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Advancements in health monitoring using smartphone sensor technologies have made it possible to quantify the functional
performance and deviations in an individual’s routine. Falling and drowning are significant unnatural causes of silent accidental
deaths, which require an ambient approach to be detected. 1is paper presents the novel ambient assistive framework Falling and
Drowning Detection (FaDD) for falling and drowning detection. FaDD perceives input from smartphone sensors, such as
accelerometer, gyroscope, magnetometer, and GPS, that provide accurate readings of the movement of an individual’s body.
FaDD hierarchically recognizes the falling and drowning actions by applying the machine learning model. 1e approach activates
embedding, in a smartphone application, to notify emergency alerts to various stakeholders (i.e., guardian, rescue, and close circle
community) about drowning of an individual. FaDD detects falling, drowning, and routine actions with good accuracy of 98%.
Furthermore, the FaDD framework enhances coordination to provide more efficient and reliable healthcare services to people.

1. Introduction

Smart health is an emerging paradigm that uses various
smart devices, such as sensors, actuators, and smartphones,
to support collaboration with other entities to provide
various services such as health monitoring, activity recog-
nition, fall detection, and activity assessment [1–6]. Activity
recognition aims to extend the likelihood that an individual
can live independently in a smart environment withmachine
learning techniques [7, 8]. Moreover, monitoring the
changes in daily human life maximizes their productive time
and reduces the cost of the healthcare system in later life [9].

Falls may result in dire health consequences such as
severe injuries and disabilities in humans or even deaths.
Researchers developed some fall detection systems to support

independent and secure living. Research studies revealed that
most people remain unable to retain their initial position by
themselves after a fall [10, 11]. Reliable and accurate fall
detection and prevention systems for citizens may play an
essential role in taking better care of them [12]. Similarly,
another serious threat to a human being is drowning.
According to the World Health Organization (WHO),
drowning is the third leading cause of unnatural deaths
worldwide, of almost 7% of all injury-related deaths [13].
1ere are an estimated 3, 20, 000320,000 cases of annual
drowning-related deaths worldwide.

To overcome the risks of death, an autonomous and
unobtrusive framework requires recognizing an individual’s
actions and supporting rescue services in a context-aware
environment. 1is paper focuses on the falling and drowning
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detection framework through smartphone sensors by uti-
lizing ambient intelligence because of these issues and
challenges. 1e smartphone technologies provide an unob-
trusive solution with various accelerometers, gyroscopes,
magnetometers, and location sensors. All individual actions
can be tracked through these sensors while keeping the
smartphone in the pocket [14]. Furthermore, ambient in-
telligence (machine learning) plays a vital role in trans-
forming those actions into meaningful information.

To the best of our knowledge, only scarce studies exist on
drowning detection using smartphone sensors and ambient
technology. However, some studies such as [10, 11, 15–17]
exist that focus only on fall detection frameworks.1is paper
provides a context-aware approach that identifies falling,
drowning, and daily life activities and generates alerts to care
providers. We collected the first dataset of individuals’ ac-
tions through the accelerometer, gyroscope, magnetometer,
and GPS sensors while performing falling and drowning
activities. Furthermore, we combine the existing falling and
daily life activities data with the collected drowning data to
achieve robustness and diversity. 1e below points highlight
our contributions:

(i) Propose a novel hierarchical approach for detecting
falling, drowning, and routine life actions using
machine learning classifiers.

(ii) Provide the novel self-collected drowning and daily
life activities dataset combined with the standard fall
detection dataset.

(iii) Effectively achieve the detection rate of drowning,
fall, and routine life actions with consistent
performance.

1e remainder of this paper is organized as follows.
Section 2 provides the related work. Section 3 presents the
background, and Section 4 describes our proposed ap-
proach. 1e implementation of the work and evaluation of
the approach to smart home data are presented in Section 5.
Finally, Section 6 summarizes the results and discusses
future work.

2. Related Work

1is section presents the research studies relevant to fall and
drowning detection. Fall and drowning detection ap-
proaches can be generally classified into ambient-based,
vision-based, and wearable devices-based approaches
[18, 19]. Ambient-based fall detection systems are built using
various pressure, vibration, sensing, and audio signals. Fall
detection studies used Mel-frequency Cepstral Coefficient
(MFCC) to identify the fall and ADL events by processing
audio or sensing signals [16].

