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1  | INTRODUC TION

Temporomandibular joint (TMJ) osteoarthritis is a progressive de-
generative cartilage disease that affects cartilage and subchondral 
bone.1,2 Chondrocyte death, extracellular matrix (ECM) degradation 
and subchondral bone remodelling are considered to be the main 

characteristics of TMJ osteoarthritis.3,4 The characteristic progres-
sive breakdown of cartilage results from the abnormal regulation of 
chondrocytes and the imbalance between the degradation and for-
mation of tissue.

Chondrocytes maintain balance between synthesis and degrada-
tion of the ECM.5 However, this homeostasis can be disrupted by the 
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Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative dis-
ease of the TMJ. In order to explore its aetiology and pathological mechanism, many 
animal models and cell models have been constructed to simulate the pathological 
process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis 
include chondrocyte death, extracellular matrix (ECM) degradation and subchondral 
bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. 
However, autophagy has a protective effect on condylar chondrocytes. Degradation 
of ECM not only changes the properties of cartilage but also affects the phenotype of 
chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis 
plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evi-
dence has suggested that chondrocyte hypertrophy and endochondral angiogenesis 
promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that 
promote cartilage degeneration. These chondrocytes can further differentiate into 
osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral an-
giogenesis and neoneurogenesis are considered to be important triggers of arthralgia 
in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteo-
genesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteo-
arthritis have further enhanced the understanding of this disease and contributed to 
the development of molecular therapies. This paper summarizes recent cognition on 
the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hyper-
trophy degeneration and cartilage angiogenesis.
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uncoupled catabolic and synthetic activities.6 Moreover, the number 
of apoptotic chondrocytes increases significantly in the osteoarthri-
tis, which is closely related to the endoplasmic reticulum and death 
receptor pathways.7,8 The quality of condylar bone is closely related 
to the development of TMJ osteoarthritis. When TMJ osteoarthritis 
occurs, the density of subchondral bone is reduced.4,9

The mechanism and role of chondrocyte hypertrophy and carti-
lage angiogenesis in TMJ osteoarthritis have attracted the attention 
of researchers. Hypertrophic chondrocytes promote ECM degrada-
tion and cartilage calcification. This denatured cartilage shows less 
mechanical adaption to adverse stimuli such as trauma.10 Apart from 
hypertrophic chondrocytes, angiogenesis has been reported to par-
ticipate in TMJ osteoarthritis.11 Neo-angiogenesis has been shown 
to exacerbate chronic pain and promote cartilage ossification.12,13 
However, the exact mechanism is unclear. The possible pathogenesis 
of TMJ osteoarthritis is summarized in Figure 1.

In this review, we summarize the latest studies on the pathogen-
esis of TMJ osteoarthritis and analyse the pathological changes with 
an emphasis on chondrocyte hypertrophy and angiogenesis.

2  | IN VIVO ANIMAL MODEL S AND 
IN VITRO CELL MODEL S OF TMJ 
OSTEOARTHRITIS

Animal studies of the development of TMJ osteoarthritis used tech-
niques including modifying the occlusal state, gene editing, injecting 
inflammatory mediators and surgery (Table 1).

Mechanical modification of the occlusal state is the most com-
monly used method to induce TMJ osteoarthritis-like changes. The 
TMJ receives direct occlusal loading, and disruption of occlusal har-
mony may traumatize the TMJ during functional loading.14 Intraoral 
occlusal devices such as unilateral anterior crossbite (UAC) and bite-
raising plates have been used to induce TMJ osteoarthritis-like le-
sions.7,15,16 In addition, an extraoral compression mechanical force 
device that directly exerts compressive pressure on the TMJ has also 
been used.8,17

