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Abstract

Hyperuricemia (serum urate >6.8 mg/dl) is associated with several cardiometabolic and renal diseases, such as gout and chronic kidney dis-
ease. Previous studies have examined the shared genetic basis of chronic kidney disease and hyperuricemia in humans either using single-
variant tests or estimating whole-genome genetic correlations between the traits. Individual variants typically explain a small fraction of the
genetic correlation between traits, thus the ability to map pleiotropic loci is lacking power for available sample sizes. Alternatively, whole-
genome estimates of genetic correlation indicate a moderate correlation between these traits. While useful to explain the comorbidity of
these traits, whole-genome genetic correlation estimates do not shed light on what regions may be implicated in the shared genetic basis
of traits. Therefore, to fill the gap between these two approaches, we used local Bayesian multitrait models to estimate the genetic covari-
ance between a marker for chronic kidney disease (estimated glomerular filtration rate) and serum urate in specific genomic regions. We
identified 134 overlapping linkage disequilibrium windows with statistically significant covariance estimates, 49 of which had positive direc-
tionalities, and 85 negative directionalities, the latter being consistent with that of the overall genetic covariance. The 134 significant win-
dows condensed to 64 genetically distinct shared loci which validate 17 previously identified shared loci with consistent directionality and
revealed 22 novel pleiotropic genes. Finally, to examine potential biological mechanisms for these shared loci, we have identified a subset
of the genomic windows that are associated with gene expression using colocalization analyses. The regions identified by our local
Bayesian multitrait model approach may help explain the association between chronic kidney disease and hyperuricemia.

Keywords: serum urate; serum creatinine; UK Biobank; local genetic covariance; eGFR; gout; hyperuricemia; chronic kidney disease;
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Introduction
Chronic kidney disease (CKD) carries significant global health
and economic burden (Hill et al. 2016; Bikbov et al. 2020). CKD
stages 3–5 manifest as decreased renal function and are defined
by elevated serum creatinine (sCr) or estimated glomerular filtra-
tion rate (eGFR) <60 ml/min/1.73 m2. Hyperuricemia is defined by
serum urate (sU) concentration >6.8 mg/dl and is contributed to
by deteriorating renal function (Sun et al. 2018). Hyperuricemia
has several comorbidities associated with it, including CKD and
gout (Clarson et al. 2015; Sun et al. 2018; Singh et al. 2019). Among
people with hyperuricemia, there is a higher prevalence of CKD,
and among patients with CKD, sU concentrations are higher (Zhu
et al. 2012; Jing et al. 2018).

Genome-wide analyses have demonstrated that the associa-
tion observed between eGFR and sU has a genetic basis.

Tin et al. (2019) carried out a large-sample trans-ethnic genome-

wide association study (GWAS) of sU and, through cross-trait

linkage disequilibrium (LD) score regression, obtained an esti-

mate of overall genetic correlation between eGFR and sU of

�0.26 (SE of 0.04). This was one of the largest negative correla-

tions with sU out of 748 traits analyzed (Tin et al. 2019).

Reynolds et al., using 2 large family-based datasets and

Bayesian whole-genome regressions, obtained global genetic

correlations between sCr (which has a direct inverse relation-

ship to eGFR, hence the directionality difference between the

estimates) and sU of 0.20 [95% credibility region (CR): 0.07, 0.33]

in one dataset and 0.25 (95% CR: 0.07, 0.41) in the other

(Reynolds et al. 2021). While these estimates contribute to dis-

secting biological causes of the observed comorbidities, the

shared pleiotropic genomic regions and underlying biological
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mechanisms are only reliably discovered by estimating local ge-
netic covariances (Shi et al. 2017).