Fall and ADL events usually portray discrete vibration
patterns, which is this system’s fundamental approach.
Vibration signals are stockpiled by pressure sensors (resis-
tive, piezoresistive) [15, 20] which are helpful in fall de-
tection and prevention systems. Infrared sensors [21] are
another suitable choice for fall detection and prevention
systems that recent researchers prefer. Both pressure and

audio signals are generally used to detect fall events.
However, audio-based methods possess superior perfor-
mance to pressure-based approaches.

Ambient-based systems place sensors in individual
rooms or indoors only, which import blind spots or dead
spaces in fall detection and prevention systems due to their
limited range. Moreover, ambient systems are influenced by
the external environment, such as the falling of some other
object in a room kept under monitoring, impacting these
systems’ accuracy and producing plenty of false alarms.

Cameras are widely used in surveillance monitoring
systems, which are now being used in fall detection and
prevention systems under vision-based approaches. Various
studies have used cameras (RGB or depth cameras) to detect
head trajectories, body shape changes, or body posture to
detect and prevent fall events. A system using one camera
relying on the K-Nearest Neighbors algorithm was proposed
to detect fall events based on silhouette change over time
[22]. Although it is easier to set up, this approach’s accuracy
is insufficient due to limited area coverage. Researchers have
also proposed fall detection systems with multiple cameras
installed to enhance the precision of fall event detection and
overcome the narrow area coverage problem as highlighted
in former studies [10]. 1e precision of the fall event de-
tection systems could be further optimized using depth
cameras by calculating the distance between the floor and
the critical joints of the body of a person [11, 23]. However,
vision-based systems rely on complex image processing and
computer vision techniques and demand proper storage and
computing capacity. Moreover, the cameras are fixed in
some places like rooms or buildings, so this approach’s
applicability is limited to indoors only.

Wearable device-based approaches are being studied
extensively, which may be further grouped into threshold-
based systems, machine learning-based systems, and hybrid
systems. 1e threshold-based approach has been applied in
many fall detection and prevention systems. With this
approach’s help, fall events are detected by comparing
collected data with the personal preference settings
(threshold). 1e threshold-based approach might be further
designated into static and adaptive threshold-based
methods. 1e fixed threshold value approaches were pre-
sented using Euler angle and sum vector magnitude features
to detect fall events from ADLs relying on the receiver
operating characteristics curve [24, 25]. Another fixed
threshold value study predicted fall events by analyzing
collected data from the 3-axial accelerometer and gyroscope
sensors [26]. An object has received angular velocity, and
acceleration signals were checked against preferred
threshold values to predict pre-fall events. 1e threshold
value chosen for an algorithm may impact the system’s
accuracy.1e higher threshold value may become the reason
for missing fall problems, and on the other hand, a lower
threshold value may trigger false alarms.

1e adaptive threshold value-based fall event detection
and prevention methods are devised to overcome fixed
threshold value-based methods’ pitfalls. In a study, re-
searchers devised an adaptive threshold approach to detect
fall events relying on a multivariate control chart [27]. 1is
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adaptive threshold approach showed high detection accu-
racy with an individual’s historical data, which can be
considered a person-specific method. A similar study [28]
presented a pre-impact fall prevention method built on an
adaptive threshold model with an automatic threshold value
adjustment ability using the person’s motion history. In
another research effort, [29], different groups of persons
based on age, gender, height, and weight, were observed to
improve the precision of personalized threshold value-based
fall detection systems.

In the machine learning-based approach, K-Nearest
Neighbor (KNN), Hidden Markov Model (HMM), Support
Vector Machine (SVM), Random Forest (RF), and Näıve
Bayes (NB) are frequently used algorithms in fall event de-
tection and prevention systems. An HMM-based fall identi-
fication algorithm was presented based on a triaxial
accelerometer in which acceleration signals had been exam-
ined by applying Gaussian distributions of hidden states in
training the model [30]. Fall event detection has also been
carried out using CNN’s [31] training models with three
feature sets selected from collected data from cameras and
wave radars. Researchers have used the SVM machine
learning technique to detect fall events by training their
proposed classifier based on extracted features from gathered
data to form a Kinect sensor [32]. In similar studies, SVM-
based [33, 34] pre-impact fall event detection systems were
introduced. In another study, neural networksweredeveloped
[35] to avoid fall events.1ese studies have illustrated that the
accuracy of machine learning-based fall detection systems is
greater than threshold-based systems due to trained classifiers
on extracted features. Researchers have widely researched fall
detection systems based on the accelerometer sensor.