Similar to other osteoarthritis animal models, gene editing such 
as overexpression of short stature homeobox 2 (SHOX), transform-
ing growth factor-β1 (TGF-β1), and β-catenin,18-21 and inhibiting or 
knocking out genes such as Discoidin domain receptor 1 (DDR1), 
small mother against decapentaplegic 3 (SMAD3), and fibroblast 
growth factor receptor (FGFR3), could lead to the formation of TMJ 
osteoarthritis.1,22,23 Intra-articular injection of chemical mediators 
such as monosodium iodoacetic acid (MIA) and complete Freund's 
adjuvant (CFA) could mimic the inflammatory response of the TMJ 
over a short period of time.24-26 Surgical methods have been used 
to destroy part or all of the disc or cartilage of the condyle.27-29 In 
addition, since the occurrence of osteoarthritis is closely related to 
age,30 aged mice were used in some studies to mimic spontaneous 
TMJ osteoarthritis.31

In vitro (Table  1), primary chondrocytes could be directly ex-
tracted from TMJ osteoarthritis patients or model animal and used 
as cell models. Chondrocyte inflammation can also be induced by 
inflammatory chemical mediators such as IL-1β,32,33 and mechanical 
devices such as Flexcell.34,35

F I G U R E  1   The main pathological changes in TMJ osteoarthritis
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3  | THE C ANONIC AL PATHOLOGIC AL 
CHANGES DURING THE TMJ 
OSTEOARTHRITIS

3.1 | The death of chondrocytes

Several studies have demonstrated that increased turnover of chon-
drocytes initiates the degeneration of condylar cartilage.36 Apoptosis, 
autophagy, and necroptosis, play crucial roles in chondrocyte death. 
Apoptosis and necroptosis accelerate the destruction of articular carti-
lage.37,38 Chondrocyte apoptosis provides space for neovascularization, 
and the apoptotic bodies produced by this process are thought to be the 
source of cartilage mineralization.10,39 Autophagy is considered a self-
protective mechanism, by which chondrocytes recycle or reuse large 
biomolecules.40 In general, abnormal death of chondrocytes not only re-
duces the number of chondrocytes, but also initiates the degeneration 
of cartilage and the destruction of subchondral bone.41 The pathways 

associated with chondrocyte death in TMJ osteoarthritis are illustrated 
in Figure 2.

3.1.1 | Apoptosis and necroptosis in TMJ 
osteoarthritis

Calcium plays an essential role in chondrocyte apoptosis and calcium 
concentration in chondrocytes can be increased under mechanical 
overload.42 Endoplasmic reticulum stress (ERS) caused by calcium 
influx can cause chondrocyte apoptosis, which is known as ERS-
mediated apoptosis.17,35,42 A high intracellular calcium concentra-
tion can activate inducible nitric oxide synthase (iNOS). Nitric oxide 
(NO) induced by iNOS inhibits mitochondrial respiration and leads 
to chondrocyte apoptosis through the release of cytochrome C (Cyt 
C) and caspase-9.43 Furthermore, tumour necrosis factor (TNF) and 
FGFR1 are crucial cytokines that can facilitate chondrocyte apopto-
sis by acting on the death receptor pathway.44,45

TA B L E  1   Animal models and cell models used to mimic TMJ osteoarthritis in recent years

