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Abstract: Low or high birth weight is one of the main causes for neonatal morbidity and mortality. They are also associ-

ated with adulthood chronic illness. Birth weight is a complex trait which is affected by baby’s genes, maternal environ-

ments as well as the complex interactions between them. To understand the genetic basis of birth weight, we reanalyzed a 

genome-wide association study data set which consists of four populations, namely Thai, Afro-Caribbean, European, and 

Hispanic population with regular linear models. In addition to fit the data with parametric linear models, we fitted the data 

with a nonparametric varying-coefficient model to identify variants that are nonlinearly modulated by mother’s condition 

to affect birth weight. For this purpose, we used baby’s cord glucose level as the mother’s environmental variable. At the 

10
-5

 genome-wide threshold, we identified 33 SNP variants in the Thai population, 26 SNPs in the Afro-Caribbean popu-

lation, 18 SNPs in the European population, and 7 SNPs in the Hispanic population. Some of the variants are significantly 

modulated by baby’s cord glucose level either linearly or nonlinearly, implying potential interactions between baby’s gene 

and mother’s glucose level to affect baby’s birth weight. There is no overlap between variants identified in the four popu-

lations, indicating strong genetic heterogeneity of birth weight between the four ethnic groups. The findings of this study 

provide insights into the genetic basis of birth weight and reveal its genetic heterogeneity. 
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INTRODUCTION 

 Low and high birth weight are high risk factors for neo-

natal morbidity and mortality. In addition, studies have 

shown that low birth weight is associated with later life 

metabolic diseases, such as heart disease [1], type 2 diabetes 

[2], hypertension [3] and renal disease [4, 5]. High birth 

weight is also associated with health problems for the baby. 

Large babies face high risk of difficulty of labor and deliv-

ery, post neonatal death, obesity, diabetes as well as heart 

disease over a lifetime [6]. It is thus of paramount impor-

tance to understand the genetic basis of birth weight as well 

as how mother’s conditions modulate baby’s genes to affect 

birth weight.  

 Birth weight is a complex trait involving the function of 

fetal genes. The estimated heritability of birth weight is 25-

40% [7]. In the meantime, fetal growth also depends on the 

nutrient exchange between mother and fetus. How fetal 

genes respond to mother’s nutrition supply largely deter-

mines fetal growth and development, leading to complicated 
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interactions between fetal genes and mother’s environmental 

conditions. Little and Sing [8] reported the fetal genetic and 

maternal intrauterine environmental influences on human 

birth weight adjusting for the effect of external environ-

mental factors. The results show that the interactions be-

tween fetal genes and the maternal intrauterine environment 

play important poles in baby’s birth weight. Identifying ge-

netic variants that impacts fetal growth and to determine the 

interaction of such variants with the intrauterine environment 

is critical to understand the genetic basis of birth weight. 

Given the complexity of such modulation effect from the 

mother’s side, it is essential to apply novel statistical strate-

gies to dissect and further quantify the interaction mecha-

nism.  

 So far the genetic loci that influence birth weight are 

largely unknown. The results from a meta-analysis of six 

European cohorts (n=10,623) genome-wide association stud-

ies (GWAS) show that variants in two loci (ADCY5 gene, 

near LEKR1 and CCNL1 gene ) are associated with fetal 

growth and birth weight, and the two leading signals were 

further replicated in 13 replication studies (n=27,591) [9]. 

GWAS in Twins UK cohort (n=2,997 female) found variants 

close to gene NTRK2 are associated with birth weight in 

female twins [10] A few other loci were also reported in a 
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recent meta-GWAS study of European descents [11]. How-

ever, given the large heritability estimated from the family 

study [7], large efforts are still needed to identify more loci.  

 To date, there are increasing evidences showing that 
gene-environment (G�E) interaction plays an important role 
in complex diseases. G�E interaction is defined as the effect 
in which genotypic influence on phenotype changes as envi-
ronment changes [12]. Examples of G�E on disease risk 
have been broadly reported in literature such as Parkinson’s 
disease [13], type 2 diabetes [14], and mental illness [15]. 
Owing to the complexity of G�E interaction mechanisms in 
various diseases, the development of efficient and powerful 
statistical methods to dissect such effect is crucial. Ma et al. 
[16] first time proposed a nonlinear G�E interaction model 
for continuous quantitative responses. Wu and Cui [17] ex-
tended the model for binary disease responses. These meth-
ods are nonparametric in nature, hence have much flexibility 
to capture the underlying interaction mechanism, especially 
when nonlinear environmental modulation effects exist. 

