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Abstract

Tetrapyrroles such as heme and chlorophyll are essential for biological processes, including oxygenation, respiration, and photosyn-
thesis. In the tetrapyrrole biosynthesis pathway, protoporphyrinogen IX oxidase (Protox) catalyzes the formation of protoporphyrin IX,
the last common intermediate for the biosynthesis of heme and chlorophyll. Three nonhomologous isofunctional enzymes, HemG,
HemJ, and HemY, for Protox have been identified. To reveal the distribution and evolution of the three Protox enzymes, we identified
homologs of each along with other heme biosynthetic enzymes by whole-genome clustering across three domains of life. Most
organisms possess only one of the three Protox types, with some exceptions. Detailed phylogenetic analysis revealed that HemG is
mostly limited to y-Proteobacteria whereas HemJ may have originated within o-Proteobacteria and transferred to other
Proteobacteria and Cyanobacteria. In contrast, HemY is ubiquitous in prokaryotes and is the only Protox in eukaryotes, so this
type may be the ancestral Protox. Land plants have a unique HemY homolog that is also shared by Chloroflexus species, in addition
to the main HemY homolog originating from Cyanobacteria. Meanwhile, organisms missing any Protox can be classified into two
groups; those lacking most heme synthetic genes, which necessarily depend on external heme supply, and those lacking only genes
involved in the conversion of uroporphyrinogen il into heme, which would use a precorrin2-dependent alternative pathway.
However, hemN encoding coproporphyrinogen IX oxidase was frequently found in organisms lacking Protox enzyme, which suggests
a unique role of this gene other than in heme biosynthesis.
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Introduction Heinemann et al. 2008; Tanaka et al. 2011), whereas the

Tetrapyrroles such as heme and chlorophyll (Chl) are the most
abundant and probably the most ancient pigments found in
living organisms. As cofactors, they have a wide range of
chemical properties, including light absorption, electron trans-
fer, and oxygen binding, and so are essential components of
critical biological processes such as respiration and photosyn-
thesis across all kingdoms of life.

Heme and Chl share the same biosynthetic pathway from
the first universal tetrapyrrole precursor, 5-aminolevulinic acid
(ALA), to the last common intermediate, protoporphyrin
IX (Proto) (Tanaka et al. 2011). The pathway of ALA synthesis
differs in various organisms (Panek and Brian 2002;

common pathway from ALA to Proto is highly conserved in
virtually all living organisms except some archaea (Storbeck
et al. 2010). Some other exceptions include parasitic organ-
isms, which depend on heme produced by host organisms
(Panek and Brian 2002; Heinemann et al. 2008).

The last common step toward heme and Chl synthesis is
oxidation of protoporphyrinogen IX (Protogen) to Proto by
Protogen oxidase (Protox, EC 1.3.3.4). In photosynthetic
organisms, the pathway is then branched into heme and
Chl synthesis by the insertion of a ferrous ion into Proto
by ferrochelatase and the insertion of a magnesium ion by
Mg-chelatase, respectively (Tanaka et al. 2011).
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Genes involved in Protox activity were identified first from
Escherichia coli (Sasarman et al. 1993) and Bacillus subtilis
(Hansson and Hederstedt 1992) and designated hemG and
hemyY, respectively. The HemY-type Protox (~55kDa) is an
oxygen-dependent oxidase with a flavin-adenine dinucleotide
(FAD) cofactor (Koch et al. 2004; Corradi et al. 2006; Qin et al.
2010). Most eukaryotes and many aerobic or facultative bac-
teria possess the hemY gene for Protogen oxidation (Obornik
and Green 2005). Meanwhile, y-Proteobacteria such as E. coli
(Sasarman et al. 1993) and Salmonella typhimurium (Xu et al.
1992) use HemG for Protogen oxidation. The HemG protein
of E. coli is a 21-kDa protein with a flavin mononucleotide
(FMN) as a cofactor and possesses the Protox activity in aerobic
or anaerobic conditions (Boynton et al. 2009; Mdbius et al.
2010). Recently, another gene responsible for Protogen
oxidation, hemJ, was identified in a cyanobacterium
Synechocystis sp. PCC 6803 as being distantly related to a
subunit of NADH dehydrogenase complex | (Kato et al.
2010). This gene encodes a 22-kDa enzyme featuring Protox
activity under aerobic conditions. Hem.Jhomologs are found in
most Cyanobacteria (Kato et al. 2010) and many other bac-
teria such as Acinetobacter baylyi (Boynton et al. 2011).
Therefore, three phylogenetically unrelated enzymes catalyze
the same oxidation step of Protogen in different organisms.
These are examples of nonhomologous isofunctional enzymes
(Galperin et al. 1998; Omelchenko et al. 2010) or analogous
enzymes, which hereafter we call isofunctional enzymes.