Intervention Animals/Cells Methods Year Authors

In vivo

Mechanical 
modification

Rats Unilateral anterior crossbite 2019 Yang, H., et al

2018 Ye, T., et al

Bite-raising 2019 Long, HQ, et al

Steady mouth-opening 2017 Ge, X., R., et al

External compressive mechanical force 2017 Zhang, C., et al

2016 Zhu, M., et al

Rabbits Unilateral dental splints 2015 Henderson., et al

Medicine Rats Monosodium iodoacetic acid 2019 Zhang, S., et al

Freund's complete adjuvant 2016 Xu, L., et al

Rabbits Type II collagenase 2020 Yi, X., et al

Surgery Mice Unilateral partial discectomy 2019 Chen, PH et al

Goats Total disc removal 2017 Lan, L., et al

Cartilage removal of condyle 2017 Wang, F., et al

Gene Mice Collagen type XI haploinsufficient mice 2019 Chen, PH, et al

Camurati–Engelmann disease mice 2018 Zheng, L., et al

β-catenin conditional activation mice 2018 Hui, T., et al

Expressing human SHOX 2016 Liang, W., et al

Conditional deletion of FGFR3 2016 Zhou, S., et al

SMAD3 deficiency mice 2015 Mori, H., et al

Guinea pig Dunkin-Hartley strain guinea pig 2016 Wu, M., et al

Senescence Mice 2018 Wang, Z., et al

In vitro

Mechanical force ATDC5 Flow fluid shear stress 2019 Yang, H., et al

Pig condylar chondrocytes 2017 Zhang, M., et al

Cytokines Rat condylar chondrocytes IL-1β 2019 Zhang, S., et al

2016 Chen, H., et al

TNF-α+cycloheximide 2017 Zhang, C., et al
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Necroptosis is mediated by oxidative stress and plays an import-
ant role in osteoarthritis.8 TNF and receptor-interacting protein 1 
and 3 (RIP1/RIP3)-mediated necroptosis exacerbates the cartilage 
destruction. Studies have shown that the necroptosis pathway is en-
hanced when apoptosis is inhibited.8,46

3.1.2 | Autophagy in TMJ osteoarthritis

Autophagy is an important mechanism of chondrocyte survival in 
osteoarthritis.40 The main process of autophagy involves the for-
mation of autophagosomes, which sequester discarded organelles 
or macromolecules. Autophagosomes then fuse with lysosomes to 
form autolysosomes, which eventually degrade the contained mate-
rials and release small molecules that can be reused.47 The markers 
of autophagy, beclin 1 and light chain 3 beta (LC3B) increase in the 
early stage of TMJ osteoarthritis but decrease significantly in the 
late stage.7 The initial enhancement in autophagy protects chondro-
cytes from various environmental changes. With the destruction of 
cartilage, inhibition of autophagy is associated with cell death.48 In 
models of abnormal dental occlusion and age-associated spontane-
ous osteoarthritis, the loss of FGFR1 inhibits the development of 
osteoarthritis by promoting autophagic activity.49 In addition, the 
endoplasmic reticulum-associated proteins endoplasmic reticulum 
to nucleus signalling 1 (ERN1), mechanistic target of rapamycin ki-
nase complex 1 (MTORC1) and eukaryotic translation initiation fac-
tor 2 alpha kinase3 (EIF2AK3) not only induce apoptosis but also act 

as a regulatory valve to inhibit autophagy. This pathway is known as 
the ERN1-MTORC1-EIF2AK3 signalling axis.7 Therefore, regulating 
autophagy may be an effective mechanism for the treatment of TMJ 
osteoarthritis.

3.2 | Degenerative changes in the ECM

The ECM of cartilage is mainly composed of collagen fibres and large 
proteoglycans. It not only acts as a protective scaffold against elastic 
and shear forces for cartilage, but also regulates the behaviour of 
chondrocytes through matrix-cell interactions.5,50

In TMJ osteoarthritis, ECM degradation starts with expression of 
matrix metalloproteinases (MMPs) and a disintegrin and metallopro-
teinase with thrombospondin motifs (ADAMTS) in the cell.51,52 The 
destruction of type II collagen (Col2A1) promotes the hypertrophy 
of chondrocytes through the bone morphogenetic protein (BMP) 
pathway, thus exacerbating the progression of TMJ osteoarthritis.53 
In addition, mineralization of cartilage has been found to be involved 
in the development of TMJ osteoarthritis.10 The signalling molecules 
involved in the regulation of ECM degeneration are summarized 
below.

The role of β-catenin, which regulates MMP13 and ADAMT5, is 
controversial in TMJ osteoarthritis. Compressive mechanical force 
reduces endogenous β-catenin and leads to ECM degradation. These 
pathological changes can be recovered by restoring the β-catenin sig-
nalling.54 However, other authors found that mice with conditional 

F I G U R E  2   Pathways associated with chondrocyte death in TMJ osteoarthritis. Apoptosis and necroptosis are promoted in TMJ 
osteoarthritis, but the general trend of autophagy activity is inhibited
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β-catenin activation showed TMJ osteoarthritis-like phenotypes and 
up-regulation of MMP13 and ADAMT5 expression.21,55

