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Abstract: Mindfulness training (MT) reduces self-referential processing and promotes interoception,
the perception of sensations from inside the body, by increasing one’s awareness of and regulating
responses to them. The posterior cingulate cortex (PCC) and the insular cortex (INS) are considered
hubs for self-referential processing and interoception, respectively. Although MT has been consistently
found to decrease PCC, little is known about how MT relates to INS activity. Understanding links
between mindfulness and interoception may be particularly important for informing mental health in
adolescence, when neuroplasticity and emergence of psychopathology are heightened. We examined
INS activity during real-time functional magnetic resonance imaging neurofeedback-augmented
mindfulness training (NAMT) targeting the PCC. Healthy adolescents (N = 37; 16 female) completed
the NAMT task, including Focus-on-Breath (MT), Describe (self-referential processing), and Rest
conditions, across three neurofeedback runs and two non-neurofeedback runs (Observe, Transfer).
Regression coefficients estimated from the generalized linear model were extracted from three INS
subregions: anterior (aINS), mid (mINS), and posterior (pINS). Mixed model analyses revealed the
main effect of run for Focus-on-Breath vs. Describe contrast in aINS [R2 = 0.39] and pINS [R2 = 0.33],
but not mINS [R2 = 0.34]. Post hoc analyses revealed greater aINS activity and reduced pINS activity
during neurofeedback runs, and such activities were related to lower self-reported life satisfaction
and less pain behavior, respectively. These findings revealed the specific involvement of insula
subregions in rtfMRI-nf MT.

Keywords: mindfulness; interoception; insula; real-time fMRI neurofeedback; awareness; adolescents

1. Introduction

Mindfulness refers to the moment-to-moment, non-judgmental awareness that is
cultivated by paying attention in a particular way: on purpose, in the present moment,
and non-reactively [1]. Dispositional mindfulness appears to be positively related to
psychological health [2,3], and mindfulness training (MT) has been shown to enhance
psychological well-being in healthy populations [4,5], as well as benefit various health con-
ditions including chronic pain, stress, anxiety, depression, addiction, and suicidality [6–8].
Adolescence represents a sensitive developmental period for emergence of psychopathol-
ogy, including anxiety disorders [9], depression [10], and suicidal behavior [11]. Although
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early interventions such as school-based MT have demonstrated effectiveness in enhancing
well-being in healthy adolescents [12,13], there is still a need to delineate the precise mech-
anisms by which MT exerts its mental health benefits to optimize prevention and early
intervention efforts in youth.

1.1. The Role of Interoception in Mindfulness and Its Key Hub Insula

By focusing attention on the body and on the “here and now”, MT directly cultivates
interoception [14–17], the individual’s ability to focus attention on the current body state
to select and motivate most appropriate regulatory behaviors [18]. In fact, interoception
has been proposed as one of the core mechanisms of action of MT [17,19–21]. MT ranging
from 3 to 12 weeks has been found to improve interoceptive awareness as measured by the
self-reported Multidimensional Assessment of Interoceptive Awareness (MAIA) in various
clinical populations, including patients with chronic pain and comorbid depression, who re-
ported greater increase in the self-regulation and non-distracting subscales after the 8 week
Mindfulness-Based Cognitive Therapy (MBCT) [16]; veterans with post-traumatic stress
disorder (PTSD) who reported increases in the self-regulation, body listening, and emo-
tional awareness subscales after a 12 week integrative exercise program [22]; and depressed
patients who showed improved regulatory and belief-related aspects of interoception as
measured by the attention regulation, self-regulation, body listening, and trusting subscales
after a 3 week MBCT [23].

The insular cortex (INS) has been identified as the key hub for interoception [24–28].
Characterizing increased complexity in INS functioning, INS can be subdivided into three
subregions from posterior to anterior orientation (i.e., posterior-to-anterior progression
hypothesis) [25,29]. Specifically, the posterior INS (pINS) is primarily involved in encoding
interoceptive signals, the mid-INS (mINS) is important in integrating interoception with
motivated behavior, and the anterior INS (aINS) encodes both introspective emotional
awareness and bodily sensations [26,30]. Although several neuroimaging studies have
examined the relation between MT and INS activity, the majority of them have reported
INS activity as a whole, while extant findings are largely mixed. Earlier research suggested
that MT reduced self-referential processing that was accompanied by decreased aINS
activations during meditation among experienced meditators [31]. However, others have
proposed that INS would show increased activation due to the stronger interoception
that is cultivated through MT [19]. Indeed, a review of nine neuroimaging studies found
increased INS activity following either the eight-week Mindfulness-Based Stress Reduction
(MBSR) course [32] or mindfulness-based tasks among stressed, anxious, and healthy
participants [33]. The majority of the literature evaluating insula subregions has reported
effects on aINS, rather than mINS or pINS [34]. The mixed INS findings may relate to there
being functionally distinct INS subregions involved in affective relative to somatosensory
processing or may be explained by unaccounted individual, measurement, or treatment
differences. Nevertheless, mixed findings and limited empirical data linking MT and
activity in INS subregions require further clarification of the role of INS and interoception
in MT.