 The aim of the study is to search for and compare genetic 
variants of birth weight in the four populations, namely Thai, 
Afro-Caribbean, European, and Hispanic population from 
the Gene Environment Association Studies initiative (GE-
NEVA, http://www.genevastudy.org). In addition to identify 
genetic variants associated with birth weight, we are also 
interested in identifying variants that are sensitive to 
mother’s environmental changes to affect birth weight. For 
this purpose, we focus baby’s cord glucose level as the ex-
ternal modulator which directly reflects mother’s glucose 
supply. Identifying genetic determinants of birth weight and 
testing the gene-environment interaction could give some 
clue on the prevention of low and high birth weight. Any 
identified heterogeneity between the four populations could 
also shed light on the prevention of chronic diseases associ-
ated with low or high birth weight. 

MATERIALS AND METHODS 

Study Populations 

 The data came from the Hyperglycemia and Adverse 
Pregnancy Outcome (HAPO) Study - Maternal Glycemia 
and Birthweight GEI Study, funded by the trans-NIH Genes, 
Environment, and Health Initiative (GEI). We performed the 
genome-wide association analysis to identify common ge-
netic variants of birth weight. The project includes four 
GWAS datasets that were collected from mothers and their 
offspring with birth weight as the phenotype. Single nucleo-
tide polymorphisms (SNPs) data were measured on 1,500 
infants of European descent, 1,250 Afro-Caribbean infants, 
800 Hispanic (Mexican-American) infants, and 1200 Thai 
infants. The details about the data can be found in literature 
(HAPO Study Cooperative Research Group 2009). 

Quality Control 

 We extracted the infants’ SNP genotypes from the 
GWAS data. We excluded SNPs with minor allele frequency 
(MAF) less than 0.05, those with at least 10% missing geno-
type rate and those failed to pass the Hardy-Weinberg equi-
librium test at the 0.001 significance level. After the quality 
control, the final data contain 512,912 SNPs in the European 

set, 876,391 SNPs in the Afro-Caribbean set, 835,583 SNPs 
in the Hispanic set, and 683,938 SNPs in the Thai set. 

Phenotype and Covariates Preparation 

 We converted the unit of birth weight from gram to kg, 
and excluded any potential outliers using the 1.5IQR (inter-
quantile range) rule (values less than Q1-1.5IQR or large 
than Q3 +1.5IQR were removed where Q1 and Q3 refer to the 
first and third quantile). We included covariates such as 
baby’s gender, mother’s mean OGTT diastolic blood pres-
sure, gestational age, mother's mean OGTT body mass index 
(BMI) and baby's cord glucose level in our analysis as these 
variables were significant in each population when regress-
ing the birth weight against all the covariates. The same out-
lier removing rule as described above was applied to the 
quantitative measures. Gender was recoded as 1=male and 
0=female. A summary of the phenotype and covariate distri-
bution was shown in (Table 1). The final data contain 1,331 
individuals in the European set, with 657 males and 674 fe-
males; 1,074 individuals in the Afro-Caribbean set, with 544 
males and 530 females; 601 individuals in the Hispanic set, 
with 297 males and 304 females; and 1,114 individuals in 
the Thai set, with 542 males and 572 females. 

Statistical Methods 

 Birth weight is a complex trait which is affected by mul-
tiple factors. To identify genes associated with newborn 
baby’s birth weight, we first constructed a simple linear re-
gression model while adjusting for the effect of covariates, 
including mother's mean OGTT diastolic blood pressure, 
gestational age, mother's mean OGTT BMI and baby's gen-
der. We also did the principal components analysis for SNPs 
in each population, then applied the first two principle com-
ponents as covariates to adjust for the effect of potential 
population stratification. The linear regression model can be 
expressed as 

 

where Y is the birth weight; � is the intercept term; �  are 

regression parameters of covariates; X are covariates includ-

ing mother's mean OGTT diastolic blood pressure, gesta-

tional age, mother's mean OGTT BMI and baby's gender; Z1 

and Z2 represent the first two principle components of SNPs 

in each population with the corresponding effects �1 and �2 

respectively; and � is the error term with mean 0 and vari-

ance � 
2
. After fitting the above regression model, we ob-

tained the residuals (denoted as ) and treated them as the 

covariates’ adjusted responses to do a genome-wide scan to 

assess each SNP’s effect.  