Although Protogen can be converted to Proto without the
Protox activity by a spontaneous reaction with molecular
oxygen or by nonspecific peroxidases (Jacobs and Jacobs
1993; Lee et al. 1993), the requirement of Protox in tetrapyr-
role biosynthesis in vivo has been demonstrated in a number
of mutants for hemG (Xu et al. 1992; Sasarman et al. 1993),
hemY (Hansson and Hederstedt 1992; Camadro and Labbe
1996; Meissner et al. 1996; Warnich 1996; Molina et al.
1999), and hem/ (Kato et al. 2010; Boynton et al. 2011).
Moreover, Protox is a target of diphenyl ether herbicides,
which inhibit the activity of HemY-type Protox and result in
the accumulation of Proto that causes photobleaching in
plants (Matringe et al. 1989; Witkowski and Halling 1989).
Because Proto is a strong photosensitizer, which causes rapid
oxidation of various molecules within the cell, the accumula-
tion of this intermediate should be critically kept at a low level.
HemY-type Protox may form a complex with ferrochelatase to
enable efficient channeling of Proto between these two en-
zymes (Ferreiras et al. 1988; Koch et al. 2004; Masoumi et al.
2008). Moreover, in photosynthetic organisms synthesizing
Chls or bacteriochlorophylls, Protox also transfers Proto to
Mg-chelatase (Tanaka et al. 2011), which suggests a more
complex role of this oxidase in regulating the substrate chan-
neling between the heme and Chl branches. In this respect, it
is curious to find three different enzymes involved in the
Protogen oxidation across eukaryotes and bacteria, consider-
ing the need for strict and complex regulation of this

potentially harmful step in coordination with up- and down-
stream pathways. In addition, some organisms such as plants
possess two isoforms of HemY (Obornik and Green 2005).
The phylogenetic relationship as well as the differentiation
of cellular functions of these two enzymes remains to be
answered.

In this study, we identified homologs of each type of Protox
in a wide range of organisms, including photosynthetic and
nonphotosynthetic eukaryotes and prokaryotes, by using the
recently developed automatic clustering method (Sato 2009).
Then, we performed detailed phylogenetic analysis with se-
guence-based maximum-likelihood (ML) methods and detec-
tion of insertions/deletions within the amino acid sequences.
As background information, we searched for all possible ho-
mologs in all bacterial genomes reported at the time of our
analysis and extensively surveyed all homologs involved in
heme biosynthesis together with Protox. We analyzed the co-
evolution of Protox enzymes with other heme biosynthesis
enzymes and assessed replacement of different types of
Protox in different lineages of bacteria.

Materials and Methods

Sequences

All homologs of HemY, HemG, and HemJ were retrieved from
the Gclust database (Gclust2010e29b data set at http:/gclust.
c.u-tokyo.ac jp/ [last accessed August 12, 2014, now available
under “Old versions”] including selected genomes covering
plants, algae, nonphotosynthetic eukaryotes, and prokary-
otes.) according to the published list of homologs. Gclust is
a comparative genomic database of homologous protein clus-
ters suitable for phylogenetic profiling (Sato 2002, 2009; Sato
et al. 2005). The sources of the original databases are de-
scribed on the website.

We identified all homologs of enzymes involved in heme
biosynthesis in all prokaryotic genomes in RefSeq of the
National Center for Biotechnology Information (NCBI) data-
base as of November 2010 (data set AllBact2010) and used
them for the statistics shown in table 2. In most analyses, the
two data sets were sufficient for obtaining an idea of the
overall distribution of enzymes in various phyla. However,
some new sequences were retrieved from RefSeq as of
February 2013 to complement the data in detailed analyses
for supplementary figures S4 and S5, Supplementary Material
online. All 3,916,828 proteins in the 1,196 prokaryotic ge-
nomes were used in all-against-all BLASTP (mostly v2.2.22)
analysis (options: -m8 —FF —CQ). The results in a single table
(specified by option —-m8) were used for clustering by use of
gclust v3.56 (parallel version) (Sato 2009). Each of the en-
zymes in the heme biosynthetic pathway was first identified
by name, then all homologs were retrieved as several clusters.
Additionally, some singletons were retrieved by following the
“related groups” link. A list of enzymes in all analyzed
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organisms was compiled from the lists of homologs. The huge
file of original data of clusters (7.12 GB) is not currently avail-
able on the web site but may be obtained from the corre-
sponding author upon request.

Phylogenetic Analyses

Amino acid alignment was performed for each isofunctional
enzymes by using Muscle v3.6 (Edgar 2004). Sequences not
aligned in the entire length were removed, and alignment was
repeated. The sequence alignment was used for subsequent
phylogenetic analysis and homology modeling. The sites with
gaps in more than 20% of sequences were removed by use of
SISEQ v1.59 (Sato 2000), which was also used for conversion
of various sequence formats. ClustalX v1.83 was used for pro-
file alignment and to manage aligned sequences (Thompson
et al. 1994).

Each alignment was used in the phylogenetic analysis as
follows. A neighbor-joining (NJ) tree was estimated with
MEGA v4 (Tamura et al. 2007) with the Jones-Taylor—
Thorton (JTT) model and an equal evolutionary rate.
Calculation with the ML method involved use of TreeFinder
March 2008 version (Jobb et al. 2004) with the Whelan—
Goldman (WAG) model, and with RAxML v7.0.4
(Stamatakis 2006) with —=f d =i 10 -m PROTCATWAG options.
The exact parameters were determined by initial trials with —c
10, 40, 55 with or without —i 10. Bootstrap was based on
1,000 replicates. Bayesian inference (Bl) involved use of
MrBayes v3.2 (Ronquist and Huelsenbeck 2003), with the
following options: aamodelpr = fixed(wag), ratepr=variable,
ngen =2,000,000, samplefreq=200, burnin=3,000 (for
HemG, ngen=1,000,000, samplefreq=100), and with
PhyloBayes v3.2e (Lartillot et al. 2009) with the CAT+gtr
model. A 165-23S-based phylogenetic tree in Cyanobacteria
(fig. 2) was constructed with the Bl method as described
(Sasaki and Sato 2010).

