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O-GlcNAcylation is a ubiquitous and reversible post-translational proteinmodification that

has recently gained renewed interest due to the rapid development of analytical tools and

new molecules designed to specifically increase the level of protein O-GlcNAcylation.

The level of O-GlcNAc modification appears to have either deleterious or beneficial

effects, depending on the context (exposure time, pathophysiological context). While

high O-GlcNAcylation levels are mostly reported in chronic diseases, the increase in

O-GlcNAc level in acute stresses such as during ischemia reperfusion or hemorrhagic

shock is reported to be beneficial in vitro, ex vivo, or in vivo. In this context, an increase

in O-GlcNAc levels could be a potential new cardioprotective therapy, but the ambivalent

effects of protein O-GlcNAcylation augmentation remains as a key problem to be solved

prior to their transfer to the clinic. The emergence of new analytical tools has opened

new avenues to decipher the mechanisms underlying the beneficial effects associated

with an O-GlcNAc level increase. A better understanding of the exact roles of O-GlcNAc

on protein function, targeting or stability will help to develop more targeted approaches.

The aim of this review is to discuss the mechanisms and potential beneficial impact of

O-GlcNAc modulation, and its potential as a new clinical target in cardiology.

Keywords: O-GlcNAc, cardiovascular, ischemia-reperfusion, pharmacology, therapy

INTRODUCTION

Definition, Pathway, and Regulation
The O-N-acetyl glucosaminylation, commonly known as O-GlcNAcylation, is a reversible post-
translational modification (PTM) that involves the addition of the monosaccharide β-D-N-
acetylglucosamine to serine and threonine residues of proteins. It was first described by Torres
and Hart on the internal surface of plasma membranes of lymphocytes (1). More recently, it has
also been identified on cytosolic, nuclear, mitochondrial and membrane proteins (2–4). Over 3,000
proteins have been identified so far to be O-GlcNAcylated (5), and this number will probably
increase with the development of new analytical techniques of O-GlcNAcylation detection such
as the copper-catalyzed azide-alkyne cycloaddition “click” reaction described recently (6). From
1984 to 2004, <200 publications mentioning the MeSH terms “O-GlcNAc” or “O-GlcNAcylation”
are referenced in Pubmed, while in 2017 alone almost 200 references can be found. Initially,
little attention was paid to this minor sugar moiety, probably because the tools available to study
this PTM were limited. In fact, detecting it is particularly difficult as it cannot be studied with
classic techniques such as electrophoresis or high pressure liquid chromatography (HPLC) as the
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O-GlcNAc moiety has no impact on molecular weight or
isoelectric point, and it is very labile (7). More recently, with
the development of more specific pharmacological compounds,
protein O-GlcNAcylation has regained attention. Whilst it
is now evident that protein O-GlcNAcylation is involved in
many pathologies (from cancer to neurological disorders and
cardiac function), the overall impact of proteinO-GlcNAcylation
remains unclear as in some situations it is reported to
be beneficial (e.g., ischemia/reperfusion) or deleterious (e.g.,
diabetes). This suggests a potential role of this PTM in adapting
to stress response and its importance in pathophysiological
situations.

Protein O-GlcNAcylation is regulated by the concerted
actions of only three enzymes. When glucose enters a cell
it can be metabolized in a number of different metabolic
pathways including glycogen synthesis, the pentose phosphate
pathway, the glycolysis, or the hexosamine biosynthetic pathway
(HBP, Figure 1). The first enzyme, glutamine fructose-6P
amidotransferase (GFAT) uses glutamine and 2 to 5% of
glycolytic fructose-6-P to perform the first step of the HBP.
As the rate-limiting enzyme, GFAT controls HBP flow and
consequently theO-GlcNAcylation level (8, 9). Mammals express
two GFAT isoforms, GFAT1 and GFAT2, which are coded by
separate genes. Both isoforms are expressed in heart. GFAT1
is ubiquitous, and mainly expressed in placenta, pancreas,
testis and skeletal muscle. GFAT2 shares 75% homology with
GFAT1, and this isoform is mostly expressed in heart and
the central nervous system. Once the UDP-GlcNAc group
is formed, it can be added or removed from proteins by
two enzymes: the O-GlcNAc transferase (OGT) and the β-
N-acetylglucosaminidase (OGA), respectively (Figure 1). As
for GFAT, different splice variants of OGT and OGA exist.
Alternative splicing of ogt results in the generation of three
isoforms, a nucleocytoplasmic (116 kDa-ncOGT), a smaller
isoform (70 kDa) named short form (sOGT) and a mitochondrial
(103 kDa-mOGT) isoform of OGT. It is unclear if this last
isoform is active. The first two isoforms are expressed mainly
in the cytoplasm and nucleus as heterotrimers consisting of 2
ncOGT and 1 sOGT subunits (8). Two isoforms of OGA have
been formerly described, a long one (lOGA) of 102 kDa found
in the nucleocytoplasm, and a shorter one (sOGA) of 76 kDa
resulting from alternative splicing. The smaller isoform is found
in the sarcoplasmic reticulum and lipid droplets and is less
active (4). The existence of a functional mitochondrial OGA
isoform is debatable and represents an important area of ongoing
research.