 Baby’s cord blood glucose level reflects mother’s glu-
cose supply to baby, which directly affects fetal growth and 
development [18]. In addition to identify main SNP effect, in 
this study, we were also interested in investigating how 
mother's glucose supply affects fetal growth and further as-
sessing how fetal genes are modulated by mother’s glucose 
level. Thus, we treated baby’s cord blood glucose level (de-
noted as U) as the mother’s environmental variable of inter-
est. Let G be the genetic variable of interest which is coded 
as 0, 1, 2 corresponding to genotype cc, Cc, CC, where allele 
C is the minor allele. 
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 We constructed three models to assess the impact of glu-
cose level on baby’s birth weight. The first model we con-
sidered is a simple linear regression model in which no G�E 
interaction was assumed, namely the genetic and environ-
mental factors affecting birth weight independently. The 
model has the following form 

          (1) 

where the covariates’ adjusted residual  represents the new 

phenotypic response; �0 is the overall mean; �1 is the mar-

ginal effect of glucose (U) ; �  is the effect of genetic vari-

able (G); and  is the error term. We test  to as-

sess a genetic effect. If the null is rejected, then we claim 

that the genetic marker is associated with the phenotype. 

 In reality, babies carrying the same genotype may have 
different birth weights if the amounts of glucose supply from 
different mothers are different. The phenomenon could be 
explained partially by interactions between baby’s genome 
and mother’s environmental conditions. Assuming there is a 
linear interaction relationship between baby genes and 
mother’s environment, we constructed the following linear 
regression model to detect such interaction, i.e., 

,         (2) 

where � 0 and � 1 represent the effects of genetic variable G 

and the interaction of G and U, respectively. Model (2) can 

also be written as  such that 

the effect of G on  is a linear function of U, the so called 

linear G�E interaction model. We test  to 

assess a genetic effect. If the null is rejected, then we claim 

that there exist linear G�E interactions. 

 Nonlinear G�E interactions are often appeared in nature. 
When such nonlinear interaction effect exists, fitting a linear 
interaction model may suffer from power loss, as the simula-
tion studies showed in [16]. To avoid missing potential inter-
action signals, we relaxed the linearity assumption and fitted 
a nonlinear interaction model proposed in [16]. Such a model 

has the potential to identify nonlinear modulation effect of 
glucose on baby’s gene to affect birth weight. The varying-
coefficient (VC) model assuming a nonlinear G�E interac-
tion has the following form 

,           (3) 

where � (U) and � (U) are smooth functions; � (U) represents 

the marginal effect of U and � (U) represents the interaction 

effect of U which is the parameter of interest. If we further 

assume a linear intercept function for � (U), i.e., 

, then when , i.e., the vary-

ing-coefficient is a constant and does not change as U 

changes, model (3) reduces to model (1). When 

, i.e., the effect of G on  changes line-

arly in U, model (3) reduces to the linear interaction model 

in (2). Thus, both models (1) and (2) are special cases of 

model (3). By relaxing the structure of � (U) and � (U) 

which can be estimated with nonparametric techniques, 

model (3) has much flexibility to capture potential nonlinear 

interaction effects. We test  to assess a genetic 

effect. The details about the testing procedure can be found 

in [16]. 

 The work of [16] has demonstrated that if the data were 
fitted with a model different from the true model, potential 
power loss is expected. The case was even worse when the 
underlying truth is nonlinear as in model (3), but fitted with 
linear interaction model (2) or no interaction model (1). 
Given the complex nature of modulation effect of glucose on 
baby’s genes, we expect to identify SNP variants nonlinearly 
modulated by mother’s glucose level in addition to SNPs 
identified with regular linear regression models. In our 
analysis, the implementation of the linear models was done 
with the PLINK software [19]. The implementation of the 
varying-coefficient nonlinear interaction model was done 
using the statistical software R. The computational code can 
be downloaded at http://www.stt.msu.edu/~cui/Software.html 
with the package named VCGE. 