The approximately unbiased (AU) test, intended to test the
relative likelihood of various forms of trees based on support
levels of individual sites, involved use of the CONSEL program
(Shimodaira and Hasegawa 2001), with the output of Protml
in MOLPHY v2.3beta (Adachi and Hasegawa 1996), based on
the 19 most probable trees for 20 representative taxa. For this
purpose, the trees were selected by Protml with constrained
trees according to the results of ML and Bl analyses. The WAG
and JTT models were used. Phylogenetic trees were drawn
with use of NJplot (Perriere and Gouy 1996) and Mesquite
utility v2.5 (http://mesquiteproject.org, last accessed August
12, 2014). The alignment files used for phylogenetic analysis
are available in supplementary material, Supplementary
Material online.

Homology Modeling

Homology modeling of HemY homologues involved use of
Modeller v8v1 or 8v2 (Sali and Blundell 1993) with the

automodel script, modified as necessary. Both of the struc-
tures in the Protein Data Bank (PDB) entry 1SEZ for tobacco
Protox (PPO2) were used as templates. This file describes two
monomers arranged in a symmetric position, but some loops
and the N-terminus are invisible because of high flexibility. The
corresponding parts in the inferred models are an invention of
the software and are only meaningful as an indication of the
presence of a structural part. Cartoon models of structure
were prepared with use of Molscript (Kraulis 1991). The co-
ordinate files of homology modeling are available from the
corresponding author upon request.

Results and Discussion

Distribution of HemY, HemG, and HemJ across
Eukaryotes and Prokaryotes

To examine the distribution pattern of HemY, HemG, and
HemJ across eukaryotes and prokaryotes, homologous pro-
teins clustered with each known Protox were identified in
the Gclust2010 database including 169 organisms (Sato
2002, 2009; Sato et al. 2005). Because conventions for
gene names differ in different organisms, all gene names
are described according to the prokaryotic convention in this
study. Table 1 shows that all 33 eukaryotes analyzed (plants,
algae, protists, fungi, and animals) contain at least a copy of
hemyY, but no copies of hemG and hemJ. In addition, HemY
was found in various bacterial phyla, which is consistent with a
previous report (Obornik and Green 2005). HemG was found
in y-Proteobacteria, Cyanobacteria, and green bacteria. Hem)
was found in most species of a- and B-Proteobacteria and
Cyanobacteria. Some Chlorobi such as Chlorobium chloro-
chromatii, Chlorobium tepidum, Chlorobium (Pelodictyon)
luteolum, and Prosthecochloris vibrioformis were reported to
lack any types of Protox (Kato et al. 2010), but we found
HemY homologs in all Chorobi species investigated, which
suggests that Chlorobi use HemY for Protogen oxidation.
However, no Protox types were found in Buchnera aphidicola,
Mycoplasma genitalium, Archaeoglobus fulgidus, Aeropyrum
pernix, Nanoarchaeum equitans, or Dehalococcoides CBDB].
As discussed later, these prokaryotes lack de novo heme bio-
synthesis or use alternative pathways for heme production.
To exhaustively detect all isofunctional enzymes of Protox in
all prokaryotes, we performed complete clustering of all pro-
teins in all known prokaryotic genomes (supplementary table
S1, Supplementary Material online). As reported previously
(Panek and Brian 2002), ALA synthase (ALAS), which catalyzes
the single-step condensation of succinyl-CoA and glycine to
form ALA, was almost exclusively found in a-Proteobacteria
(table 2), which shows the reliability of our clustering analysis.
Of 1,196 prokaryotes, 834 species (70% of total prokaryotes)
possess at least one Protox. Among them, 732 species (87 %)
possess only a single Protox. Because Proto is a strong photo-
sensitizer and therefore should be controlled carefully during
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Table 1
Distribution of Protox Isofunctional Enzymes in Eukaryotes and
Prokaryotes in Gclust2010 Database

ID Species HemG HemJ HemY Total
Eukaryotes
ATH Arabidopsis thaliana 0 0 3 3
CME Cyanidioschyzon merolae 0 0 1 1
OSA Oryza sativa 0 0 3 3
PPT Physcomitrella patens 0 0 2 2
PoTR Populus trichocarpa 0 0 3 3
SMOL  Selaginella moellendorffii 0 0 4 4
Wi Vitis vinifera 0 0 2 2
SoBI Sorghum bicolor BTx623 0 0 2 2
BrDI Brachypodium distachyon 0 0 2 2
LoJA Lotus japonicus MG-20 0 0 2 2
MeTR  Medicago truncatula 0 0 2 2
MZE Zea mays B73 0 0 4 4
CRE Chlamydomonas reinhardtii 0 0 3 3
TPS Thalassiosira pseudonana 0 0 1 1
PTR Phaeodactylum tricornutum 0 0 1 1
OTAU  Ostreococcus tauri OTTH095 0 0 1 1
OLUC Ostreococcus lucimarinus 0 0 1 1
CCE9901
CEL Caenorhabditis elegans 0 0 1 1
DME Drosophila melanogaster 0 0 1 1
HSA Homo sapiens 0 0 1 1
HYMA  Hydra magnipapillata 0 0 1 1
PLAT Ornithorhynchus anatinus 0 0 1 1
SCE Saccharomyces cerevisiae 0 0 1 1
SPO Schyzosaccharomyces pombe 0 0 1 1
PFA Plasmodium falciparum 0 0 1 1
NGR Naegleria gruberi 0 0 1 1
DCGR  Candida glabrata CBS138 0 0 1 1
DKLA  Kluyveromyces lactis NRRL 0 0 1 1
Y-1140
NCR Neurospora crassa 74-OR23-1A 0 0 2 2
TET Tetrahymena thermophila 0 0
SB210
PHRA  Phytophthora ramorum 0 0 1 1
PHSO Phytophthora sojae 0 0 1
DPTM  Paramecium tetraurelia 0 2
Bacterial phyla
a-Proteobacteria 1 32 3 34
v-Proteobacteria 3 2 2 7
B-Proteobacteria 0 6 1 6
Firmicutes 0 2 0 3
Actinobacteria 1 0 4 4
Small genome bacteria 1 0 5 6
Archaea 1 0 3 7
Cyanobacteria 2 34 9 42
Green bacteria 5 2 21 26