Pharmacological Regulation
The development of pharmacological tools to modulate
protein O-GlcNAcylation has been very challenging. As
discussed below, potent OGA inhibitors are now available
for clinical use, but OGT inhibitors still need further
development to be used properly in vivo. Altogether, these
new molecules have allowed extensive characterization of this
PTM.

Decrease in O-GlcNAc Levels

GFAT inhibitors

In the 1950’s, when O-GlcNAc moiety was not yet discovered,
O-diazoacetyl-L-serine (azaserine) and 6-diazO-5-oxO-L-
norleucine (DON) were developed to reduce tumor growth
(10, 11). These molecules are structural analogs of glutamine and
act as competing agonists or antagonists, respectively. They react
with the catalytic region of most amidO-transferases, among
them GFAT. They have a very low selectivity for GFAT. Whilst
these compounds were used to efficiently induce antineoplastic
effects, they presented a number of side effects including nausea
and vomiting or loss of enthusiasm (12), and DON also causes
hepatotoxicity in children (13). Moreover, through amidO-
transferase inhibition, these compounds had pleiotropic effects
in cells (Table 1). Developing new GFAT inhibitors represents
a challenge because UDP-GlcNAc is also used for other cellular
process, and its inhibition could have many side effects. As a
result more attention has been paid to the development of OGT
and OGA inhibitors.

OGT inhibitors

Different types of OGT inhibitors exist (Figure 1, Table 1). In
this review, we will only focus on the four most described and
used molecules. (1) Alloxan is a uracil analog developed at the
beginning of the Twentieth Century (34). It was shown to be an
OGT inhibitor on isolated pancreatic islets in vitro (35), and is
absorbed via the glucose transporter GLUT2 in pancreatic β-cells.
However, alloxan is highly unstable at physiological pH (half-life
1.5min), it drives cell toxicity due to ROS production, and is not
OGT specific as it also inhibits OGA (14–16). (2) At the end of
the 1960’s, benzoxazolinones (4-methoxyphenyl 6-acetyl-2-oxO-
2,3-dihydrO-1,3-benzoxazole-3-carboxylate, or BZX) and their
derived-compounds were proposed as potential new therapeutics
due to their anti-cancer and anti-viral properties (17–19).
However, as BZX irreversibly inactivates OGT, it cannot be
used clinically due to its potential harmful effects on other
cellular process (20). (3) BADGP (benzyl-2-acetymidO-2-deoxy-
α-D-galactopyranoside), a N-acetylgalactosamine derivative, was
also used as an OGT inhibitor (36, 37). Permanent exposure to
BADGP induced abnormal O-glycosylation of mucins in HT-
29 cells with potential negative effects on host defenses against
pathogens (21–23). (4) Finally, a last inhibitor: Ac-5SGlcNAc,
was proposed in 2011. This compound produced 5S-UDP-
GlcNAc that binds to OGT and inhibits its activity. Authors
demonstrated dose and time-dependent effects of this inhibitor
(from 0.1 to 1,000µM) and an EC50 at 5µM in COS7 cells.
These results were confirmed in fibroblasts, hepatocytes and
neuronal cells, and by others in different cell types especially in
an oncologic context. Contrary to the three first OGT inhibitors,
Ac-5SGlcNAc does not perturb lectin glycosylation even at the
highest dose. Thus, this compound is more frequently used in
basic research, however, there is, today, no evaluation of its in
vivo efficiency and safety (24).

In summary, whilst OGT inhibitors currently lack specificity
and selectivity, improvements in OGT inhibitors is necessary
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FIGURE 1 | The hexosamine biosynthetic pathway (HBP) leads to UDP-GlcNAc formation and regulates O-GlcNAcylation. This pathway is regulated by only three

enzymes: GFAT (glutamine fructose-6P aminotransferase), OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase). These three enzymes can be targeted by

pharmacological compounds to modulate O-GlcNAc levels. Some of them decrease O-GlcNAc levels such as DON and azaserine inhibiting GFAT or Alloxan, BZX and

BADGP inhibiting OGT. OGA inhibitors like PUGNAc, NButGT, Thiamet-G and GlcNAcstatin increase protein O-GlcNAcylation.

to be able to reduce protein O-GlcNAc levels and represents a
potentially huge opportunity to reduce cancer or diabetes burden.