1.2. Real-Time Functional Magnetic Resonance Imaging Neurofeedback-Augmented MT Targeting
the Posterior Cingulate Cortex

The use of real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf)
provides the means of experimentally testing and modulating brain networks central to
MT, thereby allowing for a more direct assessment of the role INS plays in this process. MT
engages distributed network of brain regions, particularly the regions of the default mode
network (DMN) [35–38], whose central hub is the posterior cingulate cortex (PCC) that
supports self-referential processing, the cognitive process of relating information to the
self [39]. Indeed, changes in the PCC are among the most robust findings in mindfulness
studies, as demonstrated by a recent review where near half of 49 neuroimaging studies
reported significant effects of MT on the PCC [40]. PCC has been shown to be activated
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during mind wandering and self-referential processing [41,42], and deactivated during
various mindfulness/meditation practices [43]. Importantly, both INS and PCC play
interconnected roles in MT that PCC is also known to be involved in self-awareness [44,45],
a construct is often used to measure self-reported interoception (i.e., the Self-Awareness
Questionnaire [46] and the How do you feel questionnaire [47]). Given that PCC may
be the key modulatory target of MT, neurofeedback targeting the PCC during MT has
been successfully implemented in adults [48] and in our recent work with adolescents [49].
Specifically, we report the feasibility and tolerability of PCC-targeted rtfMRI-nf-augmented
mindfulness training (MT) in the current sample as established by self-report and successful
downregulation of PCC as a function of rtfMRI-nf-augmented mindfulness training and
above and beyond mindfulness training alone. In addition, the whole-brain and functional
connectivity analyses found co-modulation of a range of regions in the default mode and
salience networks, including with the pINS.

1.3. The Present Study

Based on previous literature and our findings pointing to co-modulation of the pINS
consequent to rtfMRI-nf targeting the PCC during mindfulness training [49], the present
study aimed to clarify the role of INS in MT. We examined activity in distinct INS subre-
gions during MT and its modulation with rtfMRI-nf-augmented MT (NAMT) targeting
PCC in healthy adolescents. We selected this developmental period because adolescent
brain neuroplasticity allows for effective attempts at improving learning and performance,
and therefore makes it a critical period to study neural correlates of psychological and
behavioral strategies and their optimization [50,51]. Because aINS is better studied than
mINS and pINS in mindfulness research [34], the primary outcome was aINS activity
during Focus-on-Breath (i.e., MT) relative to Describe (i.e., self-referential processing).
The secondary outcomes included mINS and pINS activity under the same condition.
Given that insula activation has been found to be the most consistent effect observed
following MT in meditation-naïve participants [34], we hypothesized that (H1) relative to
self-referential processing, aINS would show increased activity during MT in healthy ado-
lescents, and (H2): this activation will be further modulated consequent to rtfMRI-nf. Our
approach regarding the activity in mINS and pINS in relation to MT was exploratory given
the limited research in this area [34]. For exploratory outcomes, we collected self-reported
measures concerning task adherence (task ratings) measured immediately following each
task run, the State Mindfulness Scale (SMS) measured pre- and post-NAMT [52], as well
as affective and sensory awareness assessed by the Patient-Reported Outcomes Measure-
ment Information System (PROMIS) Pediatric scales measured pre-NAMT, including life
satisfaction [53], meaning and purpose [54], positive affect [55], pain behavior [56], pain
interference [57], and fatigue [58]. Based on the posterior-to-anterior progression hypothe-
sis [25,29] and awareness of emotion and sensory states being core to interoception and
mindfulness [14,59], we hypothesized that aINS activity would be related to affective
awareness (i.e., life satisfaction, meaning and purpose, and positive affect), while mINS
and pINS activity would be related to sensory awareness such as pain behavior and pain
interference (H3).

