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Fabricating of high-performance 
functional graphene fibers for 
micro-capacitive energy storage
Tianju Fan1, Chunyan Zhao2, Zhuangqing Xiao2, Fangjun Guo1, Kaiyu Cai2, Hai Lin1, 
Yidong Liu1, Hong Meng1, Yong Min2 & Arthur J. Epstein3

Although graphene is a typical two dimensional materials, it has converted to multi-dimensional 
materials with many unique properties. As an example, the one dimensional graphene fiber is fabricated 
by utilizing ionic liquid as coagulation and functional diamines as cross-linkers to connect graphene 
oxide layers. The fibers show excellent mechanical properties and superior electrical performance. 
The tensile strength of the resultant fibers reaches ~729 MPa after a super high temperature thermal 
annealing treatment at 2800 °C. Additionally, quasi-solid-state flexible micro-capacitors are fabricated 
with promising result on energy storage. The device show a specific volumetric capacity as high as 
~225 F/cm3 (measured at 103.5 mA cm−3 in a three-electrode cell), as well as a long cycle life of 2000 
times. The initial results indicate that these fibers will be a good candidate to replace energy storage 
devices for miniaturized portable electronic applications.

As a two-dimensional monolayer of carbon atoms with honeycomb lattice, graphene has been touted as a can-
didate for a variety of applications in the areas of structural materials, energy storage, electronic devices, etc.1–3. 
The excellent mechanical, electrical, and thermal properties of graphene compared with those of other reported 
materials have been observed in single-layer or multilayer graphene synthesized through chemical vapour dep-
osition or epitaxial growth methods2,4. However, graphene can be assembled into various interesting structures, 
including zero-dimensional quantum dots, one-dimensional nanoscrolls or fibers, two dimensional films as well 
as three-dimensional foams5–8. In general, graphene based materials have demonstrated high gravimetric capaci-
tances but poor volumetric performances for the supercapacitor application. A possible explanation of this behav-
iour lies in the strong inter sheet π -π  interaction. While increasing the packing density, high ion accessibility is 
not allowed9,10.

Recently, people are impressed dramatically by the mechanical performance enhancement of graphene fibers 
(GF) either are prepared by spinning method11,12 or hydrothermal method13. One typical approach is to obtain 
graphene fibers through solution spinning of a liquid crystalline type graphene oxide (GO) spinning solution into 
coagulation agents14. The advantage of the GO fiber (GOF) is that we can adjust their mechanical and electrical 
properties by modifying interlayer spaces through appropriate chemical or thermal treatments to optimize the 
GF15. This type GF is easily fabricated by the standard industrial solution spinning process at a cost effective way. 
Additionally, the abundant oxygen functional groups on GO sheets could be converted or reduced easily, which 
could help us to convert those fibers into multifunctional textiles for various potential applications in flexible 
sensors and electronic devices16,17.

A recent report18 indicates that coagulating agents can act as coordinative cross-linkers between the GOF and 
divalent ions (CaCl2 and CuSO4), which can partially reduce the GOF with hydroxide ions, or reduce the surface 
charges on the GOF by introducing positively charged molecules or polymers (hexadecyltrimethyl-ammonium 
bromide, CTAB; chitosan) onto the surfaces of the GO layers. However, these coagulating agents tested inevitably 
require the additional use of a postdrawing process, such as rotating the coagulation stage, to uniformly orient the 
GOFs and maximize the packing density of the graphene layers in the GOF18–20.
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Micro-supercapacitors (micro-SCs) are promising alternatives as they can provide higher power densities, 
faster charge/discharge rates and much longer lifetimes21–25. However, the key challenge for their use in practical 
applications is how to increase their energy density to close and even exceed those of micro batteries without 
compromising other electrochemical characteristics26,27. Therefore, electrodes with large volumetric capacitance 
need to be developed.