Increase in O-GlcNAc Levels
The development of strategies to increase O-GlcNAc levels has
been more successful and can be used in human. Two different
approaches are available to increase protein O-GlcNAc levels:
increase in total UDP-GlcNAc through an increase in HBP flux
or pharmacological inhibition of OGA.

Increase in UDP-GlcNAc concentration

Glucosamine (GlcN) bypass the rate limiting enzyme of the HBP,
GFAT (38) resulting in higher UDP-GlcNAc levels, consequently
it increases protein O-GlcNAcylation. Yet, if GlcN increases
protein O-GlcNAc levels by 2 or 3-fold, this compound also has
side effects such as: decrease in ATP production or increase in
proteoglycans production (39, 40).

OGA inhibitors

Another way to increase protein O-GlcNAcylation is to inhibit
OGA, and different molecules have been developed over the
last 20 years. (1) The first described in the literature is the
O-(2-acetamidO-2-deoxy-D-glucopyranosyliden)-aminO-
N-phenylcarbamate commonly known as PUGNAc. It has
been the most widely used compound to inhibit OGA for
about a decade. However, PUGNAc also reacts with other
hexosaminidases (HEX) such as lysosomal β-hexosaminidases
with an inhibition ratio OGA/HEX of 1 (29). Recent OGA
crystallography studies lead to the development of specific

OGA inhibitors (31). These molecules interact directly with
the active site of OGA, and include NButGT, Thiamet-G,
and GlcNAcstatins. (2) NButGT (1,2- dideoxy-2’-propyl-α-
D-glucopyranosO-(2,1-d)-12’-thiazoline) is a competitive
inhibitor of OGA and has good efficiency and specificity
(Table 1). However, according to a study by Macauley et al.
NButGT has a half-clearance of only 30min in vivo, and lacks
stability in solution (few days to weeks) (30). (3) Thiamet-G
[(3aR,5R,6S,7R,7aR)-2-ethylaminO-3a,6,7,7a-tetrahydrO-5-
(hydroxymethyl)-5H-pyrano(3,2-d)thiazole-6,7-diol] was
developed several years later, and is more stable (31). (4)
More recently, GlcNAcstatin has been described. It presents a
molecular architecture noticeably similar to PUGNAc (Table 1)
(32, 33), with a high selectivity and efficiency. Unfortunately,
synthesis of GlcNAcstatin remains complex and very expensive
(41).

Over the last decade, pharmacological modulators of O-
GlcNAc levels have been developed for (i) improved knowledge
of physiological conditions, as well as (ii) potential utilization as
therapeutic strategies in different pathologies.

POTENTIAL IMPACT OF MODULATING
O-GLCNAC LEVELS IN PATHOLOGIES

The consequence of an increase in protein O-GlcNAcylation
has mainly been evaluated in diabetes or cancers. In these
pathologies, patients with high O-GlcNAc levels present with the
poorest outcome. In this context, a reduction in O-GlcNAc levels
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TABLE 1 | Summary of molecules currently available for O-GlcNAc level modulation: their actions, specificity, known limits and strengths.

Effects Action Molecule IC50 Strengths Weaknesses References

O-GlcNAc decrease GFAT

inhibition

DON Uses in oncologic research for its

anti-neoplastic properties

Low selectivity for GFAT, toxic

effects, pleiotropic effect

(10–14)

Azaserine

OGT inhibition Alloxan 18µM Cell permeant through glucose

transporter (GLUT2 in pancreatic

beta cells)

Off target effects, toxicity,

induced ROS production,

instable at physiologic pH

(half-life 1,5min)

(14–16)

BZX 10µM Cell permeant, anti-cancer and

anti-viral properties

Harmfull effects on cellular

process

(17–20)

BADGP Abnormal O-glycosylation (21–23)

Ac-5SGlcNAc 5µM No modification of lectin

glycosylation, uses in oncologic

research

No use in in vivo conditions (24, 25)

O-GlcNAc increase UDP-GlcNAc

increase

Glutamine Used in hospital Poor efficiency, pleiotropic effects (9, 26–28)

Glucosamine

OGA

inhibition

PUGNAc First OGA inhibitors synthetized Poorly specific(OGA/HEX=1),

desensitizes cell to insulin,

doesn’t cross blood brain barrier

(14, 29)

NButGT 8µM High

specificity(OGA/HEX=1,500)

Lack of stability in vivo (half

clearance 30min), limited

chemical stability in solution

(30, 31)

Thiamet G 30 nM High

specificity(OGA/HEX=35,000)

Expensive (31)