substrate channeling, the presence of a single copy of Protox
gene might be preferred. Of note, most organisms with a
Protox enzyme also have a ferrochelatase HemH. Tight cou-
pling of Protox and HemH might be advantageous for keeping
free Proto at a low level to prevent photoactive and harmful

action of this compound to the cell. Although Protox and
ferrochelatase are presumed to have evolved in parallel, the
mode of interaction of the three types of Protox isofunctional
enzymes with ferrochelatase remains unknown.

Table 2 displays the distribution of the three isofunctional
enzymes of Protox in prokaryotes. The distribution generally
depended on phylum. HemY is found in most phyla, whereas
HemG is mostly restricted to y-Proteobacteria and a part
of Firmicutes. HemJ is found in various Proteobacteria,
Bacteroides, and Cyanobacteria. However, some species in
various phyla contain an isofunctional Protox different from
the major one in the phylum, which could indicate frequent
horizontal gene transfer events. A number of species do not
contain any isofunctional Protox (see the difference between
the overall number of species and the number of species
containing Protox). In particular, Protox is not found in
Tenericutes and Crenarchaea. Some parasitic or symbiotic or-
ganisms such as Haemophilus influenzae (Panek and Brian
2002), Caenorhabditis elegans, and Leishmania major (Rao
et al. 2005) lack not only Protox but also most of the heme
biosynthetic enzymes, and their life depends on external heme
supply. In fact, our analysis of all homologs of enzymes in-
volved in heme biosynthesis shows that parasitic or symbiotic
bacteria such as Mycoplasma, Borrelia, Streptococcus,
Lactobacillus, Bifidobacterium, and Buchnera lack most en-
zymes for heme biosynthesis including Protox (supplementary
table S2, Supplementary Material online), so these bacteria
may require heme supply from the hosts/symbiotic partners.
Furthermore, Bacteroides thetaiotaomicron, Bacteroides vul-
gatus, and Candidatus Sulcia, for which the possible presence
of yet-unidentified genes for Protox was discussed (Kato et al.
2010), also lack the known heme biosynthetic pathway, so
these organisms may not require Protox activity. However,
some bacteria that do not seem parasitic or symbiotic (e.g.,
Dehalococcoides, Thermotoga, Dictyoglomus) also lack most
of the heme biosynthetic enzymes. Thus far, heme sources in
these organisms are an enigma.

Some bacteria (e.g., Clostridium and Desulfovibrio species)
and most archaea lack the enzymes involved in the conversion
of uroporphyrinogen lll (Urogen) into heme but possessed the
enzymes required for Urogen formation (supplementary table
S3, Supplementary Material online) (Panek and Brian 2002;
Cavallaro et al. 2008). Indeed, Desulfovibrio vulgaris and
Methanosarcina barkeri may synthesize protoheme through
precorrin 2, which is formed by the methylation of Urogen
and thus bypasses the pathway from Coprogen to Proto. We
confirmed that Desulfovibrio and Methanosarcina species
indeed lack any types of Protox in their genome but possessed
enzymes required for Urogen formation (supplementary table
S3, Supplementary Material online). As proposed by Cavallaro
et al. (2008), many archaeal species lack most enzymes re-
quired for the conversion of Urogen into Proto. Specifically,
almost all enzymes required for Proto formation from Urogen
are missing in Crenarchaeota, so these species may exclusively
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Table 2
Distribution of Heme Biosynthetic Proteins in 1,176 Known Prokaryotes
Phylum All Protox ALA Synthesis HemB-E Coprox HemH
Y J G Total HemAL ALAS Total F N/Z Total

y-Proteobacteria 264 46 82 153 247 246 1 246 255 234 259 260 250
B-Proteobacteria 83 29 82 2 82 82 2 82 82 75 82 82 82
e-Proteobacteria 32 1 30 0 31 32 0 32 32 0 32 32 31
3-Proteobacteria 35 18 1 3 19 35 0 35 35 6 35 35 19
a-Proteobacteria 128 10 122 3 122 1 121 121 122 119 109 127 122
Other Proteobacteria 1 1 0 0 1 1 0 1 1 0 1 1 1
Firmicutes 231 82 0 20 99 128 1 128 145 0 208 208 120
Tenericutes 29 0 0 0 0 0 0 0 0 0 6 0 0
Actinobacteria 109 88 0 4 88 95 2 95 98 3 104 104 94
Chlamydiae 16 16 0 0 16 16 0 16 16 2 16 16 16
Spirochaetes 22 6 0 0 6 7 0 7 0 14 14 9
Acidobacteria 3 3 0 0 3 3 0 3 3 0 3 3 3
Bacteroidetes 34 12 12 1 23 17 0 17 29 15 28 28 19
Other bacteria 17 5 1 1 6 13 0 13 13 3 17 17 6
Cyanobacteria 40 15 34 2 40 40 0 40 40 40 40 40 40
Green sulfur bacteria 1 1 0 1 11 1 0 11 1 0 1 1 1
Green nonsulfur bacteria 14 0 4 8 9 0 9 9 3 14 14 5
Deinococcus-Thermus 8 7 0 2 7 8 0 8 8 1 8 8 7
Hyperthermophilic bacteria 25 8 3 3 14 14 0 14 16 0 24 24 12
Additional bacteria 5 2 1 1 3 3 1 4 4 1 5 5 2
Archaea

Euryarchaeota 58 11 13 21 51 0 51 51 0 0 0 6

Crenarchaeota 28 0 0 0 0 23 0 23 22 0 3 3 0

Other archaea 3 0 0 0 0 2 0 2 1 0 0 0

Note.—Data are number of species.

use the alternative heme biosynthetic pathway through
precorrin-2.