This work describes the facile fabrication of GFs with excellent mechanical properties, fabricating GOF-a by 
utilizing ionic liquid as coagulant and GOF-b by exploiting diamine as cross-linkers in spinning process. The cor-
responding GF-a and GF-b are obtained by reducing at 600 °C under nitrogen condition. GOFs are also annealing 
at 1200 °C under N2 atmosphere, 2200 °C and 2800 °C under Ar atmosphere. The resultant fibers present high 
electrical and thermal conductivities, low density, excellent tensile strength and high specific volumetric capacity. 
Based on those GFs, quasi-solid-state flexible micro-capacitors devices are fabricated with excellent performance.

Results and Discussion
Based on the wet-spinning fiber process from the GO solution, we have measured the dimensions and thickness of 
the large GO sheets to determine whether the synthesized GO exhibit liquid crystalline behaviour. The AFM image 
indicates that GO sheets have an average layer thickness of 1.2 nm and an average size of 5–20 μ m (Figure S1).  
The aspect ratio is sufficiently high enough to allow the as-prepared aqueous GO solution to present liquid crys-
talline behavior28,29. But different from the prior report28,29, our GO solution’s concentration is not low enough to 
show the liquid crystalline behaviours with the largest area of uniform orientation.

As illustrated from Fig. 1a, GOFs can be fabricated through an aqueous GO spinning solution under a N2 
pressure controlled system. Those GOFs are strong enough to go through the coagulation bath, where the ionic 
liquid with organic solvent is used as a new coagulation. Several meters of the GOFs are rolled up with a taking-up 
spool, and then transformed them into an over for reducing and annealing treatment. The results indicate that 
the graphene layers could be easily aligned under shear forces as the GO solution passed through the capillary 
needle during the N2 pressured spinning process. Comparing to the direct wet-spun processing of reduced GO 
(rGO) fibers30, the GOF process is more rubbished and controllable. This is because the GOF has more alignment 
and stabilities in the presence of appropriate coagulating agents, which enhanced the interactions between the 
graphene layers. The final GFs are obtained by thermal reducing at 600 °C for 5 minutes or 1200 °C for 5 minutes 
under N2 atmosphere, 2200 °C for 5 minutes or 2800 °C for 5 minutes under Ar atmosphere. The resulted fibers 
are also flexible and can be bent and woven into textile structures (in Fig. 1b).

As shown the Figure S2a, the p-phenylenediamine is used as diamine coagulating agents to fabricate GF in a 
similar way. A schematic illustration of the formation covalent bond between diamines and GO layers is shown 
in Figure S2b. The GOFs are obtained by using the ionic liquid as coagulating agents (Fig. 1c,d) or diamines as 

Figure 1. The fiber is fabricated by injecting a homogeneous GO solution and thermal annealing at 600 °C 
and 1200 °C in N2 atmosphere, 2200 °C and 2800 °C in Ar atmosphere. (a,b) The photos of a knitted textile 
fabricated from GF-a after annealing at 2800 °C. (c) Ionic liquid as coagulants in the process of spinning GOF. 
(d) Schematic illustrations of the formation non-covalent bond with ionic liquid between GO layers.
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cross-linkers during the spinning process. Here, the ionic liquid molecules act as coagulation agents by connect-
ing those GO layers.

It is reported that bisamine along with carbon chain is used as coagulation agents through ionic bridges dur-
ing the spinning process31,32. Several other coagulants included ammonium groups (-NH3

+) or Ca2+ ions are 
also reported act as coagulation agents that shielded the negatively charged oxygen-containing acidic groups on 
the GO surfaces to weaken electrical repulsion and facilitate the assembly of GO layers into a fibrous shape33. 
Unfortunately, the counter ions along with these anions (Br− or Cl−) tend to disrupt the packing efficient of 
the GO layers8,19. This is because the strong electrical attraction between ionic bridges and GO layers cannot be 
interrupted by counter ions. The GO layers prepared using the method described here display a high degree of 
alignment and packing order compared to that in the GOFs reported previously28,34. The alignment and packing 
order of the GOFs are further stabilized by the formation of covalent bonds between ionic liquid molecules and 
GO layers during the drying and thermal treatment processes.