GlcNAcstatin

G

4 nM High

specificity(OGA/HEX=900,000)

Expensive, lack of study (32, 33)

OGA, O-GlcNAcase; OGT, O-GlcNAc transferase; GFAT, glutamine fructose-6P amidotransferase; DON, 6-diazO-5-oxO-L-norleucine; BADGP, benzyl-2-acetymidO-2-deoxy-α-D-

galactopyranoside; BZX, benzoxazolinones; IC 50, concentration of inhibitor required for achieving 50% inhibition; GLUT 2, Glucose Transporter Type 2.

appears to be an interesting therapeutic strategy. Alternatively,
in acute pathologies, O-GlcNAc stimulation using different
approaches to increase O-GlcNAc levels could be a promising
therapeutic approach.

Increasing O-GlcNAc Levels in Acute
Pathology, a Potent Therapeutic
Approach?
Several studies have demonstrated the importance of O-GlcNAc
response to a stress, and especially an increase inO-GlcNAc levels
following this stress. This augmentation is reported to improve
cell survival through a decrease in pro-apoptotic pathway
molecules (p53, FOXO3, caspase 8 or GPAT1) and activation
of sirtuin deacetylase (SIRT1) (42–45). Similarly, the beneficial
effects of protein O-GlcNAcylation stimulation, with GlcN or
siOGA, are associated with a decrease in apoptosis (46–48). These
in vitro results were confirmed in vivo for different types of stress
(e.g., hypoxia, inflammation, oxidative stress), and in different
tissues and/or different pathologies.

In kidney, damage caused by hypoxia or an acute injury using
a rabbit model are attenuated by GlcN administration (49). Hu
et al. also reported an improvement in renal function and a
decrease in apoptosis and oxidative stress markers, and these
effects were abolished with alloxan (45). In a brain model, using
a middle cerebral artery occlusion (MCAO), it was shown that

an increase in O-GlcNAc levels, by GlcN or Thiamet G, resulted
in reduced infarct volume and an improvement in cognitive
function. These effects could be explained by a reduction
in apoptosis and inflammation (suglia and NF-κB activation,
reduction of cytokine production and leukocyte infiltration)
(50–52). In hemorrhagic shock, hypovolemia is associated with
an alteration in glucose utilization. Using in vitro (neonatal
rat ventricular cardiomyocytes) and in vivo (rat) models
of hemorrhagic shock Chatham’s group demonstrated that
augmentation of O-GlcNAc levels improved global outcomes.
Specifically, GlcN improved organ perfusion, cardiac function,
the inflammatory state and finally, increased survival (53, 54).
Several years later, these results were confirmed with a specific
inhibitor of OGA, PUGNAc, validating the potential therapeutic
role of protein O-GlcNAcylation in this pathology (53, 55). In all
these studies, cardiovascular function was significantly improved.

Ischemia-Reperfusion From ex vivo to in

vivo
Myocardial infarction results from an obstruction of a coronary
artery creating an ischemia leading to tissue necrosis.
Reperfusion, by thrombolysis or invasive procedures, is the
only way to preserve cardiac function and to save patient life and
must be performed as early as possible and within the first 12 h.
Unfortunately, reperfusion exacerbates cardiac injury through
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an excessive oxidative stress and inflammatory response. In this
context, the introduction of an infarct-limiting therapy in clinical
practice might have a clinical and socioeconomic impact (56).

The first evidence of the potential beneficial effects of O-
GlcNAc was shown in vitro. Champattanachai and collaborators
reported that an increase in O-GlcNAcylated proteins through
GlcN infusion in rat neonatal cardiomyocytes improved cell
viability following IR. Moreover, with the use of different
pharmacological compounds (glucosamine, PUGNAc, azaserine,
alloxan), they demonstrated a positive correlation between O-
GlcNAc levels and cell viability in IR. According to the authors,
the beneficial effects of GlcN are associated with a decrease
in calcium overload and apoptosis through a reduction in
mitochondrial permeability, transitional pores, or mPTP opening
(57, 58). A second team confirmed these results by specifically
targeting OGA. They modulated O-GlcNAc levels by PUGNAc,
adenoviral overexpression of OGA or siRNA’s against OGA, and
demonstrated that an increase in O-GlcNAc levels increased
cell viability and decreased apoptosis and oxidative stress in
responses to IR (59, 60).

To confirm these initial in vitro findings, ex vivo studies have
also been performed. A first study using a Langendorff model
of IR demonstrated that glutamine improved cardiac function
through an improvement of left cardiac function (ventricular
pressures and heart rate) and a decrease in infarct size (cardiac
troponin I release). According to these authors, this could be
explained by a restoration in cellular ATP concentration (61).
Once again, these beneficial effects were confirmed using anOGA
inhibitor, NAG thiazolines, and this compound also reduced
infarct size and mechanical arrhythmic activity (62).