Table 1. Descriptive characteristics of subjects in the four populations. 

Characteristic European Afro-Caribbean Hispanic Thai p-value 

Sample size 1331 1074 601 1114 - 

Ratio (M:F) 657:674 544:530 297:304 542:572 - 

No. of SNPs 512,912 876,391 835,583 683,938 - 

MBW (kg) 3.42±0.49 3.22±0.43 3.44±0.42 3.09±0.37 <0.001 

b_CordPGC(mg) 79.00±15.32 83.47±14.53 77.83±14.80 88.28±19.98 <0.001 

Baby Gestage 39.92±1.17 39.79±1.22 39.69±1.15 39.36±1.24 <0.001 

m_ DBPM_OGTT 71.40±8.10 67.20±7.97 72.00±7.92 67.65±7.68 <0.001 

m_BMI 28.51±4.84 27.73±6.09 30.10±5.65 21.82±3.50 <0.001 

Data are shown as mean ± SD; MBW=mean birth weight; b_CordPGCmg=Baby's cord glucose level; Baby Gestage: Baby’s gestational age; m_DBPM_OGTT=Mother's mean 

OGTT diastolic blood pressure; m_MBI=mother’s body mass index; Ratio: the ratio of male:female. P-value is for testing the mean difference among the four population based on a 

one-way ANOVA analysis. 
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RESULTS 

 (Table 1) summarizes the descriptive statistics of the four 
populations after the quality control process described in the 
previous section. One way ANOVA test shows that there are 
mean birth weight differences among the four populations. 
The mean birth weight in the Thai population is significantly 
lower than the other populations. ANOVA tests also show 
significant mean differences between the four populations 
for other covariates except for baby’s gestational age.  

 We did a systematic evaluation of the genetic basis of 
birth weight in four different populations, considering poten-
tial linear or nonlinear G�E interactions. (Figs. 1-2) show the 
genome-wide Manhattan plots of the signals in the four 
populations fitted with the three models. The QQ plots of –
log10(p-values) show no significant deviation from the ex-
pected diagonal line (see the supplementary material), indi-
cating no potential inflation of false positives. 

 Summary of the association analysis results are shown in 
(Tables 2-5). Columns 1-5 list the SNP ID, the chromosome, 
corresponding gene symbol, or nearest annotated gene (+/-
500kb) and the position each SNP belongs to (according to 

the NCBI Build v38), followed by the alleles as well as the 
minor allele frequency. Column 8 lists the p-values for test-
ing the SNP effect with the corresponding fitted model 
shown in the last column which was described in the previ-
ous section. Specifically, Model 1 is the linear model which 
assumes no interaction between fetal genes and intrauterine 
environment. Model 2 refers to model (2) which assumes a 
linear G�E interaction between fetal genes and intrauterine 
environment (i.e., cord glucose level in specific); and Model 
3 refers to the VC model in model (3) which assumes a non-
linear G�E interaction between fetal genes and intrauterine 
environment. SNPs selected by each model (p-value<10

-5
) 

are ordered by chromosome. Note that the three models test 
different types of genetic effects. Combining the three sets of 
p-values increase the number of multiple testing. Thus, we 
used a less stringent threshold here. If we used the Bonfer-
roni adjusted threshold, none of the SNPs passed this level. 
Thus, all the listed SNPs are suggestive SNPs rather than 
statistically significant ones in a Bonferroni adjusted sense. 
In total, we identified 33 SNPs in the Thai population, 4 
SNPs were selected by fitting Model (1), 13 SNPs were se-
lected by fitting Model (2), 16 SNPs were selected by fitting 

 