GWAS of sU and eGFR have identified numerous loci associ-
ated with each phenotype separately. A recent study comparing
large GWAS of these traits identified 36 shared loci (Leask et al.
2020). However, the GWAS methods used to detect the shared
signals are based on the marginal association of individual
single-nucleotide polymorphisms (SNPs) with phenotypes, thus
not accounting for LD between SNPs. Our method improves over
postanalysis of GWAS summary statistics by estimating neigh-
boring SNP effects concomitantly. Incorporating local LD to esti-
mate genetic effects in a tightly segregating chromosomal
segment has been previously suggested to account for the corre-
lation between SNPs (Vilhjálmsson et al. 2015; Fernando et al.
2017; Funkhouser et al. 2020). Additionally, our methodology
implements a multitrait model so we obtain direct genetic covari-
ance estimates.

In this study, we aimed to characterize the common genetic
basis for CKD (eGFR) and hyperuricemia (sU levels) by identifying
pleiotropic genomic regions. To achieve this goal, we identified
the local regions contributing to genetic variances and covarian-
ces across the whole genome (Funkhouser et al. 2020). We used
Bayesian multitrait models to estimate the genetic (co)variances.
SNP effects were estimated in large DNA regions and genetic var-
iances and covariances were calculated from the posterior means
per LD window. We identified 64 unique local genetic regions
with significant local genetic covariance, including previously im-
plicated and novel shared loci.

Materials and methods
Participants
This study was based on 333,542 Caucasian participants from the
UK Biobank. Participants missing sU or sCr for both of their 2 vis-
its were excluded from the analysis. We excluded close relatives
with relatedness �0.1, estimated using the R package BGData
(Grueneberg and de los Campos 2019) (see details in the
Supplementary Methods).

Genotypes and phenotypes
The UK Biobank used the custom UK Biobank Axiom Array by
Affymetrix to genotype study participants (Affymetrix 2021).
Quality control involved removing SNPs that had a minor allele
frequency <1% or a missing call rate >5%, resulting in 607,490
autosomal chromosomes (1–22) SNPs (Kim et al. 2017).

Serum urate and sCr data were obtained from the first visit.
For the small number of participants (0.28%) that did not have
phenotype data of interest collected at the first visit, we retrieved
data from the second visit. sCr was used to define eGFR and
details on this can be found in the Supplementary Methods. For
both eGFR and sU, we took a log transformation to normalize
their distributions and preadjusted by age, sex, and the first 5
SNP-derived principal components using ordinary least squares.

Local Bayesian multitrait models
We estimated local (co)variances by fitting Bayesian models to
chromosomal segments with a nonoverlapping core of 1,000 con-
tiguous SNPs (between 3 and 4 Mbp depending on the region). We
included 2 overlapping flanking regions each consisting of 250
SNPs to each side of the core. The SNPs in the flanking regions
were included to account for the effects of SNPs that were outside
of the core region but possibly in LD with SNPs in the core seg-
ment. Whole-genome regressions have been used to fit several

markers concomitantly [e.g. Vazquez et al. (2012)]. However, bio-
bank data impose computational restrictions due to its large
dimensions. In the context of a single trait, local Bayesian condi-
tional regressions have been employed to deal with the computa-
tional burden (Funkhouser et al. 2020). In their study, the authors
indagated sex differences in genetic effects in single-trait models.
Here, we utilized the idea of conditional regressions in large
chunks of DNA with flanking regions in the context of a multi-
trait Bayesian model. This provides posterior estimates of varian-
ces and covariances between traits to find pleiotropic regions.
The linear model used had the form Y¼ 1l0þ Xb þ E, where Yn�2

is a matrix containing the preadjusted phenotypes, l2�1 is a vec-
tor of trait-specific intercepts, Xn�1;500 is an SNP-genotype matrix
(1,000 core SNPs plus 250 flanking SNPs to each side), b1,500�2 is a
matrix of SNP effects, and En�2 is a matrix of error terms. The er-
ror terms were assumed to be IID multivariate normal with a
mean of zero and covariance Var eið Þ¼R2�2, where ei is the ith row
of E. We used IID priors with a point of mass at zero and a bivari-
ate Gaussian slab with a mean of zero and (co)variance matrix
R2�2. The extent of shrinkage and variable selection was influ-
enced by 3 groups of parameters: R, R, and the prior proportion of
nonzero effects, p. For a 2-trait model, p¼fp1, p2g and represents
the prior probability of nonzero effects for traits 1 and 2 (sU and
eGFR), respectively. We treated the fR, R, pg parameters as un-
known and we assigned Inverse-Wishart priors for the (co)vari-
ance matrices and Beta priors for the prior probability of nonzero
effects.