A comparison study was carried out to observe the
performance of accelerometer-based fall detection algo-
rithms [36]. 1e comparison conducted with varying falling
velocity, thresholds, and other similar parameters on real-
world data revealed that the performance is below par
compared to their performance measured in simulated
environments. Another accuracy comparison study [37]
revealed that machine learning-based approaches out-
performed threshold-based approaches. 1reshold-based
and ML-based approaches to fall detection have their merits
and demerits. 1reshold-based algorithms need fewer
computational resources and are easy to implement but lack
accuracy. ML-based approaches enhance fall event detection
accuracy but demand high computational resources and
storage capacity. Nowadays, researchers are developing
hybrid approaches combining threshold-based and machine
learning-based methods to take the combined benefits of
both these approaches and boost the accuracy of fall de-
tection and prevention systems. A voting algorithm was
proposed based on threshold methods to predict an opti-
mized threshold value for fall detection [38] and fall pre-
vention systems [39]. In recent days, hybrid methods have
been proposed, combining multiple techniques, like
threshold with SVM [40], or threshold with kernel density
estimation [41] to decrease the frequency of false alarms.

1e built-in sensors in smartphones like gyroscopes,
accelerometers, and magnetometers are suitable for

implementing falling and drowning detection systems.
Authors in [42] tri-axial accelerometers and gyroscope
sensors were applied in data collection. 1en the data is
transmitted over a mobile device where an individual’s
actions are recognized using a clustering algorithm. A study
[43] presented android-based fall detection and prevention
systems from various aspects such as sensors, system ar-
chitecture, fall detection algorithms, and their response time
to detect a fall event. Another study [44] pointed out that
smartphone-based fall detection and prevention systems
depend on the placement of sensors and their sensing
mechanism. Still, there is a need for more accurate, efficient,
and reliable fall detection systems to save older adults’
precious lives.

To the best of our knowledge, existing studies only fo-
cused on fall detection using smartphones, on-body sensors
[15, 16], vision-based approaches [10, 11], and wearable
devices [17]. However, no study focuses on drowning de-
tection using unobtrusive technologies such as smartphone
sensors. 1is paper focuses on drowning and fall detection,
as both are hierarchical in nature and pattern.

3. Background

3.1. Definitions. In this section, first, we explain the defini-
tions that we will use in the remainder of the paper. 1e
falling and drowning detection model learns from the input
data stream provided by the smartphone sensors to recognize
an individual’s current state. 1e input data stream presents
the continuous movement of the smartphone fused as a tuple
containing sensor reading (ax, ay, az, mx, my, mz, gx, gy, gz,

long, lat, label). Where (ax, ay, az ∈ accelerometer), (mx,

my, mz ∈ magnetometer), (gx, gy, gz ∈ gyroscope), (long,

lat ∈ GPS) sensors and (label ∈ Drowning, Falling, routine).
We refer label as a state that an individual is currently in, such
as drowning, when an individual is drowning in water, falling
when an individual is falling, and routine, when an individual
is doing daily life activities. We hypothesized that these
complex and life-saving activities could be detected using the
machine learning model’s hierarchical nature. Keeping in
mind our hypothesis, we propose a novel decision-based
hierarchical model to recognize an individual’s current
activity.

3.2. Problem Setup and Algorithm. Next, we formalize the
problem according to the actual working recognition of
activities. Given that a feature matrix consisting of activity
instances iji of activity Ai given as input to a learning model
returns a label LAi of the recognized (iji) th instances. Al-
gorithm 1 is the procedure that demonstrates our proposed
algorithm. Suppose D represents the dataset containing
instance I � i1, i2, . . . , In. Let TL represent the target class
labels predicted by the classifier and NTL denote the total
target classes. IC represents each instance’s class, and TC
represents the count of total predicted labels belonging to
each class CL. Each instance in I is given as input to the
classification model for predicting drowning, falling, and
routine life actions. Let the performance measure Accuracy
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(A), Precision (p), Recall (R), F-Score (F), Roc Curve (RC),
Confusion Matrix (CM), Validation Accuracy (VA), Loss
(L), and Validation Loss (VL).

4. Fall and Drowning Framework

Before predicting that an individual is drowning, FaDD first
predicts that an individual is falling and is then allowed to
predict the drowning instances. In this way, our system
becomes more powerful and robust.