Fig. (1). The Manhattan plot of –log10(p-values) for the Thai (left panel) and Afro-Caribbean (right panel) population fitted with three mod-

els. A: -log10(p-values) fitted with the linear model (1); B: -log10(p-values) fitted with the linear G�E interaction model (2); C: -log10(p-

values) fitted with the nonlinear G�E interaction model (3). 
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Model (3); 26 SNPs in the Afro-Caribbean population, 12 
SNPs were selected by fitting Model (1), 7 SNPs were se-
lected by fitting Model (2), 7 SNPs were selected by fitting 
Model (3); 18 SNPs in the European population, 5 SNPs 
were selected by fitting Model (1), 6 SNPs were selected by 
fitting Model (2), 7 SNPs were selected by fitting Model (3); 
and 7 SNPs in the Hispanic population, 5 SNPs were se-
lected by fitting Model (1), no SNPs were selected by fitting 
Model (2), 2 SNPs were selected by fitting Model (3). In the 
Thai population, most identified SNPs show linear or non-
linear modulation effect by glucose, indicating strong 
gene�glucose interaction effect in affecting birth weight. 
Similar pattern was found in the European population. Those 
signals identified by model (3) could be missed if only linear 
models were considered. For comparison purpose, we also 
listed the p-values in other populations for SNPs showing 
suggestive significance in the tested population (see Table 
S1-S4 in the Supplementary file for details). 

 Among the SNPs listed in the tables, some have been 
reported in literature. For example, SNPs in gene methionine 
sulfoxide reductase A (MSRA) identified in the Afro-
Caribbean population (Table 3) show nonlinear G�glucose 
interactions under the VC model. This gene has been ob-
served to show high level of expression in fetal liver tissue 

[20]. Scherag et al. [21] discovered two new obesity loci in 
extremely obese children and adults, one is SDCCAG8 and 
the other is between genes TNKS and MSRA. We observed 
a few consistent SNP signals in gene TMEM57 in the Afro-
Caribbean population. These SNPs are not sensitive to glu-
cose level and show no sign of G�glucose interaction. We 
also identified SNP markers rs1040193 in gene IL1A in the 
Hispanic population with nonlinear interaction effect (Table 
5). Association study has shown that SNPs in IL1A are asso-
ciated with preterm birth and low birth weight in a Japanese 
population [22]. One SNP (rs10924366) identified in gene 
SMYD3 in the European population almost reached the ge-
nome-wide Bonferroni adjusted threshold with a p-value of 
8.99�10

-8 
(Table 4). Gene SMYD3 is a histone methyltrans-

ferase and it plays a role in transcriptional regulation. Such a 
regulation role may be associated with glucose metabolism 
and further affect birth weight. Further biological investiga-
tion is needed to verify its biological function.  

 We plotted the estimated varying-coefficient function 

 against baby’s cord glucose level (U) for SNP 

rs1040193 located in gene IL1A in the Hispanic population 

(see Fig. 3), as an example to show the nonlinear modulation 

effect of cord glucose level on genetic influence on birth

 

Fig. (2). The Manhattan plots of –log10(p-values) for the European (left panel) and Hispanic (right panel) population fitted with three models. 

A: -log10(p-values) fitted with the linear model (1); B: -log10(p-values) fitted with the linear G�E interaction model (2); C: -log10(p-values) 

fitted with the nonlinear G�E interaction model (3). 
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Table 2. List of SNPs with p-values <1�10
-5

 in the Thai population. 

