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Background:Mild cognitive impairment (MCI) is regarded as a transition phase between

normal aging and Alzheimer’s disease (AD). Identification of novel and non-invasive

biomarkers that can distinguish AD at an early stage fromMCI is warranted for therapeutic

and support planning. The goal of this study was to identify the differences of serum

metabolomic profiles between MCI and early-stage AD, which could be potential

non-invasive biomarkers for early diagnosis of AD.

Methods: The subjects enrolled in the study were classified into two diagnostic groups:

MCI (n = 40) and early-stage AD (n = 40). Targeted metabolomics analysis of serum

samples was performed using the Biocrates Absolute-IDQ P180 kit. Targeted metabolic

data were analyzed by TargetLynx, and MetIDQ software was applied to integrate the

metabolites by automated calculation of metabolite concentrations.

Results: The datasets of targeted metabolite analysis were analyzed by the

orthogonal-projection-to-latent-structure–discriminant-analysis (OPLS-DA) model. The

OPLS-DA score plots demonstrated considerable separation between the MCI and

early-stage AD patients. The levels of pimelylcarnitine, putrescine, SM (OH) C24:1, and

SM C24:0 were significantly lower, whereas the levels of acetylornithine, methionine

sulfoxide, and PC ae C44:3 were significantly higher in early-stage AD patients as

compared with MCI patients. Receiver operating characteristic curve analysis of a

combination of three lipid metabolites [SM (OH) C24:1, SM C24:0, and PC ae C44:3]

showed an acceptable discrimination between the early-stage AD andMCI patients (area

under the curve = 0.788).

Conclusions: Our results characterized the differences of serum metabolic profiles

between MCI and early-stage AD patients. The positive findings from this study indicate

that the minimally invasive method of blood sampling may help to identify patients with

AD at an early stage from those with MCI.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease of the
brain, characterized by senile plaques, neurofibrillary tangles,
selective loss of neurons and synapse, inflammation and glial
responses, and vascular alterations (1). The clinical features of
AD includememory impairment, cognitive decline, and behavior
changes (2). Mild cognitive impairment (MCI) is regarded as
a transition period between age-appropriate memory changes
and AD (3). The presentation of MCI includes cognitive deficits,
mainly inmemory functions, with preservations of independence
in everyday activities and does not fulfill the criteria of AD, other
dementia disorders, or other mental diseases. MCI is associated
with an increased risk of progress to AD (4). The outcomes of the
MCI state are diverse and with several possibilities, which even
include improving back to normal cognition (5).

Recent research has focused on searching for sensitive and
specific biomarkers for the early diagnosis of AD and for
identifying MCI patients who will progress to AD from stable
MCI or healthy elderly control subjects (6–12). The ideal
biomarkers of AD should be non-invasive and could reflect the
disease-related biological processes, such as blood samples. Other
non-invasive biomarker studies for AD have been done in saliva
(13, 14) or tear fluid (15). However, the comparisons of saliva
and serum analyses revealed the limitations in using saliva for
biomarker discovery (16). There is growing evidence that a single
biomarker cannot have enough sensitivity and specificity for
AD diagnosis since different research groups identified different
biomarkers, and some results cannot be reproduced (6, 17, 18).
Therefore, the ideal non-invasive biomarkers for detecting AD in
very early stage remain uncertain.

Metabolomics is a discipline specially used in the global study
of small molecules in cells, tissues, and biofluids. Concentration
changes of specific groups of metabolites may reflect the
state of disease progression, and metabolomics has become
a powerful tool for biomarker development (10). Currently,
technologies of metabolomics have allowed comprehensive and
quantitative investigation of different metabolites in various
diseases (19). A systemic review by Jiang et al. demonstrated
that the concentrations of several metabolites, including
lipids (higher phosphatidylcholines, sphingomyelins (SMs), and
lysophosphatidylcholine and lower docosahexaenoic acid and
high-density lipoprotein subfractions), amino acids (lower
branched-chain amino acids, taurine, and higher glutamate,
glutamine, and anthranilic acid), were associated with cognitive
decline and the incidence or progression of dementia (20).
In addition, Fleszar et al. showed that L-arginine/NO pathway
in blood was altered in AD and vascular dementia (21). And
dysregulated arginine metabolism in urine may serve as a
diagnostic biomarker for old MCI patients (22). Moreover,
Kim et al. reported that primary fatty amides in plasma were
associated with brain amyloid burden, hippocampal volume, and
memory (23).

