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Abstract

Background

Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower

birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and

renal failure development compared to regular protein (NP) intake rats in adulthood. We

evaluated the expression of various miRNAs and predicted target genes in the kidney in

gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved

in the proliferation and differentiation of renal embryonic or fetal cells.

Methods

Pregnant Wistar rats were classified into two groups based on protein supply during preg-

nancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-

Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohis-

tochemistry, and morphological analysis of 17-DG NP and LP offspring were performed

using previously described methods.

Results

A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG

LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in pro-

liferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number

and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-

DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-

matched NP fetuses. Conversely, in LP CM and UB, β-catenin was 154%, and 85%

increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%)

and UB (104%) compared to that in NP offspring. TGFβ-1 positive cells in the UB increased

by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0246289 February 5, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sene LdB, Scarano WR, Zapparoli A,

Gontijo JAR, Boer PA (2021) Impact of gestational

low-protein intake on embryonic kidney microRNA

expression and in nephron progenitor cells of the

male fetus. PLoS ONE 16(2): e0246289. https://

doi.org/10.1371/journal.pone.0246289

Editor: Emmanuel A. Burdmann, University of Sao

Paulo Medical School, BRAZIL

Received: May 27, 2020

Accepted: January 15, 2021

Published: February 5, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0246289

Copyright: © 2021 Sene et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available in

NCBI: (https://www.ncbi.nlm.nih.gov/sra/

PRJNA694197) Further information can be found:

(https://bv.fapesp.br/pt/pesquisador/671860/

https://orcid.org/0000-0002-4658-385X
https://doi.org/10.1371/journal.pone.0246289
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246289&domain=pdf&date_stamp=2021-02-05
https://doi.org/10.1371/journal.pone.0246289
https://doi.org/10.1371/journal.pone.0246289
https://doi.org/10.1371/journal.pone.0246289
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/sra/PRJNA694197
https://www.ncbi.nlm.nih.gov/sra/PRJNA694197
https://bv.fapesp.br/pt/pesquisador/671860/leticia-de-barros-sene/


increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the

entire metanephros, was similar in both experimental groups.

Conclusions

Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins

involved in proliferation, differentiation, and apoptosis during renal development. Renal

ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal

interaction between CM and UB; consequently, a programmed and expressive decrease in

nephron number occurs in the fetus.

Introduction

The lack of nutrients may result in signaling changes in pivotal pathways during various stages

of fetal development, which may cause irreversible organ and system disorders in adulthood

[1]. Fetal programming refers to any insult during development, which causes long-term

effects on an organism’s structure or function [2]. Disruptions in fetal programming result in

low birth weight, fewer nephrons, and increased risk of cardiovascular and renal disorders in

adulthood [3–6]. Studies by other authors and us have demonstrated lower birth weight, 28%

fewer nephrons, reduced renal salt excretion, chronic renal failure, and arterial hypertension

in gestational low-protein (LP) intake compared to standard (NP) protein intake offspring in

adulthood [3–7].

Nephrogenesis involves tight control of gene expression, protein synthesis, and tissue

remodeling. Studies have demonstrated that nephron numbers are determined by the interac-

tions between ureter bud (UB) and metanephros mesenchyme (MM) progenitor cells [8–10].

Signals from MM induce UB stimulated growth and branching of the tubule system. In turn,

MM proliferation and differentiation, constituting a mesenchymal cap (CM), is mediated by

UB ends [11].

There has been serious interest in the role of epigenetic changes, concerning the long-term

effects of prenatal stress, on fetal development [12]. MicroRNAs (miRNAs) are genome-

encoded small non-coding RNAs of approximately 22 nucleotides in length and play an essen-

tial role in the post-transcriptional regulation of target gene expression [13–16]. miRNAs con-

trol gene expression post-transcriptionally by regulating mRNA translation or stability in the

cytoplasm [17, 18]. Functional studies indicate that miRNAs are involved in critical biological

processes during development and in cell physiology [13, 16]. Changes in their expression

have been observed in several pathologies [16, 19].

Thus, miRNAs characterization has helped understand gene regulation and cellular prolif-

eration, differentiation, and apoptosis and explain pathophysiology disorders, including kid-

ney disorders [20–22]. Studies have reported that during kidney ontogeny miRNAs are

indispensable for nephron development [23–26]. Moreover, underexpression of some miR-

NAs in MM progenitor cells reduces cell proliferation, resulting in early differentiation, and

consequently, decreased number of nephrons [27, 28]. This phenomenon is characterized by

increased apoptosis and high Bim expression in progenitor cells [27]. Thus, miRNAs modulate

the balance between apoptosis and proliferation these metanephric primary cells [29].

We hypothesized that unknown epigenetic changes and miRNA expression profiling are

associated with kidney developmental disorder in maternal protein-restricted offspring. Thus,

we aimed to evaluate patterns of miRNA and predicted gene expression in the fetal kidney at

17 days of gestational (17-DG) protein-restricted male offspring to identify molecular
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pathways and disorders involved in renal cell proliferation and differentiation during kidney

development.

Material and methodology

Animal and diets

The experiments were conducted as described in detail previously [5, 6] on age-matched female

and male rats of sibling-mated Wistar HanUnib rats (250–300 g) originated from a breeding stock

supplied by CEMIB/ UNICAMP, Campinas, SP, Brazil. The environment and housing presented

the right conditions for managing their health and well-being during the experimental procedure.