The Notch cascade consists of Notch and Notch ligands, which 
are involved in regulating the proliferation, differentiation, matura-
tion and apoptosis of chondrocytes.56 Regulation of this cascade 
(Notch1/Jagged1/Hes5) promotes the expression of MMPs and 
reduces the expression of tissue inhibitor of metalloproteinase-1 
(TIMP-1) in the cell.28,32,57

The activation of α2A-adrenergic receptor signals via the extra-
cellular regulated protein kinases 1 and 2 (ERK1/2) and protein kinase 
A (PKA) pathways stimulates the production of matrix degradation 
associated enzymes, including MMP-3 and MMP-13.58 Osteopontin, 
an inflammatory factor, induces the expression of MMPs via the NF-
κB signalling pathway.59

The HTRA1-DDR2-MMP-13 axis plays an important role in ECM 
degradation.27 This process starts with the overexpression of high–
temperature requirement A1 (HTRA1) and the degradation of the 
pericellular matrix components, such as type VI collagen. The disap-
pearance of pericellular matrix can cause the transmembrane pro-
tein DDR2 to be activated by Col2A1. Ultimately, DDR2 activates 
MMP13 and accelerates TMJ osteoarthritis.27,60

3.3 | Remodelling of subchondral bone in TMJ 
osteoarthritis

Abnormal subchondral bone remodelling is one of the first patho-
logical features and clinical signs of TMJ osteoarthritis.3 In the initial 
stage of TMJ osteoarthritis, the subchondral bone predominantly 
exhibits bone loss, while slow repair activities increase bone mass 
at the subchondral plate in the late stage.61,62 The loss of subchon-
dral bone in the early stages of TMJ osteoarthritis contributes to 
cartilage degeneration and the onset of osteoarthritis.4 Increases in 
the stiffness and thickness of the condylar osteochondral interface 
(the region that covers the calcified cartilage and subchondral corti-
cal bone) at the late stage of TMJ osteoarthritis are caused by the 
calcification of cartilage and the formation of subchondral cortical 
bone.62,63

It is worth noting that abnormal subchondral bone remodelling in 
TMJ osteoarthritis is induced by decreased osteoblast and increased 
osteoclast activities.4,62 The WNT5A/receptor tyrosine kinase-like 
orphan receptor 2 (Ror2) pathway was found to promote the mi-
gration and differentiation of osteoclast precursors via the Ca2+/
nuclear factor of activated T-cells (NFAT) pathway.64 In addition, 
overexpression of transforming growth factor-β1 (TGF-β1) increased 
the uncoupling of osteoclastic and osteoblastic activity and led to 
abnormal changes in subchondral bone.19,20 The activation of α2A-
adrenergic and β2-adrenergic receptors via neurotransmitters could 
destroy the subchondral bone by inducing osteoclast maturation via 
the RANKL pathway.58,65

The role of sex hormones, such as oestrogen and progesterone, 
in TMJ osteoarthritis is still unclear.66,67 oestrogen is involved in the 
formation of condylar fibrocartilage and subsequently maintains 

cartilage stability by inhibiting the Wnt pathway through oestrogen 
receptor-α.68 The level of oestrogen is associated with the sever-
ity of TMJ osteoarthritis. In the early stage of TMJ osteoarthritis, a 
high level of oestrogen exerts protective effects by inhibiting osteo-
clast activity and reversing the abnormal absorption of subchondral 
bone.66 In contrast, a low level of oestrogen may increase the sever-
ity of TMJ osteoarthritis.69 However, the results of different studies 
are inconsistent. Some studies have suggested that oestrogen pro-
motes MIA-induced subchondral bone erosion by activating oestro-
gen receptor-β.70 Interestingly, a high level of progesterone exerts a 
protective effect by reducing the degeneration of subchondral bone 
by inhibiting NF-κB activity.67

4  | THE PERSPEC TIVES ON 
HYPERTROPHY AND ANGIOGENESIS IN 
TMJ OSTEOARTHRITIS

Endochondral osteogenesis-like changes have been reported in both 
human osteoarthritis and experimental models of the osteoarthritic 
process.71 Chondrocyte hypertrophy and cartilage angiogenesis are 
important features of endochondral osteogenesis.71,72 Interestingly, 
these two processes have also been shown to play an important role 
in TMJ osteoarthritis. Cytokines secreted by hypertrophic chon-
drocytes can direct and attract endothelial cells into cartilage.39 
Increasing evidence has suggested that most hypertrophic chondro-
cytes have the potential to transform into osteoblasts and osteo-
cytes, which are then involved in bone formation.73