However, the ionic bridges are also generated by rapid acid-base reactions between the functional groups on 
the GO layers and the basic amine functional groups when ionic liquid is utilizing by coagulation agents in the 
spinning process. Once the GO solution is immersed in the fiber spinning coagulation bath, the acidic groups, 
such as the ionic liquid on the GO layer, donated protons to the amine group on the linker, form a conjugated base 
and acid, respectively. The diamine formed a strong covalent cross-linker with GO sheet, while ionic liquid linker 
and the GO surface formed non-covalent ionic bridge as schematic illustrated in Fig. 1d and Figure S2. When 
diamine is used as coagulant, GOF-b is obtained rapidly. However, GOF-a is formed much slower when ionic 
liquid is used as coagulant in the spinning process.

Figure 2 showed the morphology of the surface and cross-sectional SEM images of the GOF-a and GOF-b 
where the ionic liquid and diamine are used as cross-linkers. The GO layers with ionic liquid cross-linker are 
well-aligned along the longitudinal spinning direction (Fig. 2a,b), and the layers of p-phenylenediamine are 
closely packed in a lamellar structure (Fig. 2c,d).

The SEM images of twisting GF-a to yarns GFs with two fibers are shown in the Figure S3. This type of lamellar 
structure has been reported previously in GOFs coagulated using other coagulants, such as CTAB or CaCl2

15,20. 
The inner fiber structures of the GF-a and GF-b after annealing at 2800 °C are shown in Figures S4 and S5. The 
highly aligned structure in the pure graphene sheets is well maintained in the GF-a and GF-b before annealing 
at 2800 °C, and the annealed graphene sheets stack into a layer-by-layer structure throughout the cross section 
of GFs. However, microvoids are generated after thermal annealing at 2800 °C among graphene sheets resulting 
a higher porosity.

Figure S6 presented the FT-IR spectra of the GOF-a, GOF-b and GOF-c samples after the fibers drying pro-
cess. GOF-a is supported by the observation of -CO-NH- (1720 cm−1) stretching and bending modes, which 
indicated the carboxylic groups ionized and formed ionic bridges with non-covalent bond. The GO layers are 
effectively cross-linked by both ionic bridge formation and covalent bonds during the spinning and drying pro-
cesses, respectively. The resultant GOF-a and GOF-b have presented excellent mechanical properties.

Figure 3a show representative stress-strain curves of the GOFs prepared using cross-linked ionic liquid mol-
ecules and diamine molecules. The as-prepared dry hybrid GOF-a and GOF-b exhibit excellent mechanical per-
formance, where the tensile strength of GOF-a and GOF-b are 356 ±  16 MPa and 296 ±  12 MPa, respectively. 

Figure 2. SEM images of the surfaces (a,c) and cross-sectional morphologies (b,d) of GOF-b and GOF-a, 
respectively. Scale bars: 50 μ m (a,c), 500 nm (b,d).
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Those fibers have presented much better tensile strength comparing to those of wet-spun rGO fiber and CNTs35,36. 
Additionally, they are flexible and can be bent into different shapes or woven into textile structures.

The high-packing density and large ion-accessible surface area are two prerequisites for SC electrodes to 
achieve high volumetric performance37,38. Table 1 lists various physical performance in terms of the density, sur-
face area, conductivity and tensile strength of GOFs and GFs at different annealing temperatures, which con-
firmed their potential uses at high-power electronics and high-performance composite materials. Additionally, 
the annealed GF-a and GF-b present exceptional well mechanical properties as measured by tensile testing 
in the Fig. 3b,c. The tensile strength of the annealed GF-a and GF-b after annealing at 2800 °C have reached 
729 ±  21 MPa and 632 ±  26 MPa, respectively. It is found that the GF’s mechanical strength by using ionic liquid 
as crosslinking agent is much higher than the one by using diamine as crosslinking agent after the thermal anneal-
ing. The possible reason is due to the graphene interlayer interaction is primarily dominated by the van der waals 
force among those adjacent graphene sheets39.