Immediately after weaning at three weeks of age, animals were maintained under controlled tem-

perature (25˚C) and lighting conditions (07:00–19:00h) with free access to tap water and standard

laboratory rodent chow (Purina Nuvital, Curitiba, PR, Brazil: Na+ content: 135 ± 3μEq/g; K+ con-

tent: 293 ± 5μEq/g), for 12 weeks before breeding. The Institutional Ethics Committee on Animal

Use at São Paulo State University (#446-CEUA/UNESP) approved the experimental protocol, and

the general guidelines established by the Brazilian College of Animal Experimentation were fol-

lowed throughout the investigation. It was designated day 1 of pregnancy as the day in which the

vaginal smear exhibited sperm. Then, dams were maintained ad libitum throughout the entire

pregnancy on an isocaloric rodent laboratory chow with either standard protein content [NP,

n = 36] (17% protein) or low protein content [LP, n = 51] (6% protein). The NP and LP maternal

food consumption were determined daily (subsequently normalized for body weight), and the

bodyweight of dams was recorded weekly in both groups. On 17 days of gestation (17-DG), the

dams were anesthetized by ketamine (75mg/kg) and xylazine (10mg/kg), and the uterus was

exposed. The fetuses were removed and immediately euthanized by decapitation. The fetuses

were weighed and, the tail and limbs were collected for sexing. The metanephros was collected for

Next Generation Sequencing (NGS), RT-qPCR, and immunohistochemistry analyses.

Sexing determination

The present study was performed only in male 17-DG offspring, and the sexing was deter-

mined by Sry conventional PCR (Polymerase Chain Reaction) sequence analysis. The DNA

was extracted by enzymatic lysis with proteinase K and Phenol-Chloroform. For reaction, the

Master Mix Colorless—Promega was used, with the manufacturer’s cycling conditions. The

Integrated DNA Technologies (IDT) synthesized the primer following sequences bellow:

Forward: 5’-TACAGCCTGAGGACATATTA-3’

Reverse: 5’-GCACTTTAACCCTTCGATTAG-3’.

Total RNA extraction

RNA was extracted from NP (n = 4) and LP (n = 4) whole kidneys using Trizol reagent (Invi-

trogen), according to the instructions specified by the manufacturer. Total RNA quantity was

determined by the absorbance at 260 nm using a nanoVue spectrophotometer (GE Healthcare,

USA). RNA Integrity was ensured by obtaining an RNA Integrity Number—RIN > 8 with

Agilent 2100 Bioanalyzer (Agilent Technologies, Germany) [30].

miRNA-Seq and data analysis

Sequencing was performed on the MiSeq platform (Illumina). The protocol followed the man-

ufacturer’s instructions available in (http://www.illumina.com/documents//products/

datasheets/datasheet_truseq_sample_prep_kits.pdf). Briefly, the sequencing includes library
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construction, and this was used 1μg total RNA. In this step, the adapters are connected, the 3

’and 5’. After ligation of adapters, a reverse transcription reaction was performed to create

cDNA. It was then amplified by a standard PCR reaction, which uses primers containing a

sequence index for sample identification—this cDNA library, subjected to agarose gel electro-

phoresis for miRNA isolation. After quantitation, the library concentration was normalized to

2 nM using 10 nM Tris-HCl, pH 8.5, and transcriptome sequencing was performed by MiSeq

Reagent Kit v2 (50 cycles).

Data analysis was performed in collaboration with Tao Chen, Ph.D. from the Division of

Genetic and Molecular Toxicological, National Center for Toxicological Research, Jefferson,

AR, USA. The data from Next Generation Sequencing (NGS) of miRNAs were generated in

FASTAQ format and imported into BaseSpace.com (Illumina, USA). The data quality was

evaluated using the base calling CASAVA software developed by the manufacturer (Illumina).

The analyzes were done by BaseSpace miRNA Analysis (from the University of Torino, Can-

ada) and the sequence mapping of different miRNAs by Small RNA (Illumina, USA) for rat

genome. The differentially expressed miRNA study was analyzed using Ingenuity Pathway

Analysis software (Ingenuity, USA).

miRNA expression validation

Four male offspring from different litters were used in each group for the miRNA (miR-127-

3p, -144-3p, -298-5p, let-7a-5p, -181a-5p, -181c-3p, and -199a-5p) expression analysis. Briefly,

450 ng RNA was reverse transcribed, without pre-amplification, using the TaqMan1Micro-

RNA Reverse Transcription Kit, according to the manufacturer’s guidelines. Complementary

DNA (cDNA) was amplified using TaqMan MicroRNA Assays (Life Technologies, USA) with

TaqMan1 Universal PCRMaster Mix, No AmpErase1 UNG (2x) on StepOnePlusTM Real-

Time PCR System (Applied BiosystemsTM), according to the manufacturer’s instructions.

Data analysis was performed using relative gene expression evaluated using the comparative

quantification method (Pfaffl, 2001). Based on stability analysis, the U6 snRNA and U87

scaRNA was used as a reference gene. All relative quantifications were evaluated using the

DataAssist software, v 3.0, using the ΔΔCT method. miRNA data have been generated follow-

ing the MIQE guidelines [31].

RT-qPCR of predicted target genes

For the cDNA synthesis, the High Capacity cDNA reverse transcription kit (Life Technologies,

USA) was used. The RT-qPCR reactions for Bax, Bim, Caspase-3, Collagen 1, GDNF, PCNA,

TGFβ-1, Bcl-2, Bcl-6, c-Myc, c-ret, cyclin A, Map2k2, PRDM1, Six-2, Ki-67, MTOR, β-catenin,

ZEB1, ZEB2, NOTCH1, and IGF1 gene was performed by SYBR Green Master Mix (Life Tech-

nologies, USA) provided by IDT1 Integrated DNA Technologies (Table 1). The reactions

were done in a total volume of 20 μL using 2 μL of cDNA (diluted 1:30), 10μL SYBER Green

Master Mix (Life Technologies, USA), and 4 μL of each specific primer (5 nM). Amplification

and detection were performed using the StepOnePlusTM Real-Time PCR System (Applied

BiosystemsTM). Ct values were converted to relative expression values using the ΔΔCt method

with offspring metanephros data normalized with GAPDH as a reference gene [32].