SNP_ID CHR
a
 Position

b
 Gene Symbol Nearest Gene

c 
Allele

d
 MAF p-value Model

e
 

rs17350052 3 140555600 CLSTN2  G/A 0.227 4.33�10-6 1 

rs1482394 6 148895942 UST  A/G 0.483 9.80�10-7 1 

rs3019943 8 106974707 - HMGB1P46 A/G 0.113 7.39�10-6 1 

rs1564018 8 107038788 - HMGB1P46 A/G 0.112 2.41�10-6 1 

rs17667547 3 64472771 - LOC101929316 A/G 0.105 9.99�10-6 2 

rs949882 6 109264859 LOC100996634  A/G 0.342 3.37�10-6 2 

rs9374069 6 109265131 LOC100996634  G/A 0.341 3.53�10-6 2 

rs4879913 9 35610915 CD72  A/G 0.395 2.57�10-6 2 

rs1547842 10 113641000 NRAP  G/A 0.323 8.08�10-6 2 

rs3127106 10 113645856 NRAP  A/G 0.323 8.50�10-6 2 

rs3121478 10 113645905 NRAP  G/A 0.323 7.88�10-6 2 

rs3121487 10 113648920 NRAP  C/A 0.329 8.66�10-6 2 

rs2252463 14 72597321 - DPF3 A/T 0.145 8.15�10-6 2 

rs8018050 14 73340527 NUMB  A/G 0.094 8.45�10-6 2 

rs4527079 17 78372680 LOC101928674  A/G 0.285 3.61�10-6 2 

rs944422 21 45562421 - SLC19A1 G/A 0.432 6.66�10-6 2 

rs9647239 21 45592539 - SLC19A1 G/A 0.372 6.65�10-6 2 

rs12057431 1 15065954 KAZN  G/A 0.083 4.94�10-6 3 

rs7517282 1 15067290 KAZN  A/G 0.083 4.94�10-6 3 

rs7531373 1 15067428 KAZN  G/A 0.083 4.94�10-6 3 

rs4256853 1 245356816 KIF26B  G/A 0.179 6.27�10-6 3 

rs10021001 4 162482639 - TOMM22P4 A/G 0.497 3.64�10-6 3 

rs4521302 4 162484961 - TOMM22P4 A/C 0.487 1.99�10-6 3 

rs9384701 6 109236339 LOC100996634  A/G 0.202 9.04�10-6 3 

rs9386780 6 109263207 LOC100996634  G/A 0.363 1.11�10-6 3 

rs949882 6 109264859 LOC100996634  A/G 0.342 1.43�10-7 3 

rs9374069 6 109265131 LOC100996634  G/A 0.341 1.82�10-7 3 

rs13210693 6 109277761 - LOC100996634 A/G 0.361 4.81�10-7 3 

rs6910119 6 109278060 - LOC100996634 G/A 0.361 4.81�10-7 3 

SNP6-138121923 6 - -  A/G 0.172 7.35�10-6 3 

rs199256 6 143007986 LINC01277  A/G 0.290 5.29�10-6 3 

rs765399 9 105160922 - LOC101928609 G/A 0.147 5.30�10-6 3 

rs17126029 11 122022674 - MIR100HG A/G 0.250 3.01�10-6 3 

aCHR: chromosome; bPositions according to Build 38; cGenes within�500kb of the lead SNP; dAllele (minor/major); eModel 1 refers to model (1) with the corresponding p-values 

obtained by testing ; Model 2 refers to model (2) with the corresponding p-values obtained by testing H0: ; Model 3 refers to model (3) with the 

corresponding p-values obtained by testing . 



422    Current Genomics, 2016, Vol. 17, No. 5 Luo et al. 

Table 3. List of SNPs with p-value <1�10
-5

 in the Afro-Caribbean population. 