Intriguingly, the number of in vivo studies is quite limited and
only focuses onmurinemodels. Considering the potential clinical
impact of O-GlcNAc stimulation on cardiac function, it remains
as an important step to continue toward clinical validation.
The only direct in vivo evidence confirming in vitro results
is from mice treated with PUGNAc at the reperfusion stage.
This treatment efficiently reduced infarct size, apoptosis and
mPTP opening (63). However, many in vivo studies indirectly
suggest that O-GlcNAc stimulation could improve patient
outcomes. For example, hearts submitted to preconditioning
(two periods of 5min ischemia and 5min reperfusion) presented
a higher myocardial glucose uptake and a higher protein O-
GlcNAcylation, and a better recovery. In this context, the authors
explained that the O-GlcNAc level increase was responsible for
the cardioprotective preconditioning effect (64).

TOWARD A POTENTIAL CLINICAL
APPLICATION

From Bench to Bedside, a Complicated
Step
Several studies in cellular and animal models have demonstrated
the potential beneficial effects of O-GlcNAc level augmentation
in acute pathologies, and especially in cardiac IR. However,
several limitations still exist and these need to be studied
before a potential clinical application. Whilst acute O-GlcNAc

level augmentation is cardioprotective in murine models, the
adverse effects of a long-term exposure to high O-GlcNAc
levels should also be considered. For instance, hearts isolated 1
month after myocardial infarction induced by coronary ligation
presented high levels of protein O-GlcNAcylation, and especially
higher O-GlcNAcylation of troponin T, and this observation
was linked to higher cardiac dysfunction (65). Similarly, in
rats subjected to hypoxic conditions (alternating 2min 21%
O2 and 2min 6–8% O2 8 h per day) O-GlcNAc levels started
to rise 2 weeks after the first stress. This observation was
associated with higher apoptosis and inflammatory markers
(66). Myocardial infarction and the resulting reperfusion injury
is associated with cardiac remodeling, hypertrophy and heart
failure, a situation aggravated by high O-GlcNAc levels, even
if there is still no consensus regarding the link between O-
GlcNAcylation of proteins and cardiac hypertrophy (67, 68).
However, several studies have demonstrated an increase in
cardiac protein O-GlcNAcylation in in vitro and in vivo
models of hypertrophy (69–73). O-GlcNAc levels in the left
ventricular myocardium were increased in patients with heart
failure (73). Furthermore, increases in O-GlcNAc levels were
associated with heart failure development (65, 74). In parallel,
augmentation of protein O-GlcNAcylation turns out to be an
adverse therapy for diabetic patients. In diabetic IR conditions,
hyperglycemia and high O-GlcNAc levels are also associated
with an aggravation of cardiac dysfunction and infarct size
(75, 76).

In summary, before clinical trials can be conducted, more
studies are necessary to characterize the potential long-term
impact of O-GlcNAc stimulation and to evaluate the best dose,
time-point and duration of treatment to avoid adverse effects.

To Future Potential Clinical Trial in
Cardiology
Glutamine and glucosamine are metabolites used in the HBP
pathway and could be a way to increase O-GlcNAc levels via
an increase in HBP flux. These two molecules are already
used clinically to treat inflammatory disease or improve cardiac
function, and could provide proof of potential utilization in
cardiac acute pathologies like IR. Despite this, their impact on
O-GlcNAc level has never been tested in humans.

Glutamine supplementation is now recommended for
parenteral or enteral supplementation in neonatal, pediatric
and adult intensive care units and seems to be safe (26, 27).
Moreover, in pediatric or adult intensive care units, patients with
low plasma glutamine (<420 µmol/l) at admission are at higher
risk of mortality and increased incidence ofmultiple organ failure
(77, 78). Whilst this observation suggests a potential benefit
from increasing glutamine concentration the consequence
on protein O-GlcNAcylation has never been studied. Enteral
glutamine supplementation has been shown to reduce the
incidence of serious neonatal infections in preterm and/or very
low birth weight children (79) and enterocolitis (80, 81). In
critical conditions, glutamine enteral supplementation decreases
the incidence of sepsis, pneumonia, and bacteremia in trauma
(82) and burn patients (83). Moreover, glutamine may have a
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perioperative cardioprotective role. Glutamine use in patients
with ischemic heart disease operated under conditions of
extracorporeal blood circulation or cardiopulmonary bypass
reduces troponin release at day 1, the systemic vascular resistance
index and improves cardiac and stroke index (84, 85). As well,
perioperative glutamine supplementation during aortic surgery
can compensate renal arginine synthesis loss induced by aortic
clamping and could also improve post-operative renal function
(86). A recent clinical trial showed that patients who receive
oral glutamine have less complications, myocardial damage,
morbidity and mortality after coronary revascularization under
cardiopulmonary bypass (87). A similar protocol in chronic
angina patients, delayed the time to onset of more than 1.0mm
of ST segment depression on the electrocardiogram (ECG) by
38 s, but did not improve hemodynamic response to exercise, the
time of onset of angina symptoms, maximum workload or total
exercise time (88).