Immunohistochemistry

The fetus (n = 4 per group) was removed and immediately fixed in 4% paraformaldehyde (0.1

M phosphate, pH 7.4). The materials were dehydrated, diaphanized, and included in paraplast,

and the blocks were cut into 5-μm-thickness sections. Histological sections were deparaffi-

nized and processed for immunofluorescence and immunoperoxidase. The sections were
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incubated with a blocking solution (8% fetal bovine serum, 2.5% bovine albumin, and 2%

skimmed milk powder in PBS). Subsequently, set with the primary antibody (anti-Six-2)

diluted in PBS containing 1% skim milk overnight under refrigeration. After washing with

PBS, the sections were incubated with a specific secondary antibody, conjugated to the Alexa

488 fluorophore, diluted in the same buffer, containing 1% milk for 2 hours at room tempera-

ture. After successive washes with PBS, the slides were mounted with coverslips using the Vec-

tashield fluorescent assembly medium (Vector Laboratories, Inc. Burlingame). The

fluorescence in the specimen was detected by laser confocal microscopy. The images were

obtained using the Focus Imagecorder Plus system. For the c-Myc, Ki-67, Bcl-2, TGFβ-1, β-

catenin, ZEB1, ZEB2, Caspase 3 cleaved, cyclin A and WT1 proteins, immunohistochemistry

was performed. The slides were hydrated, and after being washed in PBS pH 7.2 for 5 minutes,

the antigenic recovery was made with citrate buffer pH 6.0 for 25 minutes in the pressure

cooker. The slides were washed in PBS. Subsequently, endogenous peroxidase blockade with

hydrogen peroxide and methanol was performed for 10 minutes in the dark. The sections were

rewashed in PBS. Blocking of non-specific binding was then followed, and the slides were

incubated with a blocking solution (5% skimmed milk powder, in PBS) for 1 hour. The sec-

tions were incubated with the primary antibody (Table 2), diluted in 1% BSA overnight in the

refrigerator. After washing with PBS, the sections were exposed to the specific secondary anti-

body for 2 hours at room temperature. The slides were washed with PBS. The slices were

revealed with DAB (3,3’- diaminobenzidine tetrahydrochloride, Sigma—Aldrich CO1, USA).

After successive washing in running water, the slides were counterstained with hematoxylin,

dehydrated, and mounted with a coverslip, using Entellan1. The images were obtained using

Table 1. Dilution of antibodies used in immunohistochemistry.

GENE FORWARD SEQUENCE REVERSE SEQUENCE

Six-2 5’-GCCGAGGCCAAGGAAAGGGAG-3’ 5’-GAGTGGTCTGGCGTCCCCGA-3’

c-myc 5’-AGCGTCCGAGTGCATCGACC-3’ 5’-ACGTTCCAAGACGTTGTGTG-3’

c-ret 5’-GTTTCCCTGATGAGAAGAAGTG-3’ 5’-GTGGACAGCAGGACAGATA-3’

Bcl-2 5’-ACGGTGGTGGAGGAACTCTT-3’ 5’-GTCATCCACAGAGCGATGTTG-3’

Col-1 5`-ACCTGTGTGTTCCCCACT-3` 5`-CTTCTCCTTGGGGTTTGGGC-3`

TGFβ-1 5`-GGACTCTCCACCTGCAAGAC-3` 5`-GACTGGCGAGCCTTAGTTTG-3`

Ciclin A 5’-GCC TTCACCATTCATGTGGAT-3’ 5’-TTGCTGCGGGTAAAGAGACAG-3’

Bax 5’-TTCAGTGAGACAGGAGCTGG-3’ 5’-GCATCTTCCTTGCCTGTGAT-3’

Bim 5’-CAATGAGACTTACACGAGGAGG-3’ 5’CCAGACCAGACGGAAGATGAA-3’

Casp 3 5’-ACGGGACTTGGAAAGCATC-3’ 5’-TAAGGAAGCCTGGAGCACAG-3’

GDNF 5’-CAGAGGGAAAGGTCGCAGAG-3’ 5’-TCGTAGCCCAAACCCAAGTC-3’

Ki-67 5’- GTCTCTTGGCACTCACAG-3’ 5’-TGGTGGAGTTACTCCAGGAGAC-3’

mTOR 5`-ACGCCTGCCATACTTGAGTC-3` 5`-TGGATCTCCAGCTCTCCGAA-3`

VEGF 5`-CGGGCCTCTGAAACCATGAA-3` 5`-GCTTTCTGCTCCCCTTCTGT-3`

GAPDH 5`-CAACTCCCTCAAGATTGTCAGCAA-3` 5`-GGCATGGACTGTGGTCATGA-3`

Β-catenin 5’-AGTCCTTTATGAGTGGGAGCAA-3’ 5’- GTTTCAGCATCTGTGACGGTTC-3’

Map2K2 5’- ACCGGCACTCACTATCAACC-3’ 5’-TTGAGCTCACCGACCTTAGC-3’

Bcl-6 5’-CCAACCTGAAGACCCACACTC-3’ 5’-GCGCAGATGGCTCTTCAGAGTC-3’

PCNA 5’-TTTGAGGCACGCCTGATCC-3’ 5’-GGAGACGTGAGACGAGTCCAT-30

PRDM1 5’-CTTGTGTGGTATTGTCGGGAC-3’ 5’-CACGCTGTACTCTCTCTTGG-3’

NOTCH1 5`-ACTGCCCTCTGCCCTATACA-3` 5`-GACACGGGCTTTTCACACAC-3`

IGF1 5`-AAGCCTACAAAGTCAGCTCG-3` 5`-GGTCTTGTTTCCTGCACTTC-3`

ZEB1 5’-CATTTGATTGAGCACATGCG-3’ 5’-AGCGGTGATTCATGTGTTGAG-3’

ZEB2 5’-CCCTTCTGCGACATAAATACGA-3’ 5’-TGTGATTCATGTGCTGCGAGT-3’

https://doi.org/10.1371/journal.pone.0246289.t001
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the photomicroscope (Olympus BX51) or a Zeiss LSM 780-NLO confocal on an Axio Observer

Z.1 microscope (Carl Zeiss AG, Germany) from the National Institute of Science and Technol-

ogy on Photonics Applied to Cell Biology (INFABIC) at the State University of Campinas.