We used the multitrait function from the BGLR R package
available in the R CRAN (Pérez and de los Campos 2014) to gener-
ate 5,000 samples from the posterior distribution for each chro-
mosomal segment. We filtered the samples of the SNP effects
collected using a burn-in of 250 SNPs and a thinning interval of
10, thus retaining 475 samples for further inference.

Defining local LD-based windows
After we obtained the model estimates, for each core segment
SNP we defined an LD window that contained correlated, neigh-
boring SNPs with an overlapping sliding technique (Fernando
et al. 2017; Funkhouser et al. 2020). Within each LD window, we
collected the corresponding estimated effects and computed (co)-
variance estimates (described below). For each seed SNP xij

(i¼ 1,. . .,n individuals and j¼ 1,. . .,p core segment SNPs) coming
from the core segment of SNPs, we sequentially identified SNPs
in both directions (xij*) surrounding the seed SNP and included
them in window j if Corr(xij, xij*) � 0.1. In a simplified example, if
SNP xij had an adequate pairwise correlation with 2 SNPs to the
left, and 1 SNP to the right, the window for that SNP would be de-
fined as the set of SNPs: fxij�2, xij�1, xij, xijþ1g. That is, Corr(xij,
xij�1) � 0.1 and Corr(xij, xij�2) � 0.1 and Corr(xij, xijþ1) � 0.1. Our
definition of an LD sliding window also involved an allowance for
1 SNP in the sequential process to not meet this correlation crite-
rion, to allow for a brief loss of LD or minor mapping errors, and
the SNP was still included in the LD window. In the previous ex-
ample, if Corr(xij, xij�1) < 0.1, and Corr(xij, xij�2) � 0.1, then the set
would still include both xij�2 and xij�1. The LD window ends when
2 SNPs sequentially did not meet the criteria described above.
The LD windows could include flanking buffer SNPs, but buffer
SNPs were never used to define an LD window.

Local (co)variances
For each LD window, we computed the local variances for traits 1
and 2 and the local and covariances using Vw1s ¼ Var Xwbw1sð Þ,
Vw2s ¼ Var Xwbw2sð Þ, and Covws ¼ Cov Xwbw1s;Xwbw2sð Þ. Here, Xw is
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the matrix containing the genotypes of the SNPs in the wth win-
dow and bw1s and bw2s are the samples of effects of those SNPs for
traits 1 and 2 collected at the sth iteration of the sampler. This
generated samples from the posterior distribution of the local
(co)variances, which we used to produce posterior mean esti-
mates (by averaging across the samples from the posterior distri-
bution), estimate posterior SDs, and obtain 95% posterior CRs. As
discussed in Lehermeier et al. (2017), this approach accounts for
the contribution of local LD to genetic (co)variances and, by aver-
aging over samples from the posterior distribution, for uncer-
tainty about SNP effects.