1is section discusses the steps that form our frame-
work’s building blocks: data collection, feature extraction,
and machine learning model. Figure 1 expresses the tax-
onomy of our proposed approach. First, we use smartphone
sensors (accelerometer, gyroscope, magnetometer, and GPS)
to collect each movement’s data during fall and drowning
positions and individuals’ locations. 1en we extract the
features of fall and drowning movement for the ML model
and location features to identify the individual’s physical
location. Further, we use theMLmodel to recognize whether
the individual is drowning or not. 1e below subsection
describes all these modules in detail, such as Data Collection,
Feature Extraction, ML Model, and Intelligent Agent. Al-
gorithm 1 is the procedure that demonstrates our proposed
algorithm.

We developed an Android framework responsible for
detecting falling and drowning actions. We made this
framework runnable for almost every type of Android-based
smartphones. 1e Android operating system allows appli-
cations to read data from a smartphone’s sensors.

4.1. Sensed Data. Our framework FaDD controls the data
collection process to be saved into a database and then
recognized. For this process, FaDD uses four smartphone
sensors: Accelerometer, Gyroscope, Magnetometer, and
GPS. FaDD first takes permission to access these sensors.
1en it senses the data at the frequency of 5 samples per
second, so we have 300 samples per minute. 1is fre-
quency is fine enough to capture all required actions. As
we have to take care of battery life, recent studies have
shown that the sensor invoking frequency is between 10 −

50 samples per second. We take five volunteers’ services
for sensing the data. One is a specialized trainer, two are
medium-level swimmers, and the two are low-level
swimmers. All volunteer belongs to an age group of
23 − 45. According to [45], physical activities at age 19 are
comparable to levels at age 60. Hence, we felt this age
group is enough to capture all posture readings. 1ey
were asked to mimic the postures of falling and drowning
individuals. 1e participants were asked to keep the
smartphone in their pants pocket, as shown in the figure.
To ensure the sensed data’s quality, our co-author con-
trols and monitors this task.

4.2. Cloud Database. After sensing the data through
smartphone sensors, we use Google’s cloud-based database
Firebase to save the sensed data readings. 1e Firebase

database gives more secure authentication, real-time re-
sponse, and efficient performance. Since, privacy and se-
curity are one of the leading challenges of healthcare data
[46, 47]. Furthermore, Firebase helps us send the data timely
for pre-processing, feature extraction, and ML algorithms.
Firebase can run in offline mode. Firebase re-sends any
writes when network connectivity is restored.

4.3. Feature Extraction. 1e sensed data stored in the cloud
database contains 12 features. 1is includes one time feature
[Time], three-axis of accelerometer [Ax1, Ay2, Az3], three-
axis of gyroscope [Gx1, Gy2, Gz3], three-axis of magne-
tometer [Mx1, My2, Mz3], and two-axis of GPS sensor
[lat, long]. We extract the nine features of the three-axis
accelerometer, gyroscope, and magnetometer as input to the
ML model to predict the activity being performed. 1e
output of theMLmodel is a label of activity.1e time feature
is converted into standard time to be sent at the notify step of
FaDD. 1e two-axis features of GPS are converted into the
participant’s physical address to be sent in the future to
notify emergency alert.

4.4. Machine Learning Model and Parameter Tuning. We
apply three machine learning models: Logistic Model Trees
(LMT), Bayes Net (BN), and Logistic Regression (LR) for
drowning detection. We select these models based on their
importance in covering the problem from all possible aspects.
LMT combines decision tree and logistics regression to
overcome a machine learning model’s over-fitting problem.
BN is a probabilistic model that uses the Bayesian method for
probability computations, while LR uses a regression function
to classify the test data. LRworks bestwhen the input variables
are not correlated. 1ese models are tuned according to the
required results. Tuning maximizes a supervised machine
learning model’s classification performance without over-
fitting or producing too high a variance. According to our
problem, LMT is used with a batch size of 50, and the beta for
trimming the weight of Logitboost is set to 0. For Bayes-Net,
we set the batch size to 100 and fast regression to True to get
better results. LR is used for building and using amultinomial
logistic regression model with a ridge estimator. We use the
default parameters for LR.