Morphology quantification

Paraffin 5 μm kidney sections were analyzed using CellSens Dimension software from a photo-

microscope (Olympus BX51). The kidney slices were accessed to determine the nephrogenic

area, CM and UB protein and cell number, hematoxylin-eosin stained in 17-DG LP fetus

(n = 5) compared to age-matched NP offspring (n = 5) from different mothers. We quantified

all CM and UB of each metanephros analyzed (4NP and 4LP from different mothers), and sta-

tistical analysis was performed by t-test, and the values were expressed as mean ± SD. The

p�0.05 was considered significant. GraphPad Prism v01 Software, Inc., USA, was used for sta-

tistical analysis and figure construction.

Statistical analysis

The t-test was used, and the values were expressed as mean ± standard deviation (SD). P�0.05

was considered significant. GraphPad Prisma v. 01 software (GraphPad Software, Inc., USA)

was used for statistical analysis and figure construction.

Results

Expression of miRNAs by miRNA-Seq

To understand the microRNA changes associated with maternal low-protein renal program-

ming, we performed the expression of a global miRNA profiling analysis. It was identified 44

deregulated miRNAs (p� 0.05), of which 19 and 25 miRNAs, respectively, were up-or down-

regulated (Table 3). The top expressed miRNAs and their functions, pathways, and networks

were identified using Ingenuity Software (Table 4).

Validation of miRNA expression

In the LP group’s animals, Let-7a-5p, miR-181a-5p, miR-181c-3p were upregulated, while the

miR-127-3p, miR-144-3p, and miR-199a-5p were downregulated relative to NP animals. The

Table 2. Sequence of the primers used for RT-qPCR, designed by the company IDT.

Antibody Dilution Company

Anti-Six-2 (11562-1-AP) 1:50 Proteintech

Anti-c-Myc (NBP1-19671) 1:150 Novus Biologicals

Anti-Ki-67 (ab16667) 1:100 Abcam

Anti-Bcl-2 (ab7973) 1:100 Abcam

Anti-TGFβ-1 (sc-146) 1:50 Santa Cruz

Anti-Β-catenina (ab32572) 1:500 Abcam

Anti-ZEB1 (sc-10572) 1:50 Santa Cruz

Anti-ZEB2 (sc-48789) 1:50 Santa Cruz

Anti-VEGF (NB100-664) 1:50 Novus Biologicals

Anti-Caspase-3 clivada (9664) 1:200 Cell Signaling

Anti-Ciclina A (sc-31085) 1:50 Santa Cruz

Anti-WT1 (sc-192) 1:50 Santa Cruz

Anti-mTOR (cs-7c10) 1:200 Cell Signaling

https://doi.org/10.1371/journal.pone.0246289.t002
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Table 3. Lists of the deregulated miRNAs obtained by miRNA-Seq.

miRNAs up-regulated FC miRNAs down-regulated FC

83_ACCACCAACCGTTGACTGTACC_rno-mir-181a-2 1.55 69_ACAGTAGTCTGCACATTGGTT_rno-mir-199a 0.76

38_AACATTCAACGCTGTCGGTG_rno-mir-181a-2 2.08 rno-miR-136-3p 0.53

10_GGCAGAGGAGGGCTGTTCTTCC_rno-mir-298 1.44 rno-let-7g-5p 0.78

rno-miR-298-5p 1.47 rno-miR-144-3p 0.49

rno-miR-183-5p 1.46 13_AAGGGATTCTGATGTTGGTCACACTC_rno-mir-541 0.52

rno-miR-181d-5p 1.36 15_TCCCTGAGGAGCCCTTTGAGCCTGAAA_rno-mir-351-2 0.50

rno-miR-455-3p 1.93 56_TCGGATCCGTCTGAGCTTGGC_rno-mir-127 0.53

35_AACATTCATTGCTGTCGGTGGGA_rno-mir-181b-1 1.89 9_ATATAATACAACCTGCTAAGTGT_rno-mir-374 0.54

50_CAGTGCAATGATGAAAGGGC_rno-mir-130b 1.85 56_TCGGATCCGTCTGAGCTTGG_rno-mir-127 0.52

83_ACCACCAACCGTTGACTGTACCT_rno-mir-181a-2 1.81 rno-miR-320-3p 0.55

rno-miR-151-3p 1.31 rno-miR-376b-3p 0.56

rno-miR-181c-3p 1.36 16_AAACCGTTACCATTACTGAGTTT_rno-mir-451 0.56

69_TACAGCAGGCACAGACAGGCAGT_rno-mir-214 1.53 56_TCGGTCGATCGGTCGGTCGGTT_rno-mir-341 0.56

rno-miR-195-3p 1.58 16_AAACCGTTACCATTACTGAGTTTAGT_rno-mir-451 0.54

21_TACCCTGTAGATCCGAATTTGTGA_rno-mir-10a 1.2 12_GGATATCATCATATACTGTAAG_rno-mir-144 0.59

rno-miR-1298 1.52 60_TCAGTGCATCACAGAACTTTGTTT_rno-mir-148b 0.72

rno-miR-92b-3p 1.36 15_TCCCTGAGGAGCCCTTTGAGCCTGT_rno-mir-351-2 0.77

61_ACCACAGGGTAGAACCACGGAA_rno-mir-140 1.60 13_AAGGGATTCTGATGTTGGTCACAC_rno-mir-541 0.58

50_CAGTGCAATGATGAAAGGGCATA_rno-mir-130b 1.31 15_CTGAGAACTGAATTCCATGGGTT_rno-mir-146a 0.58

9_GACCCTGGTCTGCACTCTGTCT_rno-mir-504 0.58

rno-let-7b-5p 0.69

rno-let-7f-5p 081

14_TCCCTGAGACCCTTTAACCTG_rno-mir-125a 0.58

rno-miR-410-3p 0.63

rno-miR-541-5p 0.68

https://doi.org/10.1371/journal.pone.0246289.t003

Table 4. Top canonical pathways affected by differentially expressed miRNAs in 17 DG LP metanephros.