Gene expression/eQTL analysis
A colocalization analysis was performed between GWAS signifi-
cant markers for sU and sCr and the publicly available eQTL data
from Genotype Tissue Expression (GTEx) V8 (Giambartolomei
et al. 2014). The R package COLOC was used, which implements a
Bayesian test that analyses a single genomic region and identifies
LD patterns in that locus using SNP summary statistics and the
associated minor allele frequencies. The lead variant for both sCr
and sU was used at each significant covariance window with a
surrounding 500 kb buffer in the GTEx database. The contextual-
izing developmental SNPs using 3D Information algorithm
(Fadason et al. 2018; Genome3d/Codes3d-V2 [2019] 2021) was modi-
fied to identify long-distance regulatory relationships for the lead
sU and sCr variants at each significant covariance window within
a 500-kb region. eQTL data for variants 6500 kb of the lead vari-
ant were also extracted from GTEx and then COLOC was used to
assess if the significant cis- and trans-eQTL identified were colo-
calized with sCr and sU signals. An eQTL was determined to be
colocalized if the COLOC H4 [posterior probability of colocaliza-
tion (PPC)] was at least 0.5 for both traits and at least 0.8 for one
of the 2 traits, according to Giambartolomei et al. (2014).

Validation
We performed a validation analysis with the related Caucasian
UK Biobank cohort, consisting of 57,370 subjects not missing sU
or eGFR phenotypes. The genotyping array used for this cohort is
the same as that used for the discovery analysis cohort. The vali-
dation analysis repeated the estimation procedures described
above and the sliding LD windows used were identical to those
used in the discovery set.

Results
This study was based on 333,542 distantly related white partici-
pants, of whom 53.7% were female with an average age of
56.9 6 8.0 years old. The average sCr level was 0.8 6 0.2 mg/dl (the
average 6 SE), average eGFR was 144.2 6 56.0 ml/min/1.73 m2,
and the average sU level was 5.2 6 1.3 mg/dl. Two (2.0) percent of
the individuals had an ICD10 diagnosis or self-diagnosis of gout,
12.4% had hyperuricemia, 0.5% had CKD, and 0.3% had hyperuri-
cemia and CKD.

We analyzed the markers (sU and eGFR) using a sequence of
Bayesian multitrait models where the markers were regressed
on contiguous SNPs in a large chromosomal segment (core) plus
overlapping flanking buffers. We collected the samples from the
posterior distribution of effects for each core segment and used
these samples to estimate the local variances for each marker
(Fig. 1) and the local covariances between the markers (Fig. 2).
The (co)variances were estimated within 511,828 overlapping LD
windows (small, nonindependent contiguous chromosomal
regions).

We found 134 LD windows with covariance estimates that had
a 95% CR excluding zero (Fig. 2; Supplementary Table 1). The
number of SNPs in the significant LD windows ranged from 1 to
56, and the median SNPs per window was 6.0 (22 kb on average,
excluding 12 single-SNP windows). Interestingly, although the
global correlation between sU and eGFR is negative (Tin et al.
2019; Reynolds et al. 2021), 49 of the 134 significant windows
showed positive genetic covariance directionality, and the
remaining 85 were negative.

The 134 significant LD windows often included the same var-
iants and mapped to identical GWAS loci, so we collapsed the 134
windows to 64 unique loci that possessed genetic covariance sig-
nal between eGFR and sU (Supplementary Table 2 and
Supplementary Methods). The top 25 distinct loci implicated by
the significant windows in terms of covariance magnitude are
listed in Table 1. A graphical representation of the top significant
loci is presented in Fig. 3.

Gene expression/eQTL analysis
We used COLOC (Giambartolomei et al. 2014) and expression data
from the GTEx project (v8) (Carithers and Moore 2015) to identify
candidate causal genes at significant local genetic covariance
windows between sU and eGFR. Twenty-six of the 64 distinct sig-
nificant shared loci (41.6%) were shown to modify the expression
of candidate causal genes colocalized with the covariance signals
(Supplementary Table 3). Of note are TRIM6 and L3MBTL3 in cis,
which are genes that have a significant covariance signal and a
colocalized eQTL that is expressed in the kidney.