The aim of the present study was to analyze the metabolome
of serum samples from MCI and early-stage AD patients.
We quantitatively analyzed 40 acylcarnitine metabolites,
21 amino acids, 19 biogenic amines, 15 sphingolipids, and

90 glycerophospholipids using the Absolute-IDQ P180 kit
(Biocrates Life Sciences AG, Innsbruck, Austria). We here
demonstrated that the concentrations of several serum
metabolites were significantly different between patients of
MCI and early-stage AD, which may serve as a potential non-
invasive biomarker for distinguishing MCI patients who will
progress to early-stage AD from MCI patients who will remain
in the MCI stage.

MATERIALS AND METHODS

Participants
Patients who visited an outpatient clinic of neurology formemory
impairment or behavior change from July 2015 to September
2017 were potential participants of this study. Evaluation of
medical history and physical and neurological examinations
were performed by two experienced neurologists. Blood tests
for a dementia survey that included cortisol levels, thyroid
function, syphilis screen, vitamin B12, and folate level and a
brain imaging study that included computed tomography (CT)
or magnetic resonance imaging (MRI) were arranged as routine
survey for dementia. Patients with abnormalities in blood tests
for the dementia survey were excluded. The brain imaging
study was evaluated by an experienced neuroradiologist, and
those with abnormal brain lesions such as old cerebrovascular
insults, tumor, encephalomalacia, marked white matter lesions,
or other brain lesions were excluded from this study. Patients
with a history of psychiatric disorder, depression, old stroke,
severe renal or liver dysfunction, or malignancy were also
excluded. Mini-Mental State Examination (MMSE) (24), Clinical
Dementia Rating (CDR) (25), and Cognitive Abilities Screening
Instrument (CASI) (26) were used for dementia evaluation and
were performed by an experienced neuropsychologist. Patients
were excluded from the study if (1) age is <65 years; (2) they
received education for <6 years; (3) they had abnormality in
the blood test for the dementia survey that included cortisol
levels, thyroid functions, syphilis screen, vitamin B12, and folate
levels; (4) CT or MRI show abnormal brain lesions such as old
cerebrovascular insults, tumor, encephalomalacia, marked white
matter lesions, or other brain lesions; (5) they had a history of
psychiatric disorder, depression, old stroke, or malignancy; (6)
they had abnormality of renal or liver function tests; (7) they
had poorly controlled diabetes mellitus (glycohemoglobin≧ 7%);
(8) they had an MMSE score of 30 or <20 and a CDR score
of 0 or >1; (9) they already used a cholinesterase inhibitor. To
reduce the influence of hypnotic drugs on metabolomics profiles
in these patients, we collected blood samples from the patients
after prohibiting eatables and medication intake for at least 8 h in
our study.

MCI was diagnosed using the criteria originally proposed
by the Mayo Clinic Alzheimer’s Disease Research Center (27).
The MCI criteria were as follows: (1) memory complaint by
patient, family, or physician; (2) normal activities of daily living;
(3) normal global cognitive function; (4) objective impairment
in memory or in one other area of cognitive function; (5) a
CDR score of 0.5 and an MMSE score around 26–29 (28);
and (6) absence of dementia. The diagnosis of AD was based
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on the criteria of the National Institute of Neurologic and
Communicative Disorders and Stroke (29). Patients with a CDR
score of 1 and an MMSE score around 20–25 were regarded as
early-stage AD and were recruited into the study.

The study was designed and carried out in accordance with
the principles of the Declaration of Helsinki and with approval
from the Ethics Review Board of Chang GungMemorial Hospital
(IRB 104-4769B and IRB 104-6261B). All subjects gave written
informed consent.

Metabolomic Analysis
Targeted metabolomic analysis of serum samples was performed
using the Biocrates Absolute-IDQ P180 kit (Life Science AG,
Innsbruck, Austria). The serum samples were processed as
per the manufacturer instructions and analyzed on a triple-
quadrupole mass spectrometer (Waters, Milford, CT, USA).
As part of the quality control, three concentrations of quality
controls were included in the kit. Targeted metabolic data
were analyzed by TargetLynx (Waters, Milford, CT, USA), and
MetIDQ software (Biocrates, Innsbruck, Austria) was applied to
integrate the metabolites by automated calculation of metabolite
concentrations. Metabolites with the concentration below the
limit of detection were excluded.