4.1 | Chondrocyte hypertrophy in TMJ 
osteoarthritis

Hypertrophic chondrocytes are characterized by cellular expres-
sion of Col X, MMP13 and alkaline phosphatase (ALP).74,75 Van der 
Kraan et al reported that chondrocyte hypertrophy-like changes 
play an essential role in the early and late stages of osteoarthritis.76 
Hypertrophic chondrocytes highly express MMPs to degrade their 
surroundings, as observed in TMJ osteoarthritis. The process of hy-
droxyapatite deposition and the mineralization of cartilage are ac-
celerated when Col X is present in the cartilage matrix.77 The matrix 
vesicles secreted by hypertrophic chondrocytes contain phosphati-
dylserine that aggregates calcium and phosphate to form mineralized 
nodules.10 In addition, the process of angiogenesis, which includes 
the migration and adhesion of endothelial cells, is further enhanced 
by hypertrophic chondrocytes in TMJ osteoarthritis.78

Chondrocyte hypertrophy is regulated by different molecu-
lar signalling pathways, such as the Indian hedgehog (Ihh) path-
way.15 Calcium/calmodulin-dependent protein kinase II (CaMKII), 
which up-regulates Ihh expression, can be activated by increases 
in the intracellular calcium concentration. Activation of CaMK II 
not only promotes the expression of Ihh but also alleviates the 
inhibitory effect of parathyroid hormone receptor (PTH1R) on 
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chondrocyte hypertrophy.79 Activation of PTH1R inhibits chon-
drocyte hypertrophy via an Ihh-PTHrP negative feedback path-
way, thereby maintaining the balance between chondrocyte 
proliferation and hypertrophy.80,81 The expression of FGFR3 in-
hibits Ihh, but this effect is diminished in TMJ osteoarthritis.23 
Ihh transmits information to the nucleus through the Ihh-Smo-Gli 
signalling pathway.15,77 The pathway ultimately induces chondro-
cyte hypertrophy via Runt-related transcription factor 2 (Runx2), 
a transcription factor that directly regulates the expression of 
Col X and MMP13.76,77,82,83 In addition, an increased intracellu-
lar calcium concentration can promote chondrocyte hypertro-
phy through calcium-sensing receptor (CaSR) in the endoplasmic 
reticulum.84

Col2A1, the main component of the ECM, can be degraded by 
hypertrophic chondrocytes in the context of TMJ osteoarthritis. A 
reduction in collagen in the ECM, in turn, induces chondrocyte hy-
pertrophy.53 In a disease-free model, Col2A1 activated integrin β1 
(ITGB1). In addition to their interaction with Col2A1, ITGB1 recep-
tors compete with BMP for SMAD1 binding and then inhibit SMAD1 
activation and nuclear transport. The loss of Col2A1 promotes TMJ 
osteoarthritis by activating the BMP-SMAD1 signalling pathway and 
increasing the expression of Runx2 and Col X.53

The Wnt family is another critical signalling pathway that 
regulates chondrocyte hypertrophy in TMJ osteoarthritis. The 
canonical Wnt pathway promotes Runx2 and Col X synthesis 
via β-catenin. This pathway can be activated during TMJ osteo-
arthritis by the down-regulation of DNA methyltransferase 3B 

(Dnmt3b).21,55,85 In addition to the canonical Wnt pathway, the 
non-canonical Wnt pathway induces chondrocyte hypertrophy 
and migration via the c-Jun N-terminal kinase (JNK) signalling 
pathway.86

Figure 3 summarizes some of the related signalling pathways that 
are critical to chondrocyte hypertrophy.