Figure 3d presented the typical D and G bands of GOF-a and GOF-b. The integrated intensity ratios of the D 
band (1345 cm−1) and G band (1609 cm−1) are calculated. GOF-a shows higher ID/IG value of 1.05, and GOF-b 
presents lower ID/IG value of 0.98. The peak at 1150 cm−1 in the Raman Spectra of GOF-a represents nanocrystal-
line diamond structures40,41, which might be the reason of GOF-a shows better tensile strength than GOF-b. After 
annealing at 2800 °C, the D band of those fibers is completely disappear, the fibers are converting sp2 domains 
with less defects. Moreover, the intercalation of the graphene sheets leads to greater tensile strength.

We construct flexible micro-SCs as shown in the Fig. 4a by utilizing GF-a, GF-b and GF-c after annealing 
at 600 °C. Typically, two parallel GFs electrodes are mounted onto a flexible polyester (PET) substrate using 
PVA-H2SO4 as electrolyte without binder, current collector, separator or any packaging material42. The CV curves 
show reversible cathodic and anodic peaks at − 0.2–0.8 V versus Ag/AgCl (Fig. 4b), indicating the presence of 
pseudocapacitance, suggesting that the pseudocapacitance is induced by oxygen-containing functional groups 

Figure 3. (a) Representative stress strain curves of the GOF-a, GOF-b sample at 25 °C; and (b) the stress strain 
curves of the GF-a, GF-b sample after annealing at 2800 °C; (c) tensile strength of GF-a and GF-b after annealing 
at different temperatures; (d) polarized Raman spectra from GOF-a, GOF-b, GF-a and GF-b after annealing 
2800 °C.

Fibers Mass ratio Tensile strength (MPa) Surface area (m2g−1) Density of dry fiber (g/cm3) Conductivity (s/cm)

GOF-a 1:16(IL:GO) 356 ±  16 238 ±  12 0.58 ±  0.03 —

GOF-b 1:8(DA:GO) 296 ±  12 166 ±  8 0.63 ±  0.03 —

GF-a 1:16(IL:GO) 476 ±  16 325 ±  14 0.56 ±  0.03 106 ±  22

GF-b 1:8(DA:GO) 365 ±  14 288 ±  12 0.57 ±  0.03 88 ±  17

GF-a annealing at 2800 °C 1:16(IL:GO) 729 ±  21 385 ±  16 0.51 ±  0.03 412 ±  32

GF-b annealing at 2800 °C 1:8(DA:GO) 632 ±  26 326 ±  18 0.54 ±  0.03 326 ±  36

Table 1.  Physical and chemical properties of functional graphene fibers. (Abbrev: DA, diamine; IL, ionic 
liquid).
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and/or nitrogen heteroatoms42. The enhanced capacitive performance induced by nitrogen doping is further 
confirmed by comparative CV curves of the fibers. The specific volumetric capacitance (Csp) of the fibers is 
calculated using their galvanostatic discharge curves (Fig. 4c,d). Its galvanostatic charge/discharge curves has a 
triangular shape, indicating excellent reversibility and good charge propagation between the two fibers electrodes. 
Figure 4c has illustrated that the volumetric capacitance of GF-a, GF-b and GF-c are 45.0 F cm−3 at 36 mA cm−3, 
25.1 F cm−3 at 40 mA cm−3 and 18.1 F cm−3 at 28 mA cm−3, respectively. It is found that GF-a has the highest spe-
cific volumetric capacitance of 225 F cm−3 at 103.5 mA cm−3 in 1 M H2SO4 in the three-electrode cell. GF-b and 
GF-c demonstrated specific volumetric capacitance of 136 F cm−3 at 98 mA cm−3 and 96 F cm−3 at 101 mA cm−3, 
respectively. Moreover, as shown in Fig. 4e, assembled micro-SCs are constructed in parallel by incorporating a 
different number of fibers up to 60 fibers. The overall capacitance of the assembled micro-SCs increased linearly 
with the number of fibers increasing, showing good scalability.