SNP_ID CHR
a
 Position

b
 Gene Symbol Nearest Gene

c
 Allele

d
 MAF p-value Model

e
 

rs6699113 1 25451252 TMEM57  A/G 0.222 3.46�10-6 1 

rs7554255 1 25451615 TMEM57  A/G 0.227 4.85�10-6 1 

rs35614701 1 25471632 TMEM57  G/A 0.214 2.25�10-6 1 

rs35589882 1 25480604 TMEM57  A/G 0.214 2.25�10-6 1 

rs35225089 1 25487129 TMEM57  A/G 0.214 2.39�10-6 1 

rs35886763 1 25502267 TMEM57  A/G 0.212 8.86�10-6 1 

rs13391261 2 64429275 - LGALSL A/G 0.423 3.46�10-7 1 

rs9309360 2 64436035 - LGALSL A/G 0.211 4.99�10-6 1 

rs7698522 4 105197599 TET2  G/A 0.200 9.07�10-6 1 

rs2371228 12 96702711 C12orf55  C/A 0.072 8.92�10-6 1 

rs10132619 14 77339033 TMED8  G/A 0.150 5.18�10-7 1 

rs8077382 17 76629604 ST6GALNAC1  G/A 0.136 5.22�10-6 1 

rs2185385 1 210757467 KCNH1  G/A 0.170 2.77�10-6 2 

rs13394954 2 47098890 C2orf61  C/A 0.069 2.41�10-6 2 

rs2804613 10 112091491 - GPAM A/G 0.112 3.24�10-7 2 

rs832508 12 94277635 CCDC41/PLXNC1  G/A 0.420 6.58�10-6 2 

rs7195627 16 23269875 - SCNN1B G/A 0.484 7.62�10-6 2 

rs4141733 20 14583273 MACROD2-IT1  G/A 0.088 5.77�10-6 2 

rs6042824 20 14618543 MACROD2  A/C 0.168 7.21�10-6 2 

rs12083119 1 145983307 POLR3GL  A/G 0.121 3.53�10-6 3 

rs2174747 3 153395183 - C3orf79 G/A 0.253 7.81�10-6 3 

rs13251198 8 10324332 MSRA  A/C 0.405 5.35�10-6 3 

rs4148375 16 16118445 ABCC1  G/A 0.405 1.46�10-6 3 

rs7350878 16 86633582 - FOXL1 G/A 0.085 4.67�10-6 3 

rs2654179 18 77763190 - LOC100421527 G/A 0.159 7.46�10-6 3 

rs6086702 20 8945555 - RNU105B A/G 0.314 2.37�10-7 3 

See Table 2 for the explanation of the table header notation. 

 

Table 4. List of SNPs with p-value <1�10
-5

 in the European population. 

SNP_ID CHR
a
 Position

b
 Gene Symbol Nearest Gene

c
 Allele

d
 MAF p-value Model

e
 

rs532342 1 216125293 USH2A  A/G 0.177 8.16�10-6 1 

rs2309558 4 27308619 - RP11-415C15.2 C/A 0.108 9.21�10-7 1 

rs1012849 11 123478760 GRAMD1B  G/A 0.247 8.83�10-6 1 
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(Table 4) contd…. 

SNP_ID CHR
a
 Position

b
 Gene Symbol Nearest Gene

c
 Allele

d
 MAF p-value Model

e
 

rs2805 12 81256730 ACSS3  A/G 0.247 8.05�10-6 1 

rs1475067 14 33547565 NPAS3  A/G 0.413 8.66�10-6 1 

rs9660719 1 245840369 SMYD3  A/G 0.115 5.49�10-6 2 

rs10924366 1 245864108 SMYD3  G/A 0.081 8.99�10-8 2 

rs10924373 1 245875929 SMYD3  G/A 0.124 1.66�10-7 2 

rs17732795 2 116759042 - LOC100533709 G/A 0.159 1.66�10-6 2 

rs2158493 7 18999023 HDAC9  G/A 0.406 9.27�10-6 2 

rs896767 7 158280211 PTPRN2  A/G 0.246 4.82�10-6 2 

rs860133 2 49351798 - FSHR C/A 0.192 3.02�10-7 3 

rs17732795 2 116759042 - LOC100533709 G/A 0.159 6.26�10-6 3 

rs10490783 3 169322406 MECOM  A/G 0.057 8.06�10-6 3 

rs2309558 4 27308619 - RP11-415C15.2 C/A 0.108 5.05�10-6 3 

rs6862164 5 6944154 LOC102724959  A/G 0.276 8.35�10-6 3 

rs12520925 5 6961740 LOC102724959  G/A 0.401 2.32�10-6 3 

rs9535618 13 51209178 - FAM124A G/A 0.110 8.24�10-6 3 

See Table 2 for the explanation of the table header notation. 

 

Table 5. List of SNPs with p-value <1�10
-5

 in the Hispanic population. 

SNP_ID CHR
a
 Position

b
 Gene Symbol Nearest Gene

c
 Allele

d
 MAF p-value Model

e
 

rs2221083 1 76755677 - TPI1P1 A/G 0.079 1.09�10-6 1 

rs12186353 5 81880751 - SHFM1P1 A/C 0.224 6.40�10-6 1 

rs10110416 8 68268607 - RPL31P40 A/G 0.053 5.28�10-7 1 

rs6578225 8 135226451 - RP11-452N4.1 A/G 0.411 4.82�10-6 1 

rs11644531 16 5958823 RBFOX1  C/A 0.181 6.56�10-6 1 

rs1040193 2 112772522 IL1A  A/G 0.228 6.11�10-6 3 

rs10757553 9 25576242 - TUSC1 C/A 0.477 7.94�10-6 3 

See Table 2 for the explanation of the table header notation. 

weight. The estimated function implies that cord glucose 

level has little effect on birth weight when the level of cord 

glucose is less than 75mg, then nonlinearly modifies genetic 

influences on birth weight as the cord glucose level in-

creases. Such a nonlinear dynamic effect cannot be depicted 

by a linear interaction model, showing the relative merit of 

the nonlinear interaction analysis.  