Several bacteria from various phyla such as Mycobacterium
avium and Thermus thermophilus lacked known Protox types
but possessed all other enzymes for heme biosynthesis (sup-
plementary table S4, Supplementary Material online). Some
of these bacteria (Geobacter sulfurreducens, Arthrobacter
arilaitensis, Opitutus terrae, Thermomicrobium roseum, and
T. thermophilus) seem to be free-living and thus might have
yet unidentified genes for Protox activity.

A number of bacteria lacking most of the heme biosyn-
thetic pathway (e.g., Buchnera, Bartonella, Streptococcus,
Bifidobacterium, Dehalococcoides, Thermotoga) possess ho-
mologs for hemN, which encodes an oxygen-independent
type of coproporphyrinogen lIl oxidase (supplementary table
S2, Supplementary Material online). In addition, Desulfovibrio,
Clostridium, and some Archaea (lgnicoccus hospitalis,
Hyperthermus  butylicus, and Acidilobus saccharovorans),
which are supposed to use the precorrin-2 pathway for
heme biosynthesis, also have hemN homologs (supplementary
table S3, Supplementary Material online). In Lactococcus lactis,
which lacks the heme biosynthetic pathway, the HemN
homolog named HemW is not a functional Coprox but a

heme-binding protein with a putative role in heme trafficking
(Abicht et al. 2012). Thus, the prokaryotes lacking the
common heme biosynthetic pathway may use the hemN
homologs for heme trafficking or other processes than
heme biosynthesis as proposed for L. lactis (Abicht et al. 2012).

Phylogenetic Analysis of HemG

hemG@G is mostly limited to y-Proteobacteria, but is also found
in various bacteria (table 2). Phylogenetic analysis revealed
that HemG sequences from y-Proteobacteria are clustered in
a major clade that is highly supported by various tests (fig. 1).
The diversification of hemG within y-Proteobacteria is more
obvious in the phylogenetic analysis of all hemG genes
(supplementary fig. S1, Supplementary Material online), so
HemG may be conserved predominantly within this class.
The y-proteobacterial hemG clade contains genes from two
strains of Prochlorococcus marinus (Cyanobacteria), which
suggests a horizontal transfer. Because these Pr. marinus
strains have no HemJ or HemY, the major Protox types in
Cyanobacteria, these strains might have lost these Protox
after acquisition of HemG. However, a detailed comparison
of the genomic sequences near the hemG or hemJ genes in
closely related Prochlorococcus strains (fig. 2) revealed that the
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0.57/47/-/135/-

1.00 r Shigella flexneri 2a str. 301 SF3926 | |
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hemG gene fits into the identical place of hem/ in related
strains. There are no significant changes in the surrounding
genes, such as uvrC and php. We confirmed the connecting
sequences by direct sequencing. The probable recombination
indeed took place perfectly.

Homologous genes for HemG are also identified in some
green photosynthetic bacteria and other prokaryotes.
However, the sequences from green photosynthetic bacteria
are phylogenetically distant from those of y-Proteobacteria
and form another cluster with those of L. Jactis and
Euryarchaea species, which probably lack the typical heme
metabolic pathway (fig. 1 and supplementary fig. S1,
Supplementary Material online). Considering that these
green photosynthetic bacteria possess hemY genes, HemG
homologs clustered in the outer clade likely do not function
as Protox in vivo. This possibility is supported by evidence that
a long chain insert loop, a critical domain unique to HemG of
v-Proteobacteria (Boynton et al. 2009), is poorly conserved in
HemG homologs of the outer clade group (supplementary fig.
S2, Supplementary Material online). In fact, the HemG homo-
log from Bdellovibrio bacteriovorus (BD2899), also featuring a
poorly conserved long chain insert loop, could not comple-
ment hemG deficiency in E. coli (Boynton et al. 2009).
This bacterium also possesses a hemY gene presumably
as the gene responsible for Protogen oxidation. HemG is
a member of the long chain flavodoxins that are

FMN-containing electron transfer proteins involved in various
biological processes. HemG homologs may have originated
from long chain flavodoxins and evolved uniquely as the
Protox within y-Proteobacteria.