GlcN is largely used for osteoarthritis at an average dose
of 1,500mg per day but its usefulness in other pathologies
has not been explored in clinical trials. Whereas, long term
treatment seems to delay the progression of knee arthritis (28),
multiple studies have shown no superiority of glucosamine vs.
placebo (89), no improvement of cartilage damage (90) and no
role in prevention of osteoarthritis in overweight women (91).
Moreover, at the usual doses, GlcN may induce an increase
in intraocular pressure (92). This possible deleterious effect of
high dose GlcN is supported by a recent review that showed
this molecule is not beneficial for all population subgroups
(93). Clinical use of GlcN has been associated with potential
side effects in vivo, among them vomiting and diarrhea (94)
and has also been associated with intracellular ATP depletion
(95). Overall, GlcN utilization for joint pain appears to be
safe.

Glutamine or GlcN supplementation has demonstrated its
benefits for a few pathologies but these molecules are not
specific to the HBP, and the link between the benefits and an
increase in proteinO-GlcNAcylation has not been demonstrated.
Recently, new molecules targeting OGA have been studying for
the treatment of tauopathy. MK-8719, a selective and potent
small molecule inhibitor of OGA has shown promising results
in the treatment of tauopathy such as Progressive Supranuclear
Palsy (PSP). It has been evaluated in a recent phase I study
in healthy volunteers. Interestingly, MK-8719 administration
elicited PBMC O-GlcNAcylated protein increases in a dose
dependent-manner, consistent with preclinical observations.
Moreover, ASN120290, a brain-permeable small-molecule OGA
inhibitor, has been also studied in a randomized, double-blind,
placebo-controlled phase I study. Thesemolecules seem to be safe
and well tolerated (96).

These molecules represent a huge opportunity for progression

to future clinical trials. Despite the beneficial impact of an

increase in total O-GlcNAc level in IR, the treatment remains

non-selective and can have potential side effects that have not

been clearly evaluated in most studies. In future studies, more

attention should be paid to doses and administration time to
avoid any drawback.

What Should be Confirmed Prior to
Performing Clinical Trials?
Understanding Metabolism and O-GlcNAc Level

Variation Through Aging
O-GlcNAc levels are linked to GFAT activity and cellular
metabolism, particularly that of glucose. This observation is
particularly important in cardiac tissue as cardiac metabolism
constantly adapts to conditions and evolves throughout the
first stage of life, especially the substrate selection for energy
production. The predominant substrates for energy production
in fetal hearts are carbohydrates (mainly glucose, lactate and
pyruvate) and cardiac metabolism is mainly anaerobic. After
birth, the ability of hearts to oxidize fatty acids increases within
the first week (97), and in the adult heart, energy is mainly
supplied by fatty acid oxidation (60–80%), carbohydrates (20–
30%) and ketone bodies (10%). These proportions are constantly
modulated to fit requirements and substrate availability. During
fetal life, cardiac glucose uptake is controlled by a low affinity
insulin-independent glucose membrane transporter, Glucose
transporter type I (GLUT1). Shortly after birth, cardiac glucose
transporters switch from the GLUT1 isoform to the GLUT4
isoform. GLUT4 is an insulin-sensitive glucose transporter,
which is the predominant transporter in the adult heart (97).
This observation is of particular importance as changes in
glucose transporter expression, such as GLUT1 and GLUT4,
have been shown to influence UDP-GlcNAc levels in mice.
Interestingly, GFAT activity and glucose flux via the HBP are
increased in muscles of GLUT1-overexpressing mice but not
GLUT4-overexpressing mice (98). Consequently, during the
first days of life, cardiac metabolism is subjected to dramatic
changes with a major increase in fatty acid oxidation and a
reduction in carbohydrate metabolism, whilst the impact on
protein O-GlcNAcylation remains unknown. Altogether, the
metabolic modification associated with the first days of life
could impact O-GlcNAc levels and be of great importance
in cardiac development and maturation. They could also be
responsible for the higher capacity of the heart to withstand stress
during the first days of life (99–101). Furthermore, in situations
of stress or specific pathological conditions, the proportion
of carbohydrates metabolized will increase to sustain cardiac
needs. In the long run, this modification will affect HBP flux
and modulate O-GlcNAc levels resulting in a potential impact
on cardiac function. Interestingly, no study has evaluated if
these modifications actually have an impact on cardiac O-
GlcNAcylation.