Validation
In the related white UK Biobank validation cohort 12 LD windows
were significant for genetic covariance between sU and eGFR
(Supplementary Table 1). All of the 12 significant windows were
also significant in the main analysis with consistent directional-
ity. The 12 windows condensed to 5 distinct loci (Supplementary
Table 2), meaning 5 out the 64 significant distinct loci from the
main analysis were also significant in this validation. The sample
size of the related cohort is 82.8% smaller (n¼ 57,370) than the
unrelated cohort used in the discovery set (n¼ 333,542), so our
validation analysis was comparatively underpowered to the main
analysis.

Discussion
The goal of this study was to infer the shared genetic architecture
of sU (causal for gout), and eGFR (a marker for CKD). Our results
highlight genes that may be involved in the observed relationship
between the traits. In this study, we estimated local genetic
(co)variances between sU and eGFR and identified regions with
pleiotropy. This study was based on the large-scale UK Biobank
and formal statistical inference from local Bayesian multitrait
models. Our results demonstrated that genetic covariance be-
tween eGFR and sU was widespread across the genome. Our
method identified 64 distinct LD windows with shared genetic
effects between eGFR and sU, the majority of which had negative
genetic covariance estimates. We identified 22 distinct novel
shared loci, to our knowledge, with significant local genetic co-
variance for sU and eGFR, including MMP11/SMARCB1, ADH1B,
MIP/GLS2, ENG/AK1, EPB41L5, KIAA1199, CELSR2, SOS2, KCNS3,
TET2, SMLR1/EPB41L2, GLIS1, KIAA1683/JUND, and METTL10/
FAM175B. Furthermore, 14 distinct loci identified were previously
only known to be associated with only one of the 2 traits, demon-
strating that the set of loci contributing to both traits is
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Fig. 1. The variance estimates of overlapping LD windows. a) Variance estimates multiplied by 1E4 for sU concentrations and (b) for eGFR.

Fig. 2. The covariance estimates of overlapping LD windows. Windows are selectively annotated with the gene name of the mid-point SNP of that window.
Windows that contained SNPs in loci associated with known eGFR genes are highlighted in dark green, windows that contained SNPs in genes associated
with sU are highlighted in blue, and windows that contained SNPs in genes associated with both sU and eGFR [from comparing GWAS, Leask et al. (2020)]
are highlighted in bright green. Windows significant for genetic covariance are highlighted in red. The covariance estimates were multiplied by 1E4.

4 | G3, 2022, Vol. 12, No. 9



substantially larger than previously thought. These loci are par-
tially responsible for the comorbidity between hyperuricemia/
gout and CKD.

One advantage of the local method that we present here is
that it facilitates the identification of genomic windows with op-
posite signs to the overall negative genetic correlation between
eGFR and sU. Out of the significant shared loci, about two-thirds
showed negative local genetic covariance estimates. This is con-
sistent with the overall genetic covariance directionality (Tin et al.
2019; Reynolds et al. 2021), indicating that they either contribute
to worsening kidney function (decreasing eGFR or increasing sCr)
and increasing sU, or vice versa. Interestingly, there were 21

distinct significant shared loci with positive local genetic covari-
ance estimates (about one-third). Positive covariance indicates
that the genomic region either contributes to increasing sU and
improved kidney function or decreasing sU and worsening kidney
function. Two of the loci with a significant positive signal, GCKR
and CPS1, are mainly expressed in the liver and one, LRP2, is
mainly expressed in the kidney (Carithers and Moore 2015). One
novel shared locus identified in this study consisted of the genes
SLC17A1, SLC17A3, and SLC17A2. This large window in chromo-
some 6 (56 SNPs, Table 1) had a strong, positive significant covari-
ance signal and SLC17A1 and SLC17A3 are urate transporters
both linked to gout (Reimer 2013). The opposite signs of locus-

Table 1. The top 25 magnitude genomic windows significant for covariance between sU and eGFR with their chromosome, annotated
gene name, number of SNPs and first and last SNP names, estimated covariance [95% CR], and colocalized genes.