4.5.AlertNotify. 1is framework step is a future idea to send
an emergency alert about individuals’ actions. 1erefore, an
alert mechanism could be embedded in the smartphone
application after recognizing instances of sensed data such as
falling and drowning. 1e alert mechanism will send an
emergency alert to the android interface of the guardian,
close circle community, and rescue bodies with the indi-
vidual’s location. In this way, an individual can get emer-
gency aid, eventually reducing the unnatural death rate.

5. Experimental Results and Evaluation

1is section discusses evaluating our proposed approach by
analyzing the dataset. We collect the labeled data to train the
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Machine Learning (ML) model. 1ree ML models Logistic
Model Trees (LMT), Bayes Net (BN), and Logistic Regression
(LR), are used to recognize the drowning, routine, and fall
activities. We also make a customized setting with parameter
tuning of these models. We apply five-fold cross-validation
for all experiments. It works by leaving the 1 : 5 part of the
data for testing and using the 4 : 5 part of the data for training.

5.1.Dataset. We collected a large and diverse labeled dataset to
train and test the ML model. Data is collected from five par-
ticipants for falling and drowning activities. 1e participants
were asked to keep the smartphone in their pants pocket.
Figure 2 demonstrates the different diverse postures we follow
to collect the data on drowning and falling actions. 1rough
four smartphone sensors: accelerometer, gyroscope, magne-
tometer, and GPS, the dataset contains 12 features. 1e nine
features of 3 axis accelerometer, gyroscope, magnetometer, two
features of GPS, and one label feature are used for training and
testing the ML model. 1e usage of the other three features is
discussed in Section 4.3. It collects the data at the frequency of 5
samples per second, so we have 300 samples per minute. 1e
data collection duration was approximately 13–18minutes for
each participant.1is task was controlled andmonitored by our
co-author to ensure the quality of the data. As our approach is
hierarchical. We collected the data on falling and drowning.

We also use the data of the other 15 types of daily life
activities stated in the study [48]. Although their dataset

(1) TC ← []
(2) CL ← {Falling, Drowning, routine}
(3) HAR ← D
(4) dnew←pre process(d)

(5) for i ∈ dnew do
(6) Il← classifier(i)
(7) TC ←Il[CL]

(8) TC++
(9) if (CL� � Falling) then
(10) if (TC ≥ 3) then
(11) Il← classifier(I)
(12) end if
(13) end if
(14) if (CL� � drowning) then
(15) return “Drowning”
(16) return “Falling”
(17) else
(18) return “routine”, “Il”
(19) end if
(20) end for
(21) for epochs in range (N) do
(22) Evaluate (L, VL)
(23) Evaluate (A, VA)
(24) Evaluate (P, R, F, RC, CM)
(25) return Output
(26) end for

ALGORITHM 1:Algorithm for the Falling and Drowning Framework.
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Figure 1: Taxonomy of proposed approach for falling and drowning detection.
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contains many examples of all 15 types of activities, we only
use almost 1000 random examples of each activity. We label
these examples routine activities to avoid intra-class
problems between these 15 activities. 1e rationale behind
collecting this data is that as drowning is a serious problem,
and the framework should not directly classify instances as
drowning and alert the nearby help center. 1erefore, we
use the data of these daily life activities to make a clear and
robust recognition of drowning, falling, and regular ac-
tivities. We got 11091 samples of drowning activity in data
collection, 11700 samples of routine activity, and 6548
samples of falling activity. Table 1 demonstrates the details
of the dataset.

Table 2 present the details of the statistics of activity
occurrence frequencies.

Falling - a

Falling - b

Drowning - a

Drowning - d

Drowning - g Drowning - h
Drowning - i

Drowning - e

Drowning - f

Drowning - b

Drowning - c

Falling - c
Falling - d

Figure 2: Data collection postures of the falling and drowning activity.

Table 1: Characteristics of the dataset and devices.

Parameter Value
Smartphone Samsung galaxy S10
Smart phone type Waterproof

Sensors readings Accelerometer, gyroscope, magnetometer,
GPS

Dataset name Falling and drowning
Dataset type Self collected
Number of
participants 5

Mean age 26
Total main activities 3
Activity 1 Drowning
Activity 2 15 daily life activities (routine)
Activity 3 Falling
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5.2. Data Analysis. 1is section analyzes the variations of
each axis of the accelerometer, gyroscope, and magnetom-
eter sensor. 1ese variations depict human physical
movements. Due to less gravity underwater, the gyroscope
does not provide helpful information. 1erefore, we re-
moved thissensordata from thefinal dataset. Figures 3–5
depicts the data samples of an accelerometer, a gyroscope,
and magnetometer sensors and their corresponding spec-
trum.1ese samples belong to 3 activities: falling, drowning,
and routine daily life activities, where the variation of
drowning activity lies in the range of [−20, 41], and the
variation of falling activity lies in the range of [−38, 50], and
the variation of routine activity lies in the range of
[−60, 110].