17 DG Pathway analysis results (IPA) Number of miRNAs p-value/score

NP vs LP Top Molecular and Cellular Functions

Cellular Development 12 4.71E-02–4.31E-05

Cellular Growth and Proliferation 12 3.41E-02–1.60E-04

DNA Replication, Recombination, and Repair 04 3.12E-02–4.83E-04

Cell Cycle 04 3.49E-02–7.49E-04

Cellular Movement 06 3.49E-02–1.11E-03

Top Networks

Organismal Injury and Abnormalities, Reproductive System Disease, Cancer 34

Top Tox Lists

Renal Ischemia-Reperfusion Injury microRNA Biomarker Panel (Mouse)

Top 10 highly expressed miRNAs

miR-199a-5p; miR-136-3p

miR-181a-5p; miR-298-5p

miR-144-3p; miR-541-5p

miR-127-3p; miR-374b-5p

miR-183-5p; Let-7a-5p

4.31E-05

https://doi.org/10.1371/journal.pone.0246289.t004
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results do not show any difference in miR-298 expression, comparing both groups (Fig 1).

Table 5 revealed the values obtained by miRNAs sequencing with the RT-qPCR validation

data. Although significant miRNA expression difference was observed in LP relative to NP off-

spring, the fold change (FC) of the validated miRNAs was similar to both techniques.

miRNA-gene targets

The expression genes of predicted targets of different miRNA such as Six-2, Bcl-2, PRDM1,

cyclin A, PCNA, GDNF, Collagen 1, Caspase 3, and Bim in LP did not differ significantly from

NP fetus. However, Bax, TGFβ-1 Bcl-6, c-ret, Map2k2, Ki-67, mTOR, β-catenin, ZEB1, ZEB2,

Fig 1. Expression of miRNAs in the metanephros from the 17th day LP fetus compared to their expression level in the control group. Reference genes U6 and U87,

protein complexes composed of small nuclear RNAs (snRNAs), were used to normalize each miRNA expression. The authors established a cutoff point variation of 1.3

(upwards) or 0.65 (downwards) and data are expressed as fold change (mean ± SD, n = 4) concerning the control group. � p�0.05: statistical significance versus NP.

https://doi.org/10.1371/journal.pone.0246289.g001
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and IGF1 gene expression were upregulated in the 17-DG LP group compared to age-matched

controls. Conversely, c-Myc, and NOTHC1 were downregulated in maternal protein-

restricted offspring (Fig 2).

Fetus body mass and metanephros morphometry

The 17-DG LP body mass did not differ from the age-matched NP offspring. However, LP’s

metanephros mesenchyme showed a 7.6% reduced area and a 29% reduction in the cortex

thickness than the NP group (Fig 3).

Immunohistochemistry

In the present study, the LP fetus showed a significant reduction (about 69%) of Six-2 cap fluo-

rescence than NP offspring (Fig 4).

Table 5. Comparison between the values obtained in the miRNA sequencing and the validation by RT-qPCR.

miRNA (17 DG) log FC Sequencing Fold Change (FC) p-value miRNA (17 DG) Fold Change (FC) log FC qPCR p-value

miR-127-3p -0.911189177 0.5317 0.01053498 miR-127-3p 0.6045 -0.7262 1.97E-08

miR-144-3p -1.024909088 0.4914 0.00754482 miR-144-3p 0.6014 -0.7335 0.0321508

miR-298-5p 0.555324736 1.4695 0.0083628 miR-298-5p 1.4317 0.5177 0.0648687

Let-7a-5p Let-7a-5p 1.8747 0.9067 0.0106146

miR-181a-5p 0.637181521 1.5553 0.00520696 miR-181a-5p 1.7645 0.8193 0.0354613

miR-181c-3p 0.40731742 1.3262 0.02187935 miR-181c-3p 1.6265 0.7018 0.0273168

miR-199a-5p -0.401388293 0.7571 0.00193047 miR-199a-5p 0.5086 -0.9755 4.551E-05

https://doi.org/10.1371/journal.pone.0246289.t005

Fig 2. Expression of mRNA estimated by SyBR green RT-qPCR of metanephros from the 17th day LP fetus. The expression was normalized with GAPDH. The

authors established a cutoff point variation of 1.3 (upwards) or 0.65 (downwards) and data are expressed as fold change (mean ± SD, n = 4) concerning the control

group. � p�0.05: statistical significance versus NP.

https://doi.org/10.1371/journal.pone.0246289.g002
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The Six-2 immunoperoxidase analysis demonstrated a reduced cell number (14%) in LP

CM from associated with 28% reduced Six-2+ cells relative to the cap area compared to NP off-

spring (Fig 4). The present study also showed a significant percent reduction of c-Myc CM

and UB immunostained cells (less 14%) in LP relative to NP offspring (Fig 4). Additionally,

the percentage of Ki-67 labeled area in CM was 48% lesser in LP compared to NP fetus, while

Bcl-2 and cleaved caspase-3 immunoreactivity were not different from both groups (Figs 5

and 6).

The present study also showed a significant percent reduction of c-Myc CM and UB immu-

nostained cells (less 14%) in LP relative to NP offspring (Fig 4). Additionally, the percentage of

Ki-67 labeled area in CM was 48% lesser in LP compared to NP fetus, while Bcl-2 and cleaved

caspase-3 immunoreactivity were not different from both groups (Figs 5 and 6). On the other

hand, in LP, the CM and UB β-catenin labeled area were 154 and 85% raised, respectively,

compared to that available in NP offspring (Fig 7).

At the same time, mTOR immunoreactivity distribution also occupied a significantly more

extensive area in LP CM (139%) and UB (104%) than in the NP fetus (Fig 7). In the LP off-

spring, the TGFβ-1 in UBs cells staining increased (about 30%), while in the CM, the immu-

nostained cells were not different related to the NP group (Fig 8).