Chromosome Annotated gene name Number of SNPS in the
window and first to last SNP

Estimated
covariance [95% CR]a

Colocalized genes

2 CPS1 1 6.42
rs1047891 [5.45, 7.65]

2 LRP2 6 4.58
rs41268683–rs2075252 [2.61, 6.4]

2 NRBP1/IFT172/FNDC4/GCKR 16 10.3 NRBP1
Affx-19857019–rs1260333 [8.43, 12]

6 SLC17A1/SLC17A3/SLC17A2 56 4.87
rs1165196–rs9467632 [.863, 8.61]

10 A1CF 7 4.64 A1CF
rs12413118–rs61856594 [3.74, 5.66]

17 BCAS3 7 2.34 CRHBP, SH3GL2
rs9904048–rs9895661 [1.38, 3.19]

19 SLC7A9/CEP89 16 3.84 SLC7A9, CLDND2
rs78676942–rs11668957 [1.85, 5.2]

2 LOC105373585 7 �4.19
rs11122800–rs35932591 [�5.58, �2.57]

2 HOXD13/HOXD12/HOXD10 5 �2.86
rs847153–rs711818 [�4.14, �1.84]

2 KCNS3 7 �2.42
rs9789415–rs11688124 [�3.19, �1.59]

3 SLC15A2/ILDR1 9 �2.02 SLC15A2, CD86
rs2049330–rs6438689 [�3.12, �1.03]

6 VEGFA 1 �6.85 SETD1A
rs881858 [�8.61, �5.48]

6 TTBK1/SLC22A7/CRIP3 20 �2.24 SETD1A
rs2651206–rs2242416 [�3.31, �1.27]

7 UNCX 13 �6.94 PALM2, PSMD11
rs6950388–rs1880301 [�8.56, �5.18]

7 LOC730338 5 �2.31
rs700752–rs12537178 [�3.89, �9.44]

8 STC1 6 �5.83 RP11-38H17.1
rs62502212–rs1705690 [�7.38, �4.46]

11 OVOL1 7 �5.59 PCNX3, MAP3K11, SCYL1,
RP-11-770G2.2, OVOL1,
KRT8P26

rs4014195–rs36008241 [�8.13, �3.29]

11 DCDC1 10 �12.7
rs963837–rs10767873 [�14.9, �10.7]

12 R3HDM2/INHBC/INHBE 7 �5.13 KMT2A, R3HDM2, SFXN5
rs73115999–rs507562 [�6.49, �3.72]

13 DACH1 5 �1.98
rs7981995–rs626277 [�2.73, �1.39]

15 NRG4 1 �2.82 MAN2C1, PARD3
rs8024155 [�4.29, �1.42]

15 IGF1R 4 �2.68 IGF1R, NRCAM, TRAPPC10
rs907808–rs12437561 [�3.75, �1.52]

16 UMOD/PDILT 9 �2.52 ACSM1, DNAH3
rs1123670–rs12917707 [�3.77, �1.32]

16 LOC105371257 1 �2.25
rs12927956 [�3.24, �1.5]

20 CYP24A1 4 �2.12
rs4809954–rs2616278 [�2.9, �1.24]

a Estimates and CRs were multiplied by 1E4 for readability.
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specific genetic covariances are indicative of distinct physiologi-
cal processes governing the phenotypic expression of urate and
eGFR. The loci with positive covariance in particular are excellent
candidates for discovering functional mechanisms that simulta-
neously increase sU and improve kidney function.

Urate transporters SLC2A9 and ABCG2 have the largest GWAS
effect sizes for sU, accounting for 4–5% of the variance in sU
(Yang et al. 2010; Hughes et al. 2014; Johnson et al. 2018; Major
et al. 2018; Tin et al. 2019). However, no windows in SLC2A9 or
ABCG2 had a 95% CR for local genetic covariance that did not in-
clude zero. Our results demonstrate that windows in both
SLC2A9 and ABCG2 loci are associated with just sU levels but are
not pleiotropic regions for sU and eGFR. A similar phenomenon is
observed with the eGFR gene SHROOM3. That is, none of the win-
dows containing SNPs in SHROOM3 were significant for local ge-
netic covariance. This exemplifies that the loci driving the
genetic correlation between these 2 traits are not necessarily the
leading GWAS hits.