 In summary, we identify various numbers of SNPs in 

the four populations that are either modulated by glucose or 

insensitive to glucose supply to affect birth weight at a ge-

nome-wide suggestive threshold (10
-5

). It is interesting to 

note that none of the identified SNPs overlap in the four 

populations, indicating strong genetic heterogeneity in the 

four populations. The identified SNPs provide a catalog of 

variants associated with birth weight in different ethnic 

groups and serve as potential candidate SNPs for further 

biological validation. 
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Fig. (3). The plot of the estimated varying-coefficient function 

 against baby’s cord glucose level (U) for SNP rs1040193 

located in gene IL1A in the Hispanic population. 

CONCLUSION AND DISCUSSION 

 Birth weight is a complex trait that is controlled by genes 
as well as complex interactions between genes and environ-
mental factors. However, the exact number of genes that 
control fetal growth during pregnancy are largely unknown, 
and the underlying G�E interaction machinery is poorly un-
derstood. Genome-wide association data provide rich re-
sources in the identification of genetic variants associated 
with birth weight. Furthermore, the identification of G�E 
interactions offers promise for therapeutic intervention of 
birth related disease.  

 The purpose of this work is to reanalyze a GWAS data 
set which consists of four populations, to identify common 
genetic variants associated with birth weight, and to reveal 
the genetic heterogeneity of the four populations on birth 
weight. We analyzed the data using three different statistical 
models. At a genome-wide suggestive threshold (10

-5
), we 

identified 33 SNPs in the Thai population, 26 SNPs in the 
Afro-Caribbean population, 18 SNPs in the European popu-
lation, and 7 SNPs in the Hispanic population. Although 
none of these SNPs reached a genome-wide Bonferroni ad-
justed threshold, they provide substantial insights into the 
genetic heterogeneity of birth weight in different ethnic 
groups.  

 In addition to fit regular linear regression models to iden-
tify main genetic and linear G�E interaction effects, we ap-
plied a nonlinear VC model to identify nonlinear G�E inter-
actions to understand how baby’s genes are modulated by 
mother’s glucose supply to affect birth weight. A few papers 
have reported that mother’s glucose directly affects birth 
weight [23, 18]. Thus, it is our interest to investigate how 
mother’s glucose interacts with baby’s genes to affect birth 
weight. At the 10

-5
 genome-wide threshold, we identified 16 

SNPs in the Thai population, 7 SNPs in the Afro-Caribbean 
population, 7 SNPs in the European population, and 2 SNPs 
in the Hispanic population that show nonlinear genetic sensi-
tivity to glucose on birth weight. These SNPs cannot be de-
tected by applying regular linear models and they provide 
novel insights into the genetic basis of birth weight.  

 To our surprise, the identified SNPs show no overlap 
across the four populations. The large difference in genetic 
variants identified in the four populations, on one hand, re-
veals the genetic heterogeneity of birth weight and provides 
insight into the genetic architecture of birth weight in differ-

ent ethnic groups. On the other hand, such heterogeneity 
might be due to the reproducibility issue of single SNP 
analysis. A few studies have reported the relative merit of 
gene-based analysis to improve association reproducibility 
(e.g., [24-26]). Thus, our future investigations will be fo-
cused on gene-level analysis which might have better repro-
ducibility given that gene function may be more preservative 
across populations. In addition, we must admit that there are 
total 241,637 overlapped SNPs in the four populations after 
quality control. Some of the SNPs identified in one popula-
tion might not exist in other populations, leading to the non-
overlapping results observed in this analysis. Thus, we 
should also be cautious to reach the heterogeneity conclu-
sion.  

LIST OF ABBREVIATIONS 

BMI = Body mass index 

G�E = Gene-environment interaction 

GEI = Genes, Environment, and Health Initiative 

GENEVA = Gene Environment Association Studies 
initiative 

GWAS = Genome-wide association study 

HAPO = Hyperglycemia and Adverse Pregnancy 
Outcome 

MAF = Minor allele frequency 

OGTT = Oral glucose tolerance test 

SNPs = Single nucleotide polymorphisms 

VC = Varying-coefficient 
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