The micro-SC is further subjected to mechanical bending tests and the result is shown in Fig. 4f. It show 
negligible capacitance change that the micro-SC retains 93% of its initial capacitance with 90° bending after 2000 
charge/discharge cycles, which demonstrate an impressive performance on stability as well as a long cycle life. 
This has demonstrated that a high flexibility and electrochemical stability are desirable perimeters for flexible 
electronics. Generally, comparing to the gravimetric power/energy density, the volumetric power/energy density 
of SCs is more important parameter for evaluating the energy storage performance of the micro-device by utiliz-
ing active electrode materials43. In order to meet specific energy and power needs for practical applications, three 
micro-SCs are assembled in parallel (Fig. 5a,b) and in series (Fig. 5c,d). The output current of the parallel assem-
bled micro-SC increased by a factor of three and its discharge time is also three times that of a single assembled 
micro-SC when the operating current density remains the same (Fig. 5b). Comparing to a single micro-SC at an 
operating voltage of 1.0 V, the three assembled micro-SCs connected in series exhibit a 3.0 V charge/discharge 
voltage at the same discharge time (Fig. 5d).

Conclusions
The GOFs can be easily prepared by increasing the electrical attraction between ionic liquid/diamine and GO 
layers without using the concern of liquid crystalline fabrication. Their corresponding GFs are formed through 
thermal reducing process with excellent mechanical properties. A super high temperature (up to 2800 °C) thermal 
annealing technique is applied to the GFs with significant performance enhancement. By utilizing those unique 
fibers, quasi-solid-state flexible micro-capacitors devices are constructed with excellent electrical performance. 
The resultant GFs as well as their micro-capacitors devices show high tensile strength, conductivity, and the spe-
cific volumetric capacity of GF-a is 225 F cm−3 at 104 mA cm−3 as well as a long cycle life up to 2000 times. These 
attractive results give us a new way to promote the GF properties by adjusting interlayer spaces through different 
coagulation agents and to construct micro electronic devices for the potential miniaturized portable electronic 
applications.

Figure 4. (a) Schematic of a micro-SC constructed using three fibers electrodes on polyester (PET) substrate. 
(b,c). Cyclic voltammetry curves and Galvanostatic charge/discharge curves at various current densities of three 
fibers, GF-a, GF-b and GF-c, respectively. (d) Specific volumetric capacitance of the GF-a, GF-b and GF-c have 
measured in a three-electrode configuration in 1 M H2SO4. (e) Relation between total device capacitance and 
numbers of GF-a integrated. (f) Capacitance retention of GF-b after 2,000 cycles up to 90° bending angle.
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Method
Chemicals and materials. Graphite powder (200 mesh) is purchased from Baichuan Graphite Co. Ltd. 
(Qingdao, China); p-phenylenediamine is purchased from Aladdin; ionic liquid (1,2-ethylenediamino ditriflate), 
potassium permanganate (KMnO4), sodium nitrate (NaNO3), NaOH, sulfuric acid (H2SO4), hydrochloric acid 
(HCl), and hydrogen peroxide (H2O2, 30%) are all analytical grade and purchased from Shanghai Sinopharm 
Chemical Reagent Co., Ltd (Shanghai, China). All aqueous solutions are prepared with ultrapure water (18 MΩ ). 
All regents are used without further purification.

Preparation of GO. GO is prepared by the modified hummers method44. Briefly, 1.0 g of graphite and 60 mL 
of H2SO4 (98%) is stirred in an ice bath, 5.8 g of KMnO4 is added slowly with stirring for 0.5 h. The solution is 
heated to 30 °C for 2 h, 40 mL of deionizer water is added slowly, the mixture is then heated to 90 °C for 30 min, 
and 80 mL of deionizer water is added. When the temperature is cooled to 60 °C, 10 mL of H2O2 (30%) is added 
to give an orange yellow solution. 200 mL of 5% HCl solution is added, decanted the supernatant, and centrifuged 
with deionizer water to pH 4 to 6, the mixture solution is further dialyzed in a dialysis bag in 2 days, and then low 
density large GO is obtained.