Figure 3 reveals interesting essential information about
the directions of falling activity. For falling activity, the
accelerometer and magnetometer signal are not subtle.
Blue Spikes correspond to the acceleration in a positive
direction continuous in the entire vector, and similar is
for the Ay-axis. 1e Z-axis of the accelerometer is the
major contributor to detecting a fall as there is a sudden
spike at the 71th − 76th instances depicting a person’s fall.
1e magnetometer is crucial for detecting the device’s
orientation relative to the Earth’s magnetic north. Here
Mz shows the direction of activity from point X to point
Y. When a person fell, the magnetometer’s MxAxis
produced a sudden spike in the positive direction, and
My produced a spike in the negative direction towards
the Earth. It is worth noticing that the gyroscope is not
helpful for fall detection as it produces continuous flat
signals.

For drowning activity, the accelerometer and magne-
tometer signal is usually subtle. Figure 4 reveals interesting
essential information about the directions of drowning
activity. All three axes of the accelerometer and magne-
tometer are continued and do not show periodic spikes in
the selected vector. For drowning activity, the accelerometer
and magnetometer signal is subtle. When a person falls in
the water, the position of the leg sometimes moves upward
and downwards. 1e My axis of the magnetometer pro-
duced a sudden spike in the positive direction, and My

produced a spike in the negative direction towards the Earth,
which can help predict the drowning of a person.

For falling activity, the accelerometer and magnetometer
signal are not subtle as it provides periodic behavior of spikes
going upwards and downwards for all the sensors as shown
in Figure 5. 1ese signals were captured while a participant

performed daily life tasks such as walking, eating, toileting,
etc. It is worth noticing that a machine learning model can
learn the boundaries of each three activities considered in
this paper as they are pretty distinctive.

5.3. EvaluationMetrics. Evaluation metrics are a necessity to
assess the performance of the ML model. Almost all eval-
uation metrics depend on the nature of the dataset. Usually,
the accuracy is taken as a primary metric to check the ML
model’s performance, but the dataset is balanced. However,
when the dataset contains unequal classes, it does not
provide valuable information. 1us, We extract results by
accuracy, recall, precision, and f-score metrics to ensure the
model’s reliability. We extract results on different evaluation
metrics for further comparison. Below, we show the equa-
tions and definitions of evaluation metrics. Further, we also
extract the confusion matrix to show how many examples of
one activity are wrongly recognized as an example of other
activities.

Accuracy shows the overall recognition rate of the ML
model. It is calculated using True Positive (TP): correctly
recognized samples, True Negative (TN): examples of other
activities correctly recognized as one activity example, False
Positive (FP): examples of other activities wrongly recog-
nized as one activity examples, and False Negative (FN):
examples wrongly recognized as other activities examples as
shown in (1)

Accuracy �
TP + TN

TP + TN + FP + FN
. (1)

Recall shows the correctly predicted examples of one
activity from all the examples. 1e recall is also known as the
sensitivity of the ML model. It is calculated using TP and FN
as shown in (2)

Recall �
TP

TP + FN
. (2)

Precision shows the correctly predicted examples of one
activity from all the predicted examples. Precision is also
called positive predictive value. It is calculated using TP and
FP as shown in (3)

Precision �
TP

TP + FP
. (3)

F-score is computed as the harmonic mean of recall and
precision as shown in (4)

Table 2: Summary statistics of activity occurrence frequencies for the developed dataset used in our paper.

Feature Minimum Maximum Mean Standard deviation
Ax −32.741 32.737 −1.532 6.787
Ay −32.732 32.756 −1.084 6.728
Az −32.765 32.767 −1.15 7.47
Gx −22.521 21.634 −0.057 1.208
Gy −29.202 29.548 −0.078 2.407
Gz −28.638 27.36 0.075 1.903
Mx −55.875 52.875 5.088 27.911
My −55.438 53.75 15.224 22.385
Mz −52.75 53.75 16.44 25.485
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F − Score � 2 ×
Precision × Recall
Precision + Recall

. (4)

6. Results

Figure 6 demonstrates the precision metric on drowning,
regular, and falling activities using LMT, BN, and LR ML
models. It shows that the LMTand BN achieve 25% better
precision than LR on drowning activity. In the case of

routine activity, LMT achieves 3% and 38% better pre-
cision than BN and LR. While, on falling activity,
LMT achieves 11% and 30% better precision than BN and
LR. 1e BN achieves 25%, 33%, and 19% better precision
than LR on drowning, regular, and fall activities,
respectively.