The ZEB1 metanephros-stained, located in the CM nuclei cells, enhanced 30% in LP com-

pared to the NP fetus (Fig 8). Simultaneously, the ZEB2 immunofluorescence, although pres-

ent in whole metanephros structures, was similar in both experimental groups (Fig 8). The

current study, taking into account miRNA and mRNA expression and proteins

Fig 3. Metanephros of the fetus with 17 DG and quantifications. Comparing the HE stained micrography, we can observe the difference in the NP (A) and LP(B)

metanephros size and nephrogenic cortex (NC) thickness. The differences between these parameters are statistically significant (C and D). ��p<0.005; ���p<0.0001.

https://doi.org/10.1371/journal.pone.0246289.g003
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immunostaining results present above may permit schedule representative pathway interac-

tions to explain the experimental findings (Fig 9).

Discussion

Knowledge about cellular and molecular mechanisms of nephrogenesis has increased [33–37].

However, many regulatory factors and signaling pathways involved in renal ontogenesis

Fig 4. Immunofluorescence and immunoperoxidase for Six-2 and c-Myc in metanephros of 17DG fetus. The Six-2 immunomarker cells in LP (A, a) was

significantly reduced when compared to NP (B,b, C) in metanephros. Additionally, the Six-2 immunostained cells were significantly reduced in LP (E) caps (circled by

black lines; F, G) when compared to NP (D). On the other hand, the c-Myc labeled area was reduced in the LP cap (K) but was the same in UB (L) when compared to

NP (J). �p<0.005;��p<0.001; ���p<0.0001.

https://doi.org/10.1371/journal.pone.0246289.g004
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remain unclear [38]. miRNAs play a crucial role in regulating gene expression during renal

development [25, 39–41]. To our knowledge, miRNA and mRNA expression analyses in

maternal LP intake 17-DG male mesenchyme cells have not been performed.

We propose a novel molecular mechanism involved in inhibiting early nephrogenesis,

resulting in a reduced number of nephrons. We used NGS to evaluate miRNA expression and

found that 19 miRNAs were up- and 25 downregulated in 17-DG LP compared to NP meta-

nephros. Among the top 10 deregulated miRNAs, we selected 7 miRNAs with biological tar-

gets involved in proliferation, differentiation, and cellular apoptosis. Both miRNA-Seq and

TaqMan data analysis revealed consistent and specific changes in miRNA expression in LP

animals relative to control NP age-matched animals.

The miR-181 family is composed of four highly conserved members, namely miR-181a,

miR-181b, miR-181c, and miR-181d [42]. In neoplastic cells, miR-181a acts as a tumor sup-

pressor, inhibiting cellular proliferation and migration and inducing cellular apoptosis [43].

This study revealed increased expression of miR-181a-5p in 17-DG LP relative to age-matched

NP offspring. Although caspase mRNA expression was unaltered, a two-fold increase in Bax/

Bcl-2 mRNA ratio in LP compared to NP offspring suggests increased apoptosis in the CM,

indicating that apoptosis is regulated post-transcriptionally. Studies have shown that the BCL

family promotes cytochrome release from the mitochondria and then inhibits the activation of

Casp3, thereby inhibiting cellular apoptosis [44]. Li et al. used an acute lung injury model to

reveal that overexpressed miR-181a is related to decreased Bcl-2 protein level; conversely,

miR-181a inhibition increased Bcl-2 levels [45]. This study confirmed the results of Lv et al.,

Fig 5. Immunoperoxidase for Ki-67 and Bcl-2 in metanephros of 17DG fetus. The number of Ki-67+ cells was reduced in LP (B) when compared to NP (A) and was

statistically significant in the caps (C). The Bcl-2 labeled area was the same in NP (D) and LP (E) in both UB and cap (F, G). ���p<0.0001.

https://doi.org/10.1371/journal.pone.0246289.g005
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who demonstrated that miR-181c regulates the expression of Six-2 expression and cell prolifer-

ation negatively, parallel to the loss of mesenchymal cells phenotype during kidney develop-

ment in LP 17-DG offspring [25].

Xiang et al. demonstrated that increased miR-144 expression suppresses renal carcinoma

proliferation, resulting in a shorter G2/M phase. Moreover, Xiang et al. revealed that overex-

pression of miR-144 inhibits mTOR gene and protein expression [46]. Nijland et al. demon-

strated that an increase in mTOR signaling is crucial for determining the number of nephrons

in embryos whose mothers were subjected to nutrient restriction [47]. Mammalian target of

rapamycin complex 1 (mTORC1) is essential for embryo development; however, how this

complex regulates the balance between growth and autophagy under physiological conditions

and environmental stress remains unknown [48]. Therefore, mTOR signaling may be involved

in cellular responses in animals exposed to LP intake during gestation; in the perception,

induction, and termination of autophagy; and in response to intracellular nutrient availability

[46]. Hypothetically, during severe protein restriction, reduced expression of miR-144-3p may

be associated with increased mTOR expression, approximately 139% and 104% in CM cells

and UB, respectively, to compensate for the loss of nephrons in the 17-DG LP offspring.

Chen et al. defined miR-127 as a new regulator of cell senescence through Bcl-6 [49]. Pan

et al. reported that miR-127 underexpression correlates with increased cell proliferation in

liver cells [50]. This study showed a decrease in cell proliferation and a significant reduction of

cells positively labeled for Ki-67 in the CM of protein-restricted animals. Moreover, a reduc-

tion in nephrogenic area and proliferation in LP progeny was observed, which was consistent

Fig 6. Immunoperoxidase for cleaved caspase 3 in metanephros of 17DG fetus. The immunostained cells were preferentially located in the ureteric epithelium.

However, the quantity is not different in LP (B) than in NP (A).

https://doi.org/10.1371/journal.pone.0246289.g006

PLOS ONE Gestational low-protein intake and microRNA expression of the kidney progenitor cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0246289 February 5, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0246289.g006
https://doi.org/10.1371/journal.pone.0246289


with the results of Menendez-Castro et al. in 8.4% protein-restricted progeny [51, 52]. Thus,

increased Ki-67 and Bcl-6 mRNA expression, accompanied with reduced miR-127-3p expres-

sion in the 17-DG LP cap could be associated with counter-regulatory mechanisms to main-

tain proliferation.