Statistical Analysis
Continuous variables were expressed as mean ± standard
deviation (SD) if the values were normally distributed or
median and interquartile range if the values were not normally
distributed. Categorical variables were expressed as a number,
or percentage, for each item. The MCI and early-stage AD
patient groups were compared using chi-square, Mann–Whitney
U, or Student t-test. To maximize identification of differences
in metabolic profiles between groups, the orthogonal-projection-
to-latent-structure–discriminant-analysis (OPLS-DA)model was
applied using the SIMCA-P software (version 13.0, Umetrics AB,
Umea, Sweden). The variable importance in the projection (VIP)
value of each variable in the model was calculated to indicate its
contribution to the classification. A higher VIP value represented
a stronger contribution to discrimination among groups. VIP >

1.5 were considered significantly different. All statistical analyses
were two-sided and performed using IBM SPSS statistics 19.0
software (Armonk, NY, USA) for Windows. A P < 0.05 was
considered significant.

RESULTS

Patient Characteristics
A total of 80 participants included 40 MCI and 40 early-stage
AD patients. The characteristics and laboratory data of the
included patients were shown in Table 1. The early-stage AD
patients were significantly older than the MCI patients (P <

0.001). The durations from symptom onset to diagnosis were
significantly longer in early-stage AD patients as compared with
MCI patients (P < 0.001). Upon comorbidities, the prevalence
of hyperlipidemia was significantly higher in MCI patients
as compared with early-stage AD patients (P = 0.03). The
percentage of hypnotic drug usage was significantly higher in

MCI patients (P = 0.017). According to laboratory data, early-
stage AD patients had lower levels of hemoglobin, alanine
transaminase, and total cholesterol as compared with MCI
patients (P = 0.018, <0.001, and 0.006, respectively).

Serum Metabolomics Analysis
To evaluate the differences of serum metabolites between MCI
and early-stage AD patients, serum from 40 MCI and 40
early-stage AD patients were subject to targeted metabolite
analysis, and datasets were analyzed by the OPLS-DA model.
The OPLS-DA score plots demonstrated considerable separation
between the MCI and early-stage AD patients (Figure 1A). The
metabolites responsible for the discrimination between these
two groups (those with VIP > 1.5) are listed in Table 2.
The levels of pimelylcarnitine, putrescine, SM (OH) C24:1,
and SM C24:0 were significantly lower, whereas the levels of
acetylornithine, methionine sulfoxide (Met-SO), and PC ae C44:3
were significantly higher in early-stage AD patients as compared
with MCI patients (Table 2, Figures 1B–H).

The receiver operating characteristic (ROC) curve analysis of
seven individual metabolites did not show good discrimination
between MCI and early-stage AD patients [area under the
curve (AUC) demonstrated in Table 2]. ROC curve analysis
of a combination of these seven metabolites showed good
discrimination of early-stage AD and MCI patients (AUC =

0.811). However, ROC curve analysis of a combination of
three lipid metabolites [SM (OH) C24:1, SM C24:0, and PC
ae C44:3] showed an acceptable discrimination between MCI
and early-stage AD patients (AUC = 0.788, Figure 2). The
finding supported the importance of dysregulation of brain lipid
metabolisms in cognitive decline.

DISCUSSION

In the current study, we found that the levels of several serum
metabolites had significant differences between patients of MCI
and early-stage AD, which might be potential biomarkers for
distinguishing MCI patients who will progress to early-stage
AD from stable MCI patients. The targeted metabolite analysis
using the Absolute-IDQ P180 kit revealed that the levels of
pimelylcarnitine, putrescine, SM (OH) C24:1, and SMC24:0 were
significantly lower, whereas the levels of acetylornithine, Met-SO,
and PC ae C44:3 were significantly higher in serums of early-stage
AD patients as compared with MCI patients.

Previous studies have demonstrated that the metabolites
of cerebrospinal fluid could predict dementia development.
However, the procedure of collecting cerebrospinal fluid is
relatively invasive (30, 31). The diagnostic value of less invasive
biomarkers, such as metabolites of blood or saliva samples,
remains controversial. Previous blood metabolite studies of AD
suggested that some lipids (32, 33) or metabolites (10, 34)
could predict the progress of AD. In addition, Zheng et al.
found that cognitively healthy adults and MCI patients could
be differentiated with each other by the analyses of metabolites
identified from saliva samples (14). However, other studies did
not reveal a clear group separation for saliva samples among
dementia and normal patients but found significant differences
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TABLE 1 | Demographic characteristics of mild cognitive impairment and early-stage Alzheimer’s disease patients.

