Hierarchically clustered heat maps of cell type specific gene
changes throughout diabetes. Values were adjusted to a per row color scale so all changes were relative to 2 wk NOD mice.
doi:10.1371/journal.pone.0059701.g004
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In sum, discrete transcriptional profiles were identified in the

diabetic autoimmunity of the NOD mouse, a chronic progressive

and multifactorial disease. This information may set the base to

analysis and identification of causative events but also to better

define gene markers that can be used to identify the stages of the

human disease.

Figure 5. Quantitative RT-PCR validation of microarray data. (A) Quantitative RT-PCR was performed using SYBR green detection for the
indicated genes. Bars show the mean (log2) +/2 S.E.M. of at least three independent experimental replicates from 3–6 biological replicates per group.
All data is represented relative to the expression of actin (DCt). In order to facilitate visualization on a log2 scale, values were transformed as indicated
on the y-axis label. (B) Microarray results for the same genes interrogated in (A). (C) Taqman qPCR quantification of pan-IFNa, Ifnb1, or Ifng
throughout diabetogenesis. Bars represent the mean of the normalized probe intensity +/2 S.E.M. of 3–6 biological replicates per group. Asterisks
indicate statistical significance (P,0.05) from 2 wk NOD sample by one-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0059701.g005
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Materials and Methods

Mice
NOD (NOD/ShiLtJ), NOD.Rag12/2 (NOD.129S7(B6)-

Rag1tm1Mom/J) and B6.g7 (B6.NOD-H2g7) mouse strains were

bred at Washington University School of Medicine. C57BL/6

mice were obtained from The Jackson Laboratory (Bar Harbor,

ME). All of the mice used in this study were female mice. We

identified the diabetic mice following two consecutive daily blood

glucose readings $250 mg/dl. In our NOD colony, the incidence

Figure 6. Data modeling of transcriptional networks. The most significant interaction networks were calculated at (A) 6 wks (FDR 0.00006), (B)
8 wks (FDR= 0.0000001) and (C) 18 wks of age (FDR=0.00012). Interaction significance was based on the p values calculated for each age group.
Notably, at 6-wk, strong developmental signature persists along with AP-1 module, generally attributed to myeloid cells. At 8-wks, strongest
interacting subnetwork is T-cell specific, while 18-wk additional B-cell and cytoskeleton specific modules appear.
doi:10.1371/journal.pone.0059701.g006
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of diabetes in female mice is ,90% with incidence ranging

between ,20–30 wks of age. All of the 18 wk old mice had

normal blood glucose for at least two days before being sampled.

All mouse experiments were approved by the Division of

Comparative Medicine of Washington University School of

Medicine (Association for Assessment & Accreditation of Labora-

tory Animal Care (AAALAC) accreditation number A3381-01).

Experiments were performed under institutional guidelines and all

efforts were made to minimize suffering. The institutional

approval number for these studies was protocol number

20110150.

Islet Isolation and Handling for Immunofluorescence
Islets were isolated with some modifications of the original

protocol [52–54]. Briefly, pancreata were isolated and treated

with collagenase, followed by several steps of centrifugation and

washing, and finally, islets were hand-picked. Immunofluores-

cence analysis was performed as previously described [25].

Resident leukocytes, infiltrating leukocytes, adhesion molecules

(ICAM-1 and VCAM-1), blood vessels and IgG antibody

deposition in the islets were detected with the following

monoclonal antibodies: anti-CD11c Alexa FluorH 488 (clone

N418), anti-CD19 phycoerythrin (PE) (clone 6D5), and anti-

CD4 PE (clone RM4–5) from BioLegend, Inc., San Diego, CA,

anti-CD8a PE (clone 53-6.7; BD Biosciences, San Jose, CA),

anti-CD31 Alexa FluorH 647 (clone 2B8, kindly provided by Dr.

Steven Bogen, Boston University School of Medicine, Boston,

MA), and anti-mouse IgG Alexa FluorH 488 (Invitrogen,

Carlsbad, CA). Biotinylated antibodies against ICAM-1

(CD54, clone Yn1/1.7.4) and VCAM-1 (CD106, clone 429)

were obtained from eBioscience. Streptavidin Alexa FluorH 488

or 555 (Invitrogen) was used as the secondary reagent.

Percentages of infiltrating leukocytes, adhesion molecules

expression and IgG deposition were evaluated from 50 to 100

islets per mouse with groups of 4 to 6 mice per time point.

Flow Cytometry
Isolated islets were dispersed in a water bath using Cell

Dissociation Solution Non-enzymatic (Sigma-Aldrich) for 15

minutes at 37uC. Islets were then pipetted several times and

then passed through a pre-wet 40 mm cell strainer and washed

twice in Dulbecco’s minimal essential medium with 10% fetal

calf serum. Dispersed islet cells were stained with labeled

antibodies against CD45 FITC (clone 30-F11), CD4 PE (clone

RM4-5), CD19 PE (clone 6D5) and CD11c APC (clone N418)

from BioLegend, Inc. CD8b APC (clone eBioH35-17.2) and

Foxp3 (clone FJK-16s) were obtained from eBioscience. Foxp3

staining was performed following the manufacture’s protocol.