Preparation of GOF-a, GOF-b and GOF-c. The GOF-a, GOF-b and GOF-c are fabricated by using the 
coagulation bath of 0.1 M ionic liquid (1,2-ethylenediamino triflate) in water, 0.2 M p-phenylenediamine in eth-
anol, and 0.2 M NH3·H2O in water. During the spinning process for GO gel solution (10 mg/mL) are injected 
into different coagulation baths by using a spinning needle at a rate of 10 mL/min under 1.5 MPa held by N2. The 
as-spun GOF is wished with methanol and rolled up onto a collection spool or vertically aligned and dried at 
room temperature.

Preparation of GF-a, GF-b and GF-c. GF-a, GF-b and GF-c are obtained by reducing GOF-a, GOF-b and 
GOF-c with annealing at 600 °C under N2 atmosphere. GOF-a and GOF-b are also annealing 5 min at 1200 °C 
under N2 atmosphere, 2200 °C and 2800 °C under Ar atmosphere, which are marked as GF-a or GF-b with certain 
temperature.

Characterization and Electrochemical measurement. The as-produced GO is uniformly deposited 
onto an ozone-treated silicon substrate and characterized by scanning electron microscopy (SEM) (JEOL, JSM-
4800) and atomic force microscopy (AFM) (Bruker, Fastscan) to analyze the dimensions of the single GO sheet. 
The surface and cross-sectional morphologies of each GOF are analyzed using SEM. The chemical states of the 
GOFs are investigated by examining the fibers using Fourier transform infrared spectroscopy (FT-IR) (Nicolet 
iS10, Thermo Scientific). The mechanical properties of the GOFs are characterized using a tensile test machine 
(Sust, WAW-300B) with gauge length of 1 cm and strain rate of 10%/min. The results reported are the aver-
age measured values obtained from at least 10 samples of each GOF. The specific surface area is analysed using 
Accelerated Surface Area and Porosimetry System (Micromeritics, ASAP 2020 HD88) and calculated through 

Figure 5. Assembly of microfibers in micro-SCs and their integration in a self-poared nanosystem.  
(a) Schematic and photograph of the three micro-SCs connected in parallel. (b) Galvanostatic charge/discharge 
curves of the device shown in (a). (c) Three micro-SCs connected in series. (d) Galvanostatic charge/discharge 
curves of the device shown in (c).
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Brunauer-Emmett-Teller (BET) method. The densities of fibers are calculated from the mass and volume, and the 
volume is obtained by multiple the area of cross section and the length of fibers.

Electrochemical characterization of individual fibers. A three-electrode cell, consisting of an Ag/AgCl 
(3 M KCl) electrode as the reference electrode, a platinum wire as the counter electrode and a single fiber as the 
working electrode in 1 M H2SO4 electrolyte, is used for capacitance measurements by a potentiostat (CHI 660E).  
Celectrode is calculated from the galvanostatic discharge curves, using the equation Celectrode =  i/(dV/dt), where i is 
the discharge current, and dV/dt is the slope of the discharge curve.

Fabrication and characterization of quasi-solid-state micro-SCs. The polymeric gel electrolyte 
(PVA/H2SO4) is prepared according to a previously reported method45. Two dry fibers with the same length are 
immersed in the PVA/H2SO4 electrolyte solution for 5 min. Then, the electrolyte wetted fibers are placed on a 
PET film, in parallel. Finally, the assembled device is dried under ambient conditions until the PVA/H2SO4 gel 
solidified. The performance of the assembled micro-SCs is evaluated by CV and galvanostatic charge/discharge 
in a two-electrode configuration using the potentiost (CHI 660E).
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