Mild cognitive

impairment

(n = 40)

Early-stage Alzheimer’s

disease

(n = 40)

Odds ratio (95% CI) P-value

Age (years) 68 (67–72) 77 (73–81) <0.001*

Female 44 (67.7%) 25 (65.8%) 0.83 (0.36–1.91) 0.415

Duration of symptoms (months) 12 (6–24) 24 (12–36) <0.001*

MMSE 28 (26–29) 22 (20–24) <0.001*

CDR 0.5 (0.5–0.5) 0.5 (0.5–0.5) <0.001*

CASI 86 (80–91) 65 (60–72) 0.005*

Comorbidity

Hypertension 33 (50.8%) 21 (55.3%) 0.84 (0.37–1.86) 0.407

Diabetes mellitus 11 (16.9%) 11 (28.9%) 0.50 (0.19–1.30) 0.118

Hyperlipidemia 36 (55.4%) 13 (34.2%) 2.39 (1.04–5.47) 0.03*

Coronary artery disease 9 (13.8%) 5 (13.2%) 1.06 (0.33–3.43) 0.586

Chronic kidney disease 1 (1.5%) 3 (7.9%) 0.18 (0.02–1.82) 0.141

Gout 3 (4.8) 4 (10.5) 0.41 (0.09–1.95) 0.225

Insomnia 24 (36.9%) 10 26.3%) 1.64 (0.68–3.95) 0.188

Hypnotic drug use 22 (33.8%) 5 (13.2%) 3.38 (1.16–9.86) 0.017*

Antidepressant use 4 (6.2%) 1 (2.6%) 2.43 (0.26–22.5) 0.388

Laboratory data

TSH, nIU/ml 1.78 (1.07–2.34) 1.42 (1.00–2.51) 0.420

Free T4, mg/dl 1.14 (0.99–1.26) 1.13 (1.02–1.29) 0.940

Cortisol, µg/dl 9.5 (6.9–12.5) 9.1 (6.4–10.7) 0.146

Vitamin B12, pg/ml 610.3 (458.3–1,000.45) 593.95 (436.95–1,242.5) 0.954

Folate, ng/ml 9.64 (7.28–12.93) 10.97 (7.65–16.42) 0.264

WBC, 1,000/µl 5,700 (4,950–7,000) 6,150 (5,275–7,850) 0.270

Hemoglobin, g/dl 13.6 (12.6–14.5) 13.1 (12.1–13.6) 0.018*

Platelet, 1,000/µl 217.0 ± 54.4 220.3 ± 59.6 0.774

Sugar, mg/dl 102 (93–111) 101 (92.5–125.3) 0.523

Glycohemoglobin, g/dl 5.8 (5.6–6.2) 5.95 (5.70–6.35) 0.153

AST, U/L 23 (20–29) 23 (18–27) 0.409

ALT, U/L 23 (19–29) 16 (14–23) <0.001*

Total cholesterol, mg/dl 203 (180.5–233) 182 (153.5–204) 0.006*

Triglyceride, mg/dl 123 (87.5–178) 99 (66.5–130.8) 0.051

LDL-C, mg/dl 119 (107–146) 111 (91–134) 0.066

HDL-C, mg/dl 47 (41–59) 48 (40–58) 0.632

Uric acid, mg/dl 6.0 (5.2–6.5) 5.9 (5.0–6.2) 0.425

hs-CRP, mg/L 0.8 (0.3–2.0) 0.8 (0.2–2.4) 0.891

CI, confidence interval; MMSE, Mini-Mental Status Examination; CDR, Clinical Dementia Rating; CASI, Cognitive Abilities Screening Instrument; TSH, thyrotropin; T4, thyroxine; WBC,

white blood cells; AST, aspartate aminotransferase; ALT, alanine transaminase; BUN, blood urea nitrogen; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein

cholesterol; hs-CRP, high-sensitivity C-reactive protein.

Data are presented as mean ± standard deviation, median (interquartile range), or n (%). *P < 0.05, Student t, Mann–Whitney U, or chi-square test.

for serum samples (16). This finding suggests that blood samples
are more suitable for non-invasive biomarker discovery of AD as
compared with saliva.