Phylogenetic Analysis of Hem)J

We next performed phylogenetic analysis of HemJ (fig. 3).
Hem)J sequences (Cluster 1819 or InterPro IPRO05265) are
found in many a-Proteobacteria and Cyanobacteria and in
some other Proteobacteria. The tree was rooted with
Cluster 28370 and Cluster 40856 as outgroups. These clusters
(not included in InterProlPR0O05265) differ from Cluster 1819
in the central part (supplementary fig. S3, Supplementary
Material online) and are unlikely to be HemJ. Thus, Hem)
may have originated within a-Proteobacteria. The sequences
from other Proteobacteria and Cyanobacteria form sister
groups to the a-proteobacterial HemJ, which shows that
these sequences were transferred to these bacteria from
a-Proteobacteria. Alternatively, HemJ emerged in a common
ancestor of Proteobacteria and Cyanobacteria. However, the
branching pattern in B- and y-Proteobacteria might suggest
multiple horizontal gene transfer events. If we admit that
the acquisition of hem/ in Cyanobacteria is due to horizon-
tal gene transfer, the transfer of hem/ gene into
Cyanobacteria might have occurred near the base of cyano-
bacterial diversity before the separation of the Anabaena and
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Synechococcus—Prochlorococcus  lineages.  Moreover, the
hemJ from Synechococcus PCC 7502 (supplementary fig.
S4, Supplementary Material online) is first branched from
the root of the cyanobacterial clade. An extensive genome
analysis showed that Synechococcus PCC 7502 constitutes a
deep branch of the cyanobacterial phylogenetic tree with
Pseudanabaena species, which is basal to the plastid branch
(Shih et al. 2013). Thus, Cyanobacteria may have acquired
hemJ before the endosymbiotic event in plant cells.
Gloeobacter  violaceus, the deepest branch within
Cyanobacteria, possesses hemJ in addition to hemY. This spe-
cies probably obtained hem. through horizontal gene transfer
because the hem/ sequence of G. violaceus is placed within
the large branch including Anabaena and Synechococcus—
Prochlorococcus lineages. However, an alternative explanation
could be possible, whereby cyanobacterial HemJ is positioned
at the root of Hem) diversification. If the enzymatic

mechanism including the active center of HemlJ is elucidated,
the rooting problem could be resolved.

A sequence similar to the Prochlorococcus hemJ is found in
the chromatophore genome of the photosynthetic amoeba
Paulinella chromatophora. This result is consistent with the
hypothesis that chromatophores in Paulinella originated
from a recent primary endosymbiosis of a member of the
Synechococcus—Prochlorococcus  group  (Nowack et al.
2008). The amino acid sequence of Pa. chromatophora
HemJ (PCHRc_PCC_0146) is highly conserved (supplementary
fig. S3, Supplementary Material online), so this gene may not
be a pseudogene. Because other genes for tetrapyrrole bio-
synthesis are also found in the chromatophore genome,
except for hemD encoding Urogen synthase (Nowack et al.
2008), the cyanobacterial tetrapyrrole pathway including
HemJ may be functional in the chromatophore. In plants,
the mosaic origin of the heme biosynthetic pathway from
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plastid (cyanobacterial), mitochondrial (a-proteobacterial),
and nuclear genes is proposed (Obornik and Green 2005).
Whether the Pa. chromatophora nuclear genome encodes a
set of tetrapyrrole biosynthetic genes is unclear, and sequence
analysis of the nuclear genome is needed to understand
interactions of the pathway between the nucleus and the
chromatophore in this unique organism.

Phylogenetic Analysis of HemY

HemY is widely distributed among almost all bacterial phyla
and is the sole Protox in eukaryotes (tables 1 and 2). Its ubig-
uity indicates that HemY was used in the last common
eukaryotic ancestor and was diversified according to species
diversification. Because HemY is a member of an FAD protein
superfamily showing sequence and structural homologies to
amine oxidases and phytoene desaturases (Dailey and Dailey
1998; Koch et al. 2004), this enzyme probably originated from
an FAD protein in the common ancestral lineage. Of note,
green sulfur bacteria, which are obligate anaerobes, possess
only the HemY-type Protox. Although HemY was character-
ized as the oxygen-dependent oxidase in several organisms
(Heinemann et al. 2008), HemY from Plasmodium falciparum
was found active only under anaerobic conditions in the pres-
ence of electron acceptors such as FAD, NAD, and NADP
(Nagaraj et al. 2010). Therefore, HemY in green sulfur bacteria
may not require molecular oxygen for Protogen oxidation.

Although most of the Cyanobacteria we investigated fea-
ture the HemJ Protox, some Cyanobacteria possess HemY.
The phylogenetic tree of HemY for Cyanobacteria is basically
consistent with the tree for cyanobacterial species, with the
deepest branch for G. violaceus HemY (fig. 4 and supplemen-
tary fig. S5, Supplementary Material online). Other deep-
branching Cyanobacteria such as Cyanobacterium A-Prime
(Synechococcus  sp. JA-3-3Ab  from Yellowstone) and
Pseudanabaena PCC7367 also possess HemY for Protox, so
HemY may be the ancestral Protox in Cyanobacteria but has
been replaced by HemJ in most species.

Phylogenetic analysis showed that land plants have two
distinct types of HemY, clustered into different clades
(fig. 4). Both clusters for plant HemY are unambiguously sep-
arated from those for animals and fungi. As reported by
Obornik and Green (2005), one of the plant HemY (PPO1)
branches off from the cyanobacterial clade and thus could
originate from a cyanobacterial HemY through endosymbio-
sis. In tobacco (Lermontova et al. 1997), PPO1 is targeted to
plastids, which is consistent with its origin. Because deficiency
of PPO1 causes severe growth defects along with necrotic leaf
damage in both tobacco (Lermontova and Grimm 2006) and
Arabidopsis (Molina et al. 1999), this plastid-localized enzyme
could be the main PPO responsible for the tetrapyrrole biosyn-
thesis in plastids.

Meanwhile, the other form of plant HemY (PPO2) is tar-
geted to mitochondria in tobacco (Lermontova et al. 1997)

and dually targeted to plastids and mitochondria in spinach
(Watanabe et al. 2001). PPO2-type HemY is unique to land
plants and is not found in algae, which suggests that land
plants acquired PPO2 genes after the divergence of an ances-
tral land plant from a green algal lineage. Obornik and Green
(2005) reported that plant PPO2 was on the same branch
as sequences from a-Proteobacteria and would be of proteo-
bacterial origin. However, the branch formed by the a-pro-
teobacterial sequences in their analysis had low bootstrap
supports with substantial amino acid substitutions (Obornik
and Green 2005). Because these a-proteobacterial sequences
(ZP0O0004390 from Rhodobacter sphaeroides, NP767181
from  Bradyrhizobium japonicum, and NP104729 from
Mesorhizobium loti) are not clustered with HemY but rather
with amine oxidases in the Gclust (ZPO0010613 from
Rhodopseudomonas palustris is DNA methylase and could
be an annotation error), the relationship between plant
PPO2 and a-proteobacterial sequences proposed in Obornik
and Green (2005) could be an artifact due to long branch
attraction. Indeed, these bacteria possess HemJ sequences
as do most of the other a-Proteobacteria, and therefore
HemJ probably functions as a Protox in these bacteria.