While metabolism is subject to modifications throughout
aging, and while protein O-GlcNAcylation has been described
as a metabolic sensor, the exact link between metabolism’s
age-associated variations and O-GlcNAc levels has never been
explored. In fact, many authors have only focused on senescence,
and demonstrated that O-GlcNAc levels have an impact on the
development and the progression of chronic diseases (102, 103).

The variation of O-GlcNAc levels during aging has not
reached a consensus yet. Fülöp et al. showed a decrease in
O-GlcNAc levels in rat hearts which was associated with a
reduction in OGT expression between adolescence (6 weeks)
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and adulthood (22 weeks) (104). However, in another study,
the authors showed an increase in O-GlcNAc levels in rat
hearts between 5 and 24 months, which surprisingly, was
associated with a decrease in OGT expression (105). In the
brain, which is the most studied organ for this question, age-
associated variation of protein O-GlcNAcylation is not clear.
O-GlcNAc levels rapidly decrease between the 1st and the
24th month (106) or increase between 5 and 24th month
(105), whereas Rex-Mathes et al. showed no change in protein
O-GlcNAcylation between the 3rd and 13th month (107)
(Figure 2).

The lack of consensus on O-GlcNAc level variation
throughout aging and in organ function underlines the need
for new standardized studies to improve the understanding of
O-GlcNAc levels on cellular development, survival and potential
impacts on pathology or treatment responses.

Doses and Timing of Treatment
The ambiguous effects of O-GlcNAc is not restricted to the
differences in basal O-GlcNAc levels, as it is now evident that
there are dose-dependent effects of protein O-GlcNAcylation.
The beneficial effects associated with increase in O-GlcNAc are
lost for high increase in O-GlcNAc level. Gu et al. showed
for brain IR that a high increase in O-GlcNAc levels (∼7
fold) compared to a moderate increase in O-GlcNAc level
(∼3 fold) leads to a detrimental effect with an increase in
infarct size. Strikingly, most of the beneficial effects described
in the literature are associated with a 2–5 fold increase in
protein O-GlcNAcylation levels in the heart (45, 57, 61), and
in the brain (51, 108–110). Champattanachai et al. showed
similar results, and highlighted a close link between O-GlcNAc
levels and cell viability in their model (57). Unfortunately,
few studies have focused on O-GlcNAc level modulation in
physiological or pathophysiological conditions. In addition,

the same authors showed that GlcN increases the level of
protein O-GlcNAcylation by 1.5 fold in normoxia, and by
3 fold in hypoxia (57). The stimulation of this PTM could
induce different responses in pathophysiological conditions.
Interestingly, a recent clinical study showed that delayed sepsis
treatment using 0.35 g/kg of glutamine per day i.v. and 30 g
per day glutamine given via enteral administration to patients
with two or more failing organs, had no effect on the outcome
of organ failure and infections. It even increased mortality
in hospital and at 6 months (111). These results might be
explained by the high dose of glutamine (dose-dependent
effect) and/or the late initiation of the protocol (time-dependent
effect).

The lack of data on dose and time of treatment remains the
key safety issue that needs to be satisfied in order to progress
toward a clinical trial. Only one study has focused on establishing
an optimal glutamine supplementation dose in pediatric cancer
patients, however they did not evaluate the impact on O-GlcNAc
levels (112).

IMPROVEMENT OF TOOLS

In order to improve the understanding of the impact of O-
GlcNAc on proteins and cell survival considerable progress has
been made in developing new tools. Three main themes are of
particular importance and have gained momentum over the last
couple of years: (i) identifying O-GlcNAcylation sites on protein
usingmass spectrometry, (ii) improving pharmacological tools to
improve specificity and biocompatibility, and (iii) understanding
the impact of O-GlcNAcylation on specific proteins.

Emerging Analytical Tools
As discussed above, there is a significant conundrum for protein
O-GlcNAcylation, with on one-hand, potential short-term

FIGURE 2 | Evolution of O-GlcNAc levels, OGA and OGT expression in brain tissue throughout lifespan. OGA, O-GlcNAcase; OGT, O-GlcNAc transferase; FL-OGA,

full-length OGA; high MW, high molecular weight, low MW, low molecular weight; Nv-OGA, Nuclear variant OGA; ncOGT, nucleo-cytoplasmic OGT; sOGT, short