Flow cytometry analysis was performed on a FACSCalibur (BD

Biosciences) and data was analyzed using FlowJo software (Tree

Star).

RNA Isolation
For islets of Langerhans (,100), Total RNA was isolated

using the Ambion RNAqueous-Micro Kit (Life Technologies,

Carlsbad, CA, USA) following the manufacturer’s instructions.

For spleen and lymph nodes, RNA was isolated using Trizol

(Life Technologies) following the total tissue RNA protocol.

RNA was quantified by OD260 using Nanodrop (Thermo

Fisher Scientific, Wilmington, DE, USA). For microarray

analysis, RNA integrity and quantification was further validated

using a Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA).

Microarray Analysis
RNA (50 ng) was amplified using NuGEN PicoSL WTA System

or NuGEN PicoPure (NuGEN, San Carlos, CA, USA) following

the manufacturer’s instructions. Amplified RNA (100 ng) was

labeled using Affymetrix GeneChip Whole Transcript Sense

Target Labeling Assay following the manufacturer’s instructions

(Affymetrix, Santa Clara, CA, USA). Labeled RNA was hybrid-

ized to Mouse Gene 1.0 ST microarrays using a GeneChip

Fluidics Station 450 (Affymetrix). Microarrays were scanned using

a GeneChip Scanner 3000 7G (Affymetrix). All GeneChip

processing steps were performed by the Laboratory for Clinical

Genomics at Washington University School of Medicine.

Initial quality control analysis of scanned microarray files was

performed using Expression Console software (Affymetrix). Array

data (.cel files) was imported into Arraystar 5 software (DNAstar,

Madison, WI, USA) and then normalized using the robust multi-

array analysis method with quantile normalization [55]. Normal-

ized data was exported as normalized linear signal intensity and

then batch effect correction was performed using the Combat

module of GenePattern [16,56]. The batches were as follows: 1)

NOD.Rag2/22 wk and 6 wk, NOD 2 wk, B6.g7 6 wk, C57BL/6J

6 wk; 2) NOD 4 wk, 6 wk (arrays 4–6), and newly diabetic, 3)

NOD 6 wk (arrays 1–3), 8 wk, 12 wk, and 18 wk. All raw data

files (CEL) are publicly available in the Gene Expression Omnibus

as accession number GSE41203.

Normalized and batch corrected data was used for all sub-

sequent analyses.

Spearman’s Rank Correlation was calculated using GENE-E

Software (Broad Institute http://www.broadinstitute.org/cancer/

software/GENE-E/). Principal component analysis was per-

formed using Population PCA software (CBDM Laboratory,

Harvard University, http://cbdm.hms.harvard.edu/

LabMembersPges/SD.html). For all pairwise tests contained

herein, we set our threshold at two-fold change with a 99%

confidence interval by moderated t test with Benjamini-Hochberg

False Discovery Rate analysis [57]. Hierarchical clustering analysis

and heat map plot generation was performed using Arraystar 5.

Gene Ontology analysis was performed using GeneCoDis 3.0

(http://genecodis.cnb.csic.es/analysis/; [22]). Promoter scanning

analysis was performed using Pscan (http://159.149.109.9/pscan/

; [23]) with the 2950+50 settings and Jaspar mouse database.

Batch name conversion was performed using the MGI Batch

Query (http://www.informatics.jax.org/batch/?page = batchQF).

For selecting genes specific to particular cell types we used the

Immgen Modules and Regulators. The following modules were

used: myeloid cells (macrophage, DC, granulocytes): coarse

modules 25, 26, 48, 58, and 74, T cells: coarse module 146, B

cells: coarse module 33, and NK cells: coarse module 19. Venn

diagrams were generated using Arraystar 5. Pearson’s Correlation

analysis was performed using Arraystar 5. Bar graphs and

statistical analysis was performed using Graphpad Prism 5.0

(Graphpad Software, Inc., La Jolla, CA, USA). Hypergeometric p

values were calculated using the dhyper function of R. All figures

were laid out using Adobe Illustrator CS5.

Real Time PCR
Complementary DNA was made from total RNA using

TaqMan Reverse Transcription Reagents (Life Technologies)

following the random hexamer protocol. Primers for quantitative

RT-PCR for Cxcl9, Stat1, Gbp2, Iigp1, Rtp4, Gpr18, Oasl2, and Tgtp1

were designed using Primer Bank (http://pga.mgh. harvard.edu/

primerbank/; [58]. TaqMan primers and probes for amplifying

and detecting Ifng and Ifnb were obtained from Life Technologies.