Figure 7 demonstrates the recall metric for drowning,
routine, and falling activities using LMT, BN, and LR ML
models. It shows that the LMT achieves 4% and 23% better
recall than BN and LR on drowning activity. In the case of
routine activity, LMTachieves 4% and 34% better recall than
BN and LR. While, on falling activity, LMTachieves 4% and
36% better recall than BN and LR. 1e BN achieves 19%,
30%, and 32% better recall than LR on drowning, regular,
and fall activities.

Figure 8 demonstrates the f-score metric on drowning,
routine, and falling activities using LMT, BN, and LR ML
models. It shows that the LMT achieves 3% and 25% better
f-score than BN and LR on drowning activity. In the case of
regular activity, LMT achieves 2% and 33% better f-score
than BN and LR. While, on falling activity, LMTachieves 9%
and 35% better f-score than BN and LR. 1e BN achieves
22%, 31%, and 26% better f-score than LR on drowning,
regular, and fall activities.

Figure 9 demonstrates the accuracy metric on drowning,
routine, and falling activities using LMT, BN, and LR ML
models. It shows that the LMT achieves 4% and 23 better
accuracies than BN and LR on drowning activity. In the case
of regular activity, LMTachieves 4% and 34% better accuracy
than BN and LR. While, on falling activity, LMTachieves 4%
and 36% better accuracy than BN and LR. 1e BN achieves
19%, 30%, and 32% better accuracy than LR on drowning,
regular, and fall activities.
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Figure 6: Comparison of Precision of LMT, BN, and LR classifiers.
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Figure 10 presents the confusion matrix on drowning,
routine, and falling activities using the LMTmodel. It shows
that less than 1% example of drowning activity is wrongly
recognized as examples of routine and fall activities. In the
case of regular activity, only 1% examples were wrongly
recognized as examples of fall activities. Simultaneously,
only 2% examples of falling activity are wrongly recognized
as examples of routine activities.

Figure 11 presents the confusion matrix on drowning,
routine, and falling activities using the BN model. It shows
that only 1% and 3% examples of drowning activity are
wrongly recognized as examples of routine and fall activities.
Also, only 1% and 5% examples of regular activity are
wrongly recognized as examples of drowning and fall ac-
tivities. At the same time, 1% and 5% examples of falling
activity are wrongly recognized as examples of drowning and

routine activities. Figure 12 presents the confusionmatrix on
drowning, routine, and falling activities using the LR model.
It shows that only 35% and 1% examples of drowning ac-
tivity are wrongly recognized as examples of routine and fall
activities. In the regular activity, 20% and 16% examples are
wrongly recognized as examples of drowning and fall ac-
tivities. Simultaneously, 12% and 26% examples of falling
activity are wrongly recognized as examples of drowning and
routine activities.

7. Conclusion and Future Work

Falling and drowning are underlined reasons with an almost
7% death rate of overall unnatural deaths. Detecting falling
and drowning is more challenging than other activities since
cameras and sensors cannot be installed everywhere. To
overcome these challenges, this paper presented a novel,
unobtrusive, ambient intelligent framework, Falling and
Drowning Detection (FaDD). FaDD is the first, unobtrusive
framework that uses smartphone sensors to depict an in-
dividual’s body’s readings and recognize them using ML
algorithms as falling, drowning, and routine actions. FaDD
achieves a 98% of accuracy. 1e limitation of this study is
that WiFi and other cellular signal does not work properly
underwater. FaDD presents the emergency alert mechanism
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as an abstract idea that could address in the future. 1e
emergency alert mechanism generates an emergency alert
with an individual’s location to its guardian, close circle
community, and rescue team to save an individual. 1e
FaDD framework will enhance coordination to provide
more efficient and reliable healthcare services to people. In
the future, researchers can use smart watches and other on-
body sensors to overcome these limitations.

Data Availability

1e Fall and Detection dataset used to support the findings
of this study is available from the corresponding author
upon request.
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