4.2 | Angiogenesis promotes the development of 
TMJ osteoarthritis

Studies have revealed that angiogenesis can promote the develop-
ment of osteoarthritis.87,88 Wang et al found that the number of 
newly formed blood vessels at the osteochondral junction was in-
creased in mice with TMJ osteoarthritis-like changes.89 These new 
blood vessels can transport inflammatory mediators and sustain in-
flammation in TMJ osteoarthritis.90 When new blood vessels invade 
the cartilage, they promote both chondrocyte hypertrophy and min-
eral deposition in the matrix.88 Osteophytes can then incorporate 
with the newly formed vessels on the surface of the joint to facilitate 
hard tissue formation through the process of endochondral osteo-
genesis.88 Neurogenesis follows angiogenesis. An increase in the for-
mation of blood vessels and nerves between the subchondral bone 
and articular cartilage may mediate the pathological process of oste-
oarthritis and contribute to the pain associated with osteoarthritis.12

Vascular endothelial growth factor (VEGF) is crucial for angio-
genesis and is an important mediator of TMJ osteoarthritis. Injection 

F I G U R E  3   Molecular mechanism of chondrocyte hypertrophy in TMJ osteoarthritis
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of VEGF led to TMJ osteoarthritis-like changes in mice by stimulat-
ing endothelial cell proliferation and migration and stabilizing newly 
formed blood vessels.91 The expression of VEGF is up-regulated 
by several transcription factors, such as hypoxia-inducible factor-1 
(HIF-1).11,92 High levels of the dickkopf-related protein-1 (DKK-1) 
protein were found in the synovial fluid of TMJ osteoarthritis pa-
tients. It has been suggested that DKK-1 and high-mobility group 
box 1 (HMGB1) direct the nuclear localization of HIF-1 and thus pro-
mote the synthesis of VEGF.92,93 The inflammatory factors IL-6 and 
IL-1β increase the level of VEGF by inducing VEGF transcription in 
the nucleus. IL-6 activates oestrogen-related receptor γ (ERRγ) via 
extracellular signal-regulated kinase (ERK1/2). In contrast, IL-1β di-
rectly activates NF-κB.94,95

Vascular endothelial growth factor stimulates cartilage neovas-
cularization through several different downstream pathways. The 
Notch signalling pathway is another important pathway associated 
with angiogenesis, and VEGF is a positive regulatory factor of Notch. 
A study showed that the HIF-1-VEGF-Notch1 signalling pathway me-
diated angiogenesis in TMJ osteoarthritis.11 Delta-like ligand 4 (Dll4) 
also plays a key role and contributes to vascular development. VEGF 
can up-regulate the expression of Dll4 by activating p-ERK1/2 sig-
nalling, thus facilitating angiogenesis in TMJ osteoarthritis.96 In ad-
dition to VEGF, angiopoietins (Angs), such as Ang-1 and Ang-2, are 
overexpressed in the injured TMJ. Studies have shown that over-
expression of Ang-1 is caused by IL-1β-mediated activation of the 
MAPK pathway.94,97

Neurovascular interactions are involved in the progression of TMJ 
osteoarthritis. Proangiogenic factors such as VEGF and molecules 

secreted by endothelial cells were found to stimulate nerve growth.98 
The growth of nerve endings also plays a role in angiogenesis. Nerve 
growth factor (NGF), which regulates nerve growth, survival and re-
pair, can stimulate angiogenesis in TMJ osteoarthritis.99

The regulatory mechanism and role of angiogenesis in TMJ os-
teoarthritis are shown in Figure 4.

5  | CONCLUSION

The TMJ in animals has been successfully constructed in a variety 
of ways to stimulate the structural and organizational changes in 
osteoarthritis. Chondrocyte death, ECM degradation and subchon-
dral bone remodelling play essential roles in TMJ osteoarthritis. 
Moreover, the endochondral osteogenesis-like changes such as 
chondrocyte hypertrophy and endochondral angiogenesis sug-
gest that the pathological changes of TMJ osteoarthritis are closely 
related to the process of osteogenesis. The molecular pathways 
that regulate TMJ osteoarthritis help us to better understand the 
pathological mechanisms of TMJ osteoarthritis. More importantly, 
these signalling molecules may serve as potential therapeutic tar-
gets to help find effective disease-modifying strategies for TMJ 
osteoarthritis.
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