Primers and probe for detecting all the Ifna transcripts were made
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based on previous work [59]. SYBR green PCR was performed

using Fast SYBR Green PCR Master Mix (Life Technologies)

following the manufacturer’s instructions. TaqMan PCR was

performed using TaqMan Fast Universal PCR Master Mix (Life

Technologies). All qPCRs were performed on a StepOnePlus

Real-Time PCR system running StepOne Software. Quality

control and relative expression quantification for qPCR was

performed by the StepOne software.

Network Analysis
The R package Bionet was used to identify subnetworks

significantly enriched in genes differentially expressed at any

given time point of diabetes development [60]. For each time point

we scanned a range of false discovery rates and chose a subnetwork

of 20–30 genes in size (p,0.05 by FDR).

Cell type enrichment scores were pre-computed enrichment

scores for all genes based on mouse Immgen data. This included

data for 193 immune cell types/subtypes and then applied

a hypergeometric test to look for overrepresented set of genes.

For each time point we chose a corresponding test set that

consisted of the top 100 differentially expressed genes (all with p

values ,0.05). Equal numbers of genes were chosen for each time-

point such that we could use a union of all test sets as background

in hypergeometric test (Table S2).

Supporting Information

Figure S1 Summarization of microarrays data throughout

analysis. (A) Summarization of all normalized and curated genes

in our dataset. (B) Summarization and analysis of all genes

downregulated between 2 and 6 wks in NOD and NOD.Rag2/2

mice. The Venn diagram shows all genes downregulated at least 2

fold at 99% C.I. following F.D.R. analysis. Genes downregulated

in NOD are in red, genes downregulated in NOD.Rag2/2 are in

green. Shared genes are in yellow. The shared group of genes were

analyzed by transcription factor biding site enrichment (Pscan) or

Gene Ontology enrichment (GeneCoDis). Bar graphs show the

corrected p value for each type of analysis. The heat map shows

the hierarchically clustered genes shared between NOD and

NOD.Rag2/2 (Euclidean distance). Scale is in log2 fold change. (C)

Summarization of the top 1% of variance amongst our dataset as

determined by principal component analysis. For all summariza-

tion plots, we used Spearman’s rank correlation. Scales indicate

the range.

(TIF)

Figure S2 Identification of genes positively correlated with

diabetogenesis. (A) k-means clustering analysis of 21759 normal-

ized and curated genes in our dataset. K-means was performed

using Pearson’s correlation and 50 bin size at 100 iterations. The

line graphs in red represent 888 genes that had a positive

correlation throughout the time course of NOD diabetes but were

not upregulated from 2 wk to 6 wk in NOD.Rag2/2. These 888

genes were plotted in the heat map to the right using hierarchical

clustering (Euclidean distance). (B) Summarization of the 888

genes identified by Pearson’s correlation. Spearman’s rank

correlation was used to generate the plot. Scale represents the

range. (C) Venn diagrams showing the concordance of genes

identified by Pearson’s correlation compared to pairwise statistical

analysis (top) or principal component analysis (bottom).

(TIF)

Figure S3 Pearson’s correlation and ANOVA analysis demon-

strate 5 main patterns of immune gene upregulation during

diabetogenesis. (Left Column) Heat maps of hierarchically

clustered genes identified by Pearson’s correlation and ANOVA

analysis. (Right Column) Line graphs of normalized gene

expression throughout diabetogenesis. Black line represents the

normalized mean of expression for the cluster. The genes included

in both columns were identical. We tested these 5 major gene sets

that comprise 683 genes with significant changes across diabetes

development by ANOVA. Each cluster can be associated with

infiltration at distinct time points. Strikingly, three clusters were

strongly enriched in specific immune cell types: first, ‘‘4 wk

infiltration’’ cluster had overwhelming enrichment of macrophages

and dendritic cell types (i.e. myeloid cells). Second was the cluster

of genes that appeared at 8 wks and continued to grow on. This

cluster had enrichment in T-cells, B-cells, NK cells and DC types.

Finally, genes most strongly upregulated in newly diabetic NOD

mice, where extraordinarily enriched in various cytotoxic T-cell

types.

(TIF)

Figure S4 Expression levels of housekeeping, pancreas specific

genes, and Ptprc. Normalized expression of eight genes from

pancreatic microarrays. Bars represent the log2 transformed

mean+/2S.D. for 3–6 biological replicates per group.

(TIF)

Figure S5 Data modeling of transcriptional networks. The

analysis was performed as in Figure 6, except the (A) 4 wks, (B)

12 wks and (C) newly diabetic networks are shown.

(TIF)

Table S1 List of genes identified using Pearson’s correlation and

pairwise statistical analysis.

(XLSX)

Table S2 Leukocyte clusters used in the analysis.

(XLSX)
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