Previous research investigating pleiotropic genetic loci be-
tween sU and eGFR has implicated loci as shared if signals of as-
sociation obtained from marginal single-marker regressions (e.g.
GWAS) for both traits are colocalized (Leask et al. 2020). Leask
et al. (2020) recently compared overlapping loci between 2 large
GWAS, one of sU and the other kidney function (Wuttke and
Köttgen 2016; Tin et al. 2019), and found 36 independent colocal-
ized loci. Our results validate 20 of these 36 loci, and all but 3 loci
(DACH1, CPS1, and INS-IGF2) had covariance directionality that
matched the directionality of effects found by Leask et al. (2020).

Our covariance approach may have direct implications for
assessing causal relationships between exposures using
Mendelian randomization (MR). Pleiotropic genetic variants vio-
late assumptions of univariate MR, however, they are useful in
multivariable MR that can simultaneously assess the causal
effects of multiple risk factors on an outcome (Burgess and
Thompson 2015). For example, genetic variants from SLC2A9 and
ABCG2 may be valid instrumental variables to use in MR to test
for a causal effect of sU on CKD, however, the loci listed in
Supplementary Table 1 would not. In fact, SLC22A11 has previ-
ously been identified as a pleiotropic variant that may improve
kidney function through its activity in raising urate levels

(Hughes et al. 2014). MR has previously been used to show that sU
is not causal of CKD (Jordan et al. 2019), however, Jordan et al.
noted significant pleiotropy in the genetic variants used in their
study, which they attempted to counter using MR techniques ro-
bust to pleiotropy. Of the 26 SNPs used by Jordan et al., rs1260326
(GCKR) and rs17050272 (LINC01101) were identified by us as
shared, and rs1165151 and rs3741414 were located within one of
our significant pleiotropic regions but were not in our genotyping
platform.

Our eQTL analysis of the windows significant for local genetic
covariance uncovered numerous genes of interest, such as
SLC7A9, which encodes a solute transporter largely expressed in
the small intestine, A1CF, which encodes a protein involved in
apolipoprotein B synthesis in the liver, and TRIM6, which encodes
an E3 ubiquitin ligase involved in interferon gamma signaling
and innate immune response with high expression levels in the
kidney (Carithers and Moore 2015). The genes uncovered from
the eQTL analysis will be particularly interesting for future study,
as they will likely aid our understanding of the relationship be-
tween kidney function and sU.

Through our approach of obtaining local genetic (co)variance
estimates from Bayesian multitrait models in very large datasets,
we have uncovered 22 novel shared genetic regions for sU and
eGFR. The approach presented in this paper was applied in the
context of sU and eGFR, but it could be applied to any pair of
traits. While our discovery set sample size is excellent, we lack a
dataset of a similar size for the validation. Some regions were val-
idated but not all.

The local shared genomic regions we have uncovered in this
study can provide insight into the relationship between hyperuri-
cemia/gout and CKD, elucidating the biological mechanisms un-
derlying the traits. This will help further understanding of the
genetic basis of hyperuricemia/gout and CKD.

Data availability
All data used are secondary and are held in public repositories.
This study utilized deidentified data from the UK Biobank where
genotype and phenotype data are available to researchers upon
registration. The protocol and consent were approved by the UK

Fig. 3. The top 25 shared loci and their covariance estimates with corresponding 95% CRs. The top 25 distinct loci from LD genomic regions with CRs
not including zero. The window size indicates the number of SNPs in each window. The covariance estimates and CRs were multiplied by 1E4.
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Biobank’s Research Ethics Committee and were conducted under
the application number “15326.” For eQTL analysis, cis- and trans-
eQTL data were downloaded from the GTEx V8 portal (Carithers
and Moore 2015).