Our results showed that the serum level of pimelylcarnitine,
one kind of acylcarnitine, was significantly lower in early-stage
AD patients as compared with MCI patients. Pimelylcarnitine
had been reported to be associated with sleep deprivation (35),
migraine (36), and type II diabetes mellitus (37). Acylcarnitines
are formed from the conversion of acyl-CoA species by carnitine
palmitoyltransferase (CPT) 1 (38). Then acylcarnitines are

transported into the mitochondrial matrix by the carnitine
acylcarnitine translocase, a mitochondrial inner membrane
transporter. Finally, the enzyme CPT2 reconverts acylcarnitines
back into free carnitine and long-chain acyl-CoAs (39). There
is growing evidence that a net efflux of acylcarnitine species
from the mitochondria into the cytosol and finally into plasma is
crucial in the conditions of impaired fatty acid oxidation, because
it could prevent the potentially toxic acyl-CoA intermediates
from accumulating in the mitochondrion (40). Therefore,
the changes of plasma or urinary acylcarnitine profiles have
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FIGURE 1 | The differences of serum metabolomic profiles between mild

cognitive impairment (MCI) and early-stage Alzheimer’s disease (eAD) patients.

(A) The orthogonal-projection-to-latent-structure–discriminant-analysis

(OPLS-DA) score plots show the considerable separation between 40 MCI

and 40 eAD patients. (B–H) Plasma levels of metabolites compared between

MCI and eAD patients (P < 0.05). (B–H) Were pimelylcarnitine, acetylornithine,

methionine sulfoxide, putrescine, PC ae C44:3, SM (OH) C24:1, and SM

C24:0.

been used to detect fatty acid and amino acid oxidation
disorders (41–43).

Our results found that the serum level of Met-SO was
significantly higher in early-stage AD patients as compared with
MCI patients. Met-SO, an oxidized form of methionine, is known
to be an indicator of systemic oxidative stress since methionine is
particularly susceptible to oxidization by reactive oxygen species
(44, 45). To protect the cells from these toxic radicals, the Met-
SO reductase system could reduce Met-SO to methionine (46).
In a previous AD study, oxidative stress is one of the earliest
consequences of toxic insults mediated by soluble amyloid β-
protein (Aβ) oligomers (47). The Met-SO has been found to
comprise 10–50% of Aβ in amyloid plaques of AD brain (48). As

the oxidative stress is increased with advanced age and dementia
stage while the activity of the methionine sulfoxide reductase
system and other antioxidants are decreased, the level of Met-SO
should be higher in more severe AD stages. This might be able
to explain why the level of Met-SO is higher in early-stage AD
patients when compared to MCI patients in this study.

Our results revealed that the serum level of putrescine,
the precursor of spermidine, was significantly lower in early-
stage AD patients as compared with MCI patients. Hydrolysis
of L-arginine by arginase generates L-ornithine, which is
decarboxylated by ornithine decarboxylase to form putrescine.
Putrescine can also be produced by hydrolysis of agmatine, which
is formed from L-arginine by arginine decarboxylase. Putrescine
is alkylated by the decarboxylated S-adenosyl-methionine, which
regularly serves as the major methyl group donor for methyl
transferases (49). There is growing evidence that arginine
metabolism may be associated with the development of AD and
other dementia (50–52). Furthermore, in a recent study by Zhang
et al., reduced urinary arginine levels were noted in patients with
amnestic MCI (22).

In our results, the serum levels of SM (OH) C24:1 and SM
C24:0 were significantly lower in early-stage AD patients as
compared with MCI patients. In the brain, the proper balance
of sphingolipids is essential for normal neuronal function,
and subtle changes in sphingolipid balance may be intimately
involved in neurodegenerative diseases, including AD. SMs
are major components of cell membranes and are especially
enriched in the central nervous system. Clinical, laboratory,
and animal studies thus far suggest that perturbations in SM
may contribute to the pathophysiology of AD, particularly the
formation of amyloid-beta, associated amyloid plaques, and
neurodegeneration (53). Previous study revealed that higher
levels of SM (OH) C22:1 were significantly associated with
lower risk of dementia (7). Besides, higher concentrations of
three other SMs [SM C26:0, SM (OH) C22:2, and SM (OH)
C24:1] might have a trend of lower prevalence of dementia,
though these associations did not reach statistical significance
(7). Our results are in agreement with previous findings on
the link between AD and SMs (7, 53, 54). In the brain, the
proper balance of sphingolipids is important for maintaining
normal neuronal function. Therefore, the process of sphingolipid
metabolism is altered in the early stage of AD and contributes
to the neuropathological disturbances of AD, which include Aβ

production, tau protein formation, and neurodegeneration (55).
We found that N-acetylornithine was significantly higher

in early-stage AD as compared with MCI patients. N-
Acetylornithine, an intermediate in arginine metabolism, is
a minor component of deproteinized human blood (56).
It has been linked to chronic kidney disease and been
regarded as a potential biomarker for kidney function in
humans since a previous study found that higher levels of N-
acetylornithine were associated with lower estimated glomerular
filtration rate (57). However, no previous study has linked N-
acetylornithine to neurodegenerative diseases except one recent
study revealing that there is a relationship between decreased N-
acetylornithine level and haloperidol exposure (58). Therefore,
a causal relationship between increased N-acetylornithine levels
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TABLE 2 | Statistical analysis of targeted metabolites between mild cognitive impairment and early-stage Alzheimer’s disease patients.