OGT;−15 d, 15 days before birth; 5 d, 5 days post-natal; 15 d, 15 days; 1m, 1 month; 3m, 3 months; 2 y, 2 years (105–107).
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beneficial effects and on the other hand long-term deleterious
effects. It is important to decipher which O-GlcNAc sites are
of interest and potentially beneficial or potentially detrimental.
Hopefully, in the near future, specifically targeting these
sites will potentiate the beneficial effects and limit adverse
effects associated with untargeted increases in O-GlcNAc level.
Global mapping of O-GlcNAcylated proteins and peptides has
recently been possible using mass spectrometry approaches.
Recent advances in analytical techniques have also allowed
to determine O-GlcNAcylation sites. For example, Thompson
et al. highlighted “emerging technologies for quantitative, site-
specific MS-based O-GlcNAc proteomics (O-GlcNAcomics),
which allow proteome-wide tracking of O-GlcNAcylation
dynamics at individual sites.” In this article, the authors listed
the current technique for O-GlcNAc identification using mass
spectrometry (6). Many papers have described the successful
use of a combination of fractionation and click chemistry to
label and identify O-GlcNAc sites on proteins. For example,
Griffin et al. extensively studied the O-GlcNAcylation site
on OGT with a chemically cleavable tag and suggested a
potential implication of O-GlcNAc on the regulation of protein
function (113). More recently, Deracinois et al. used this
approach on skeletal muscle proteins and reported that some
O-GlcNAcylation sites were located in interaction sites that
open new area of research for this PTM (114). Thanks to
the development and thorough validation of these new tools,
consensus sequences have recently been proposed (115). Recent
advances in technologies represent a huge opportunity and will
definitely help to improve the understanding of the role of this
PTM.

Toward Specific Pharmacological Tools
Pharmacology has long been used to study different pathways and
targets, and OGA, GFAT and OGT inhibitors have been known
about since the early 90’s. At present however, the main drawback
of these compounds are their lack of specificity and affinity and
their toxicity.

OGA inhibitors have been most beneficial and are now
available for clinical trials. In fact, they have been the prime
targets to develop a therapeutic strategy (29). The remaining
challenge is in the potential directed system administration,
in order to limit the potential off target effects. While the
use of enzymatically triggered prodrugs is well known in the
field of cancer, this strategy is poorly developed for treatment
of other pathologies. In parallel, a second strategy could be
to design new OGA inhibitors targeting specific organelles
(e.g., mitochondria) or organs. Such tools would present two
major advantages as they would help to: (i) decipher the
role of this PTM on different organelles and (ii) improve
treatment specificity. On the other hand, while OGT inhibitors
potentially represent an interesting therapeutic strategy for
cancer, they still lack specificity, are not cell permeant or are
toxic.

Recent advances in crystallography opens potentially new
avenues to study the impact of O-GlcNAc levels on cellular
function. The next step will be to specifically target cellular

compartments and/or specific proteins to be able to maximize
potential beneficial impacts on selected pathways or cellular
processes (61, 115–118).

Site Specific Evaluation
Recent advances in O-GlcNAc proteomics has produced a very
large quantity of potential sites to explore. It is now important
to develop screening tools to be able to further advance our
understanding of protein O-GlcNAcylation. Because only two
enzymes are involved inO-GlcNAcylation, a solutionmay rely on
biochemistry, and more specifically on site-specific mutagenesis
through the incorporation of non-natural amino acids (NAA)
such as selenocysteine derivatives. NAA are useful tools to add
new properties to proteins at specific positions. They can be
incorporated into a protein sequence during translation through
genetic code expansion by an orthogonal (i.e., not interfering
with the natural amino acids system) aminoacyl-tRNA synthetase
(aaRS). This TAG codon is positioned in an appropriate
position into the recombinant proteins gene (119, 120). Protein
function could then be evaluated through enzymatic assays for
example.

CONCLUSION

Over the last 30 years, knowledge on protein O-GlcNAcylation
has increased considerably in many areas, yet, the cardiovascular
field remains largely underexplored. A pubmed search using
the “cardiovascular” and “O-GlcNAc” MeSH term retrieved only
187 papers in October 2018. More effort has been expended
on chronic pathologies such as diabetes, cancer, and Alzheimers
disease, leading to potential new approaches for the patient. On
the acute side, augmentation of O-GlcNAc levels may represent
a new therapeutic solution for cardiovascular dysfunction or
ischemia/reperfusion, yet its potential harmful effects at higher
doses, or the impact of long term stimulation remain to
be determined. Furthermore, deciphering which protein or
pathway is involved in O-GlcNAc effects represents the key
element to be able to specifically target them. The future may
be hidden in organelle specific O-GlcNAc modulation or in
new proteomic approaches with powerful tools to study O-
GlcNAcylation. Increasing the understanding of this very specific
PTM will open complete new area of research for protein-
targeted mutation.
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