Supplemental material is available at G3 online.

Acknowledgments
We would like to thank Michigan State University’s High-
Performance Computing Cluster and the University of Auckland
for providing computing resources.

Funding
This study was funded by the National Institute of Arthritis and
Musculoskeletal and Skin Diseases P50AR060772 (Insight CORT),
and by Michigan State University. JOS and TF were funded by the
Dines Family Charitable Trust and a Health Research Council
Explorer Grant (HRC 19/774).

Conflicts of interest
None declared.

Literature cited
Affymetrix. Genetic Data: detailed Genetic Data on Half a Million

People. 2021. [accessed 2021 Feb 26]. http://www.ukbiobank.ac.

uk/scientists-3/uk-biobank-axiom-array/.

Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, Adebayo

OM, Afarideh M, Agarwal SK, Agudelo-Botero M, et al. Global, re-

gional, and national burden of chronic kidney disease, 1990–

2017: a systematic analysis for the global burden of disease study

2017. Lancet. 2020;395(10225):709–733. doi:10.1016/S0140-6736

(20)30045-3.

Burgess S, Thompson SG. Multivariable Mendelian randomization:

the use of pleiotropic genetic variants to estimate causal effects.

Am J Epidemiol. 2015;181(4):251–260. doi:10.1093/aje/kwu283.

Carithers LJ, Moore HM. The genotype-tissue expression (GTEx)

project. Biopreserv Biobank. 2015;13(5):307–308. doi:10.1089/bio.

2015.29031.hmm.

Clarson LE, Hider SL, Belcher J, Heneghan C, Roddy E, Mallen CD.

Increased risk of vascular disease associated with gout: a retro-

spective, matched cohort study in the UK clinical practice re-

search datalink. Ann Rheum Dis. 2015;74(4):642–647. doi:

10.1136/annrheumdis-2014–205252.

Fadason T, Schierding W, Lumley T, O’Sullivan JM. Chromatin inter-

actions and expression quantitative trait loci reveal genetic driv-

ers of multimorbidities. Nat Commun. 2018;9(1):5198. doi:

10.1038/s41467-018–07692-y.

Fernando R, Toosi A, Wolc A, Garrick D, Dekkers J. Application of

whole-genome prediction methods for genome-wide association

studies: a Bayesian approach. J Agric Biol Environ Stat. 2017;22(2):

172–193. doi:10.1007/s13253-017–0277-6.

Funkhouser SA, Vazquez AI, Steibel JP, Ernst CW, de los Campos G.

Deciphering sex-specific genetic architectures using local Bayesian

regressions. Genetics. 2020;215(1):231–241. doi:10.1534/genetics.

120.303120.

Genome3d/Codes3d-V2 [2019]. Python. Genome3d; 2019. [accessed:

2021 Feb 26]. https://github.com/Genome3d/codes3d-v2.

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD,

Wallace C, Plagnol V. Bayesian test for colocalisation between pairs

of genetic association studies using summary statistics. PLoS

Genet. 2014;10(5):e1004383. doi:10.1371/journal.pgen.1004383.

Grueneberg A, de los Campos G. BGData—a suite of R packages for

genomic analysis with big data. 2019;9(5):1377–1383. doi:

10.1534/g3.119.400018.

Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS,

Hobbs FDR. Global prevalence of chronic kidney disease—a

systematic review and meta-analysis. PLoS One. 2016;11(7):

e0158765. doi:10.1371/journal.pone.0158765.

Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian

randomization analysis associates increased serum urate, due to

genetic variation in uric acid transporters, with improved renal

function. Kidney Int. 2014;85(2):344–351. doi:10.1038/ki.2013.353.

Jing J, Ekici AB, Sitter T, Eckardt K-U, Schaeffner E, Li Y, Kronenberg
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