Sun et al. demonstrated that overexpression of miR-199a-5p reduces cystic cell proliferation

and induces apoptosis, in addition to controlling the cell cycle [53]. In this study, expression of

miR-199a-5p is reduced in 17-DG LP is accompanied by the increased transcription of Ki-67,

a cellular proliferation marker, and Map2k2 is associated with decreased Ki-67 reactivity in LP

17-DG metanephros. Thus, gestational undernutrition promotes differentiation through a

post-transcriptional mechanism. Notably, our results reveal a repressive role of zinc-finger E-

box binding homeobox 1 (ZEB1), an EMT inducer, which maintains stem cell pluripotency

during embryonic stem cell differentiation. β-catenin is known to activate nuclear ZEB1 tran-

scription resulting in ZEB1 expression [34]. The TGFβ signaling pathway, one of the best-stud-

ied pathways, can induce EMT during embryonic development. Several TGFβ like ligands are

required for embryonic development. However, not all TGFβ-mediated effects on EMT

depend on ZEB1/2, knockout cells can induce the expression of the mesenchymal genes fibro-

nectin and N-cadherin. However, E-cadherin is no longer downregulated, and actin fibers are

also formed [54]. Karner et al. reported that during renal development, the Wnt9b/β-catenin

Fig 7. Immunoperoxidase for b-catenin and mTor in metanephros of 17DG fetus. In LP (B), the b-catenin labeled area was significantly raised in both CAP cells and

UB epithelia (C, D) when compared to NP offspring (A). Also, mTor immunoreactivity occupied a more extensive area in LP (F) than in NP (E) offspring in analyzed

structures (G, H). ���P<0.0001.

https://doi.org/10.1371/journal.pone.0246289.g007
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signaling path, expressed in both the UB and CM, is required both for nephron progenitor cell

renewal and differentiation, being essential for the formation of nephrons during embryogene-

sis [55]. The evolutionarily conserved Wnt9b/β-catenin pathway plays a critical role in devel-

oping organs, tissues, and injury repair in pluricellular organisms. A study demonstrated that

c-Myc is a transcriptional target of β-catenin, regulating the proliferation and differentiation

of renal tubular epithelium [56]. The expression of β-catenin at the gene and protein level

increased during the studied periods of renal development in the 17-DG LP fetus. Pan et al.

reported that Myc cooperates with β-catenin to promote the renewal of nephron progenitor

cells [10]. Here compared to age-matched NP offspring, LP showed lower c-Myc expression.

Therefore, these animals may have a lower reserve of renewable cells necessary for prolifera-

tion and survival and may reflect the smaller number of nephrons in the LP model. Moreover,

Fig 8. Immunoperoxidase for TGFβ-1, ZEB1, and ZEB2 in metanephros of 17DG fetus. The area of TGFβ-1 immunoreactivity in LP (B) compared to NP offspring

(A) was not different in the CAP (C) but was significantly enhanced in UB (D). ZEB1 was detected in the nuclei of CAP and other mesenchymal cells and, the LP (E)

CAP occupied a more extensive area (G) than in NP (F) offspring. The ZEB2 labeled area was not different from both CAP (J) and UB (K). ���P<0.0001.

https://doi.org/10.1371/journal.pone.0246289.g008
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Wnt/β-catenin and Notch signals pathways may coordinate the regulation of Six-2 expression

and are involved in the downregulation of Six-2 expression in nephron progenitor cells. Stud-

ies have demonstrated that low levels of β-catenin might be required to maintain Six-2 expres-

sion and CM progenitor cells in the undifferentiated state; moreover, elevated levels of β-

catenin determine nephron progenitor cell fate [57, 58].Thus, we hypothesize that reduced c-

Myc and Notch signaling, accompanied with increased β-catenin expression, reduced Six-2

expression by 28% in 17-DG LP offspring and correlated with early CM cell differentiation

and reduced stem cell and nephron number in adulthood. Moreover, our data may sustain

that, in LP offspring MM cells, the increased Let-7a-5p and β-catenin expression and reduced

Notch signal may modulate c-Myc, Six-2, and Ki-67 expression, leading to a reduction in self-

renewal of progenitor cells. The depletion of the remaining CM progenitor cells leads to a

reduction in nephron numbers and development of arterial hypertension and renal disorders

in adulthood (Fig 10).

Consistent with that of Boivin et al., our results indicate that increased CM β-catenin dis-

rupts UB growth and nephrogenesis [59]. Studies have shown that growth factor glial-derived

neurotrophic factor (GDNF), a crucial regulator of UB growth, signals through the c-Ret tyro-

sine kinase receptor and Gfra1 co-receptor [60, 61]. In 17-DG LP offspring, a significant

Fig 9. Deregulated miRNA-mRNA-protein pathways in metanephros of 17DG fetus from maternal restricted-protein intake.

https://doi.org/10.1371/journal.pone.0246289.g009
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increase in c-Ret receptor coding mRNA would theoretically lead to a rise in UB growth. How-

ever, in this study, GDNF expression was unchanged, suggesting that despite an increase in c-

Ret mRNA, UB branching was reduced. Previously, we observed a reduction of 28.3% in ure-

teric bud branches after 14.5 days of gestational protein restriction [4], which could be associ-

ated with a 28% reduction in Six-2 labeling of MM cells, despite no change in GDNF

transcription. β-catenin probably interacts with the c-ret receptor and is transported to the UB

cell’s nucleus, promoting TGFβ-1 expression in epithelial cells, inhibiting UB branching and

causing premature differentiation of CM progenitor cell, as seen in 17-DG LP offspring [62–

64]. Therefore, GDNF may not be essential in mediating mesenchymal signals to the ureteric

bud; however, the mechanism remains to be elucidated. Indeed, we have demonstrated that

MM from 17-DG LP offspring showed a specific increase in Let-7 miRNA expression, result-

ing in significantly impaired kidney development, thereby confirming the modulatory role of

these genes in the developmental timing of nephrogenesis [65].