Metabolites, µM VIP score MCI eAD P-value AUC (95% CI)

Pimelylcarnitine 1.98 0.035 ± 0.018 0.028 ± 0.015 0.0355 0.640 (0.516–0.764)

Acetylornithine 2.03 4.398 ± 2.147 5.584 ± 2.648 0.0309 0.654 (0.532–0.776)

Methionine sulfoxide 2.69 0.183 ± 0.262 0.561 ± 0.756 0.0044 0.630 (0.507–0.753)

Putrescine 2.30 0.182 ± 0.073 0.145 ± 0.058 0.0141 0.665 (0.545–0.784)

PC ae C44:3 1.98 0.091 ± 0.016 0.100 ± 0.022 0.0356 0.622 (0.50–0.745)

SM (OH) C24:1 1.94 1.862 ± 0.273 1.689 ± 0.443 0.0396 0.664 (0.542–0.787)

SM C24:0 2.12 46.258 ± 8.866 41.515 ± 9.489 0.0236 0.656 (0.535–0.777)

VIP, variable importance in the projection; MCI, mild cognitive impairment; eAD, early-stage Alzheimer’s disease; PC ae C44:3, phosphatidylcholine acyl-alkyl C44:3; SM (OH) C24:1,

hydroxysphingomyeline; SM C24:0, sphingomyelin C24:0; receiver operating characteristics (ROC) curves with area under the curve (AUC) of single metabolites to discriminate MCI

and early-stage AD patients.

Values are mean ± SD.

FIGURE 2 | Receiver operating characteristic (ROC) curve analysis of three

combined lipid metabolites of SM (OH) C24:1, SM C24:0, and PC ae C44:3

discriminate early-stage AD patients from MCI patients.

and early-stage AD, as observed in our study, is difficult to
speculate upon.

In addition, the level of PC ae C44:3, a metabolite of
glycerophospholipids, was significantly higher in early-stage AD
patients as compared with MCI patients. Glycerophospholipids,
one kind of brain lipids, constitute a varied group of molecules
with important brain functions (59). Several studies suggest that
the abnormal metabolism of glycerophospholipids is associated
with some important features of AD, such as neuroinflammation,
neuronal injury, and neurodegeneration (60–62). Previous
studies also found that several glycerophospholipids were
significantly increased in the cerebrospinal fluid (CSF)
samples with AD-like pathology (63, 64). Therefore, due to
the importance of these brain lipids in the cognitive decline, the
three combined lipid metabolites of SM (OH) C24:1, SM C24:0,
and PC ae C44:3 will result in an acceptable discrimination
between early-stage AD patients and MCI patients in
our study.

This study has several limitations. First, the sample size was
relatively small. Second, this was a cross-sectional study to
compare the metabolomics between MCI and early-stage AD
patients. Long-term follow-up was indicated to realize which
metabolites could predict MCI or AD before the onsets, but it
took many years. Our findings may serve as a pilot study. Third,
there was no age-matched control group in our study. The lack
of a control group was mainly due to the strict exclusion criteria
of our study. Fourth, the interference of hypnotic drugs on
serum metabolomics was unknown, since no published studies
had discussed about the effects of different hypnotics drugs on
metabolic profiles in patients with cognitive impairment. Even
with these limitations, we believed the presented results might be
the base of future multicentric studies, with larger samples and
longer follow-up.

CONCLUSIONS

In this study, we identified the differences of serum metabolites
between patients of MCI and early-stage AD. The changes of
these metabolites reflect increased severity of neuronal injury
and neurodegeneration in early-stage AD thanMCI. The positive
findings from the present serummetabolomics analyses, together
with other recent findings, indicate that the serum metabolomics
analysis may help to distinguish MCI patients from early-stage
AD patients clinically. Long-term follow-up studies with larger
samples will be performed in the future to see if these metabolites
can predict the MCI progression to AD.
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