HemYs from Chloroflexus aurantiacus and Chloroflexus
aggregans branch from the root of the plant PPO2 clade
(fig. 4). The HemY sequences from other Chloroflexi such as
Roseiflexus species belong to a large bacterial clade with those
from Actinobacteria and Firmicutes. To ascertain this result,
we performed the AU test for 19 phylogenic trees constructed
from 20 representative taxa (fig. 5 and table 3). All 15 trees in
which the Chloroflexus hemY and plant PPO2 sequences
formed sister branches (trees 1-15) gave AU probabilities
>0.2 and therefore were not discarded. In contrast, trees in
which the Chloroflexus HemY was placed on the bacterial
branch (trees 16 and 17) or on the cyanobacterial branch
(trees 18 and 19) gave AU values <0.05, which are sufficiently
low to reject these possibilities. These data confirm that
Chloroflexus HemY and plant PPO2 sequences form a
branch separate from the branches of plant PPO1 and bacte-
rial HemY.

As indicated by Tang et al. (2011), except for hemY and
adjacent hemN, which are approximately 2,000 genes away
from the heme operon, genes involved in heme biosynthesis
form an operon in Chloroflexus species (supplementary fig.
S6, Supplementary Material online). Heme biosynthetic
genes also form an operon in Roseiflexus RS-1 and
Roseiflexus castenholzii. Unlike in Chloroflexus species, the
hemY gene is included in the operon in Roseiflexus species.
Thus, hemY sequences found in Roseiflexus species may be
the ancestral type of hemY in green nonsulfur bacteria, and in
Chloroflexus species, it was replaced by another hemY gene
related to plant PPO2 through horizontal gene transfer, al-
though the ancestor of the PPO2 homologs remains
unknown.
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Fic. 4.—pPhylogenetic tree of HemY. Bl tree of HemY with confidence support values obtained with BI/ML/PB/RA/NJ methods shown at each branch.
Only a Bl score is shown in the interior of branches for visibility. Distance scale is indicated by the bar on top. The cluster numbers refer to those in the Gclust
2010 data set. Clusters 8156 and 3943 are mixed in the major HemY group. Land plants contain both PPO1 and PPO2. Cluster 15732 contains proteins that
are probably not HemY. Cluster 9674 is an outgroup consisting of amine oxidases. Note that some proteins are erroneously annotated as HemG in the
original databases.
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Fic. 5.—Phylogenic trees used for AU testing. Twenty representative HemY proteins were selected, and the most likely trees were evaluated by AU test.
Trees 1-15 were selected by the protml program. Trees 16—19 were tested as constrained trees. The results of the AU test are in table 3. Both JTT and WAG
models were tested. Trees 1-15 should not be rejected as nonsignificant, whereas trees 16-19 were clearly abandoned. For names of eukaryotes, see table
1. Other names are the followings: Bsu, Bacillus subtilis; Caur, Chloroflexus aurantiacus; Fal, Frankia alni; Glv, Gloeobacter violaceus; Roca, Roseiflexus

castenholzii, Sthe, Sphaerobacter thermophilus; Tel, Thermosynechococcus elongatus; Ter, Trichodesmium erythraeum; Tth, Thermus thermophilus; YelA,
Cyanobacterium Yellowstone A-prime.
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Table 3
Results of AU Test Using CONSEL Analysis
Rank Item Obs AU
JTT model
1 8 0 0.665
2 9 0 0.659
3 4 2.7 0.543
4 2 27 0.521
5 5 2.1 0.52
6 6 23 0.498
7 7 1.5 0.439
8 15 5.4 0.432
9 12 1.5 0.423
10 3 3.8 0.379
1 14 6.4 0.354
12 1 3.6 0.349
13 13 46 0.334
14 10 10.2 0.274
15 11 10.8 0.252
16 17 279 0.033
17 16 30.6 0.022
18 19 63 0.001
19 18 65.8 2E-04
WAG model
1 4 0.2 0.626
2 6 —0.1 0.605
3 3 0.1 0.594
4 9 2.5 0.538
5 1 0.8 0.524
6 5 0.7 0.509
7 2 11 0.502
8 8 34 0.478
9 7 3.6 0.423
10 10 6.5 0.361
11 12 44 0.327
12 14 8.7 0.315
13 11 7.5 0.3
14 15 8.8 0.286
15 13 5.1 0.265
16 16 31.7 0.017
17 17 345 0.011
18 19 713 5E-04
19 18 68.4 3E-05

Note.—Item, tree number; Obs, log-likelihood difference.

Structural Differences of HemY

Crystal structures of HemY from Nicotiana tabacum (ntPPO2)
(Koch et al. 2004), Myxococcus xanthus (mxPPO) (Corradi
et al. 2006), B. subtilis (bsPPO) (Qin et al. 2010), and Homo
sapiens (hsPPO) (Qin et al. 2011) have revealed that the overall
folding patterns are similar among HemY orthologs from
these species (Qin et al. 2011). Amino acid residues involved
in substrate- and FAD-binding were identified on the basis of
their 3D structures and kinetic analyses of mutant proteins
(Koch et al. 2004; Corradi et al. 2006; Heinemann et al.