Fig 10. The picture depicted a schematic representation of the biological response disorders in metanephros of 17DG fetus from

maternal restricted-protein intake.

https://doi.org/10.1371/journal.pone.0246289.g010
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In initial insulin-like growth factor (IGF) studies, predominant roles of IGF-1 and -2 in

fetal growth were elucidated by abundant, but mostly indirect, evidence. IGFs were found to

act as proliferation and differentiation factors in cultured fetal cells and preimplantation

embryos. Moreover, IGFs were found to be secreted by cultured fetal cells and explants in vitro
[66]. Growth factors, including IGF, can cause a partial or full epithelial–mesenchymal transi-

tion. The activation of IGF pathways results in the upregulation of EMT by inducing ZEB1

expression [67]. Although several candidate growth factors are involved in kidney develop-

ment, whether they are involved in nephrogenesis is unknown. Different growth factors may

be needed at different times. Some growth factors may be redundant in this context. During

embryonic development, sequential rounds of EMT and MET are needed to differentiate spe-

cialized cell types and create a three-dimensional structure. In this study, mesenchymal–epi-

thelial interconvertibility was found to maintain cell plasticity, suggesting the presence of a

highly inducible system in LP conditions for the embryo. The expression of the Let-7 miRNA

family has been extensively studied in various fetal tissues. The increase in Let-7 miRNA

expression is related to reduced proliferation and early increase of MM cell differentiation,

and consequently, decreased nephron numbers [27, 15, 68–71]. Higher Let-7 expression has

been demonstrated in higher organisms during the last phase of cerebral embryogenesis in

rodents [72, 73]. Nagalakshmi et al. revealed that Let-7 miRNA expression changed UB epithe-

lial cell fate from precursor to differentiated state [71]. By contrast, Yermalovich et al. demon-

strated that the overexpression of Lin28b, an RNA-binding protein, is associated with

suppressive Let-7 miRNAs. Although lin28 and Let-7 are known regulators of ontogenic tim-

ing in invertebrates, the role of these in mammalian organ development is not understood

[65]. In this study, the increase in Let-7a-5p miRNA expression in the LP fetus could be associ-

ated with reduced CM cell proliferation, compromising nephrogenesis relative to the NP

group. Thus, we hypothesize that the CM cell proliferation suppression and early cessation of

nephrogenesis caused by increased Let-7 miRNA may occur directly or indirectly through the

transiently reduced expression of Lin28b in 17-DG LP. This effect may significantly impair

kidney development in 17-DG LP, confirming that this gene regulates developmental timing

during nephrogenesis. In this study, increased Let-7a-5p miRNA expression coincides with a

decrease in c-Myc expression. Myc is involved in proliferation, growth, apoptosis, and cell dif-

ferentiation during renal organogenesis [74–76]. In the LP 17-DG offspring, MM c-Myc gene

expression was reduced, and the area of CM c-Myc immunoreactivity was 14% smaller, when

compared to that in the NP offspring. Simultaneously, a 14% decrease in CM cell number was

observed to decrease 48% Ki-67 immunoreactivity in LP relative to the NP offspring. Consis-

tently, studies have shown that c-Myc plays an important role in the final phase of UB branch-

ing and in stimulating CM progenitor cell proliferation [74].

Let-7 is strongly expressed at late stages of cell differentiation; however, it is expressed at a

reduced level in stem cells, maintaining them in an undifferentiated state. However, in this

study, strongly expression of Let-7a-5p miRNA in the CM downregulated c-Myc expression,

thereby reducing progenitor cell proliferation and early cell differentiation in the LP 17-DG

offspring (Fig 10). Studies on the kidneys of c-Myc transgenic mice revealed a simultaneous

decrease in c-Myc and S-ix-2 immunopositive CM cells associated with reduced stem cell pro-

liferation [74]. This study shows a significant (28%) reduction in Six-2 positive cells, a specific

renal stem cell marker, like the decrease observed in nephron numbers, in the CM of the

17-DG LP offspring compared to that in the NP offspring.

In 2009, Fogelgren et al. demonstrated that Six-2 gene expression is reduced during fetal

ontogenesis when associated with decreased nephron numbers, hypertension, and chronic

renal failure [77]. Thus, reduced Six-2 gene expression in CM progenitor cells indicates sup-

pression of signal-induced differentiation during renal development in the 17-DG LP
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offspring. Nevertheless, redundancy should be used with caution—subtle defects in nephro-

genesis may become evident with more detailed analysis or under different conditions. IGF1

mRNA levels were highest during the initial period of metanephric development, with tran-

scripts being detected throughout the MM, whereas their levels declined during further devel-

opment. However, during kidney embryogenesis, a delicate balance between nephron

facilitating growth factors (IGF1) and inhibitory growth factors (TGFβ-1) regulates UB

branching.

Conclusion

Although several authors have studied nephrogenesis [34, 37, 78], little is known about the

mechanisms that determine nephron numbers. This study demonstrates that many MM

Fig 11. The picture depicted a schematic representation of supposed factors that evolved in a 28% reduction of the CM stem cells and nephron number

in maternal restricted protein intake.

https://doi.org/10.1371/journal.pone.0246289.g011
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progenitor cell miRNAs, mRNAs, and proteins are altered in the 17-DG LP offspring, which

leads to reduced proliferation and early cell differentiation (Fig 11).

This delicate balance between nephron progenitor renewal and differentiation is essential

for kidney development, because failure to achieve adequate numbers of nephrons is a risk fac-

tor for chronic renal disorder.
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Project administration: José Antônio Rocha Gontijo, Patrı́cia Aline Boer.

Supervision: Wellerson Rodrigo Scarano, José Antônio Rocha Gontijo, Patrı́cia Aline Boer.
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