2007; Qin et al. 2010, 2011; Hao et al. 2013). Multiple align-
ment of the HemY proteins showed that key amino acids of
HemY are basically conserved across prokaryotes and eukary-
otes (supplementary fig. S7, Supplementary Material online).
However, some notable characteristics were found in each
clade. 3D structures of HemY homologs of Arabidopsis thali-
ana (PPO1 and PPO2), Cyanidioschyzon merolae, C. aurantia-
cus, and R. castenholzii were modeled by using the known
structures as templates. Figure 6 compares the structures of
various HemY proteins. The loops that are characteristic to
each protein are marked with a “#" plus an identification
number, which are also shown in the alignment (supplemen-
tary fig. S7, Supplementary Material online).

From crystallographic analyses, residues that interact with
the substrate were proposed. According to previous re-
searches (Koch et al. 2004; Corradi et al. 2006; Qin et al.
2011), Arg98, Phe353, and Leu356 of ntPPO2 (corresponding
to Arg97, Phe331 and Leu334 of hsPPO and Arg95, Phe329
and Leu332 of mxPPO, respectively) interact with the D-ring of
Protogen. Furthermore, in the crystal structure of mxPPO,
these residues make key interactions with the diphenyl ether
herbicide acifluorfen, which suggests an involvement of these
residues in acifluorfen sensitivity. These substrate-binding res-
idues are not conserved in the HemY homologs from the
bacterial clade including B. subtilis. In bsPPO, these residues
are replaced by Ser95, Thr330, and Val333, respectively, and
may not participate in acifluorfen binding or substrate recog-
nition (Qin et al. 2010). Indeed, bsPPO has a tolerance for
acifluorfen (Corrigall et al. 1998). Because HemY proteins
from the bacterial clade commonly lack the residues involved
in acifluorfen binding, these enzymes probably tolerate diphe-
nyl ether herbicides, as does bsPPO.

Another characteristic of common amino acid sequences in
the bacterial clade is a short insertion, in the case of bsPPO,
between B7 and a3 (supplementary fig. S7, Supplementary
Material online). 3D structure of this region marked #1 was
invisible in the crystallographic analysis of bsPPO, presumably
because of conformational flexibility (Qin et al. 2010). This
region belongs to the membrane-binding domain in the struc-
ture of ntPPO2 and is assumed to affect cellular localization
patterns of the enzymes. Considering that bsPPO is a soluble
monomer whereas ntPPO, mxPPO, and hsPPO are membrane-
bound dimers, this insertion may contribute to the unique
localization of bsPPO and presumably that of other orthologs
in the bacterial clade.

When amino acid sequences were compared between
plant PPO1 and PPO2 isoforms, a remarkable difference was
observed, in the case of ntPPO2, between the last half of a5
and the linker to a6 as marked as #2 (fig. 6). The ntPPO2 a5,
which forms a dimer interface at the base of membrane-bind-
ing domain in the crystal structure, is assumed to function in
dimerization and/or interaction with membrane lipids (Koch
et al. 2004). Therefore, this region may be associated with
distinct localization patterns between PPO1 and PPO2 as
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Fic. 6.—Comparison of the structures of various HemY proteins. Structures of various HemY proteins (shown on left and center) were estimated by
homology modeling with Nicotiana tabacum PPO2, Bacillus subtilis HemY, and Myxococcus xanthus HemY. Characteristic structures are annotated with
numbers, which correspond to the annotations in supplementary figure S7, Supplementary Material online. The rainbow color gradation from blue to red
indicates direction from the N-terminus to C-terminus.
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reported in tobacco (Lermontova et al. 1997) and spinach
(Watanabe et al. 2001). Furthermore, the ntPPO2 o5 is mod-
eled to form an interface with ferrochelatase, which suggests
an involvement of this region in protein—protein interaction
with ferrochelatase and presumably also Mg-chelatase.

In addition, plant PPO2 isoforms have two unique amino
acid insertions marked #5 and #7 (fig. 6), which correspond to
B11 and a14 of ntPPO2, respectively. In the crystal structure of
ntPPO2, B11 is positioned within the FAD-binding domain but
its specific function is unknown. a.14 of ntPPO2 forms dimer
interface together with o5, and may add unique characteris-
tics to PPO2 isoforms in combination with a5 for their locali-
zation. Meanwhile, plant PPO1 homologs have a unique
insertion marked #6 in the loop between 12 and B13 of
ntPPO2. In ntPPO2, hsPPO, and bsPPO, this region is posi-
tioned at the periphery of the substrate-binding domain
near the dimer interface. Because the insertion in PPO1 ho-
mologs is rich in hydrophilic residues, this region may function
in intermolecular interaction.

Concluding Remarks

We present an extensive analysis of isofunctional Protox en-
zymes in various organisms. Although the isofunctional en-
zymes seemed to move from one phylum to another often,
we could provide a general view of the usage of isofunctional
enzymes in prokaryotes and eukaryotes. Because these enzy-
matic activities are essential for producing Proto in almost all
organisms for the synthesis of heme and Chl, studies are
needed for the organisms that lack the genes for these iso-
functional enzymes. The phylogenomic approach we used can
shed more light on the still uncovered enzymes in the biosyn-
thesis of Proto.

Supplementary Material

Supplementary figures S1-57 and tables S1-S4 are available
at Genome Biology and Evolution online (http:/Avww.gbe.
oxfordjournals.org/).
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