2. Materials and Methods
2.1. Participants

Adolescents in the present study took part in a larger ongoing longitudinal study,
with recruitment taking place between September 2019 and July 2021. Adolescents were
recruited from the community using flyers, radio and social media advertisements, bill-
boards, and a school-based messaging platform (i.e., PeachJar). A phone screen determined
initial eligibility. Remote and in-person visits with adolescents and primary caregivers
provided demographic information, medical and psychiatry history, pubertal status, fam-
ily history of psychiatric illness, and an MRI safety questionnaire. Eligible adolescents
were between 13 and 17 years of age at the time of enrollment, had a parent or a legal
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guardian able to provide consent, were psychiatrically and physically healthy, and were
able to validly and safely complete baseline assessments. All races and genders were
included. Adolescents were excluded if diagnosed with a neurological or developmental
disorder, were currently being managed for migraines (e.g., daily prophylactic medication),
had history of traumatic brain injury, had a lifetime history of psychopathology, were
currently using medications with major effects on brain function or blood flow (e.g., acne
medication), and/or reported MRI contraindications. Forty adolescents were consented for
the present study, with two adolescents withdrawn due to repeated missed appointments
following consent procedures, and one participant not having usable data due to technical
difficulties, for a total of 37 healthy adolescents included in current analyses. According to
Desmond and Glover [60], a sample size of 24 is recommended for typical within-group
fMRI experiments, in which inferences regarding the differences in activation between
two or more conditions are intended to be made in a single population. Therefore, with N
= 37, we were 98% powered to detect medium-size effects (f = 0.25) between conditions.
Thirty-four subjects overlapped with the sample in [49].

2.2. Experimental Procedures

This study involves analysis of an ongoing study focused on the impact of self-
regulation of PCC using rtfMRI-nf. The current study presents a tangential analysis to the
primary outcomes as delineated on Clinical Trials (www.clinicaltrials.gov NCT04053582).

2.2.1. Neurofeedback-Augmented Mindfulness Training Task (NAMT)

The NAMT task (Figure 1) has been previously described [49], and further task details
can be found in Appendix A. Briefly, adolescents were first given a brief psychoeducational
introduction into mindfulness, followed by a guided traditional mindfulness practice fo-
cused on the breath [43,48]. Next, adolescents completed the same mindfulness practice and
assessment with MRI noises in the background in the mock scanner. MT was manualized
to ensure fidelity across participants. MT was delivered by a trained research assistant
under the supervision of a licensed clinical psychologist. Training sessions were audio
recorded and up to 20% sessions were randomly selected for fidelity ratings by research
staff using an unpublished measure developed by NK in consultation with RLA for the
purposes of this study. On 3-point Likert scale (0 = no adherence, 1 = adherence identified
but weak or flawed, 2 = good adherence) of how closely the research assistant followed the
manualized mindfulness training, the fidelity ratings indicate that the manualized training
was delivered with satisfactory adherence (M = 95.81%, SD = 3.33%) (the percentage was
obtained by summed score/highest total score possible).

The neuroimaging session included 8 runs (Figure 1a), including an anatomical scan,
Resting State scan 1 (Rest-1), Observe (OBS), three neurofeedback runs (NF-1, NF-2, NF-3),
Transfer run (TRS), and Resting State scan 2 (Rest-2). During Rest-1 and Rest-2 (6 min
each), participants were instructed to clear their mind and not think about anything while
fixating upon a fixation cross. OBS, NF-1, NF-2, NF-3, and TRS runs each lasted 6 min
and 56 s. Runs started with a 66 s rest block, followed by alternating Describe (Active
Control condition without neurofeedback; 20 s), Focus-on-Breath (MT condition with PCC
neurofeedback; 70 s), and Rest (Baseline condition; 30 s) blocks. OBS and TRS runs did not
involve neurofeedback (no bar displayed) during the Focus-on-Breath condition. During
the Focus-on-Breath condition [48], adolescents were instructed to pay attention to the
physical sensations of their breath, not trying to change their breathing in any way, and if
their attention were to wander to something else, to gently bring their attention back to their
breath [43]. In the Describe condition, adolescents were presented with various adjectives,
which they had to mentally categorize as descriptive or not descriptive of them for the
entire duration the word was displayed on the screen [61]. During neurofeedback runs,
adolescents were told that they would see a bar displayed on the screen, representing the
relative brain activity in a particular brain region in real time (Figure 1b). The instructions
further indicated that the bar may change with the experience of focusing on the breath

www.clinicaltrials.gov
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(i.e., the bar may go blue if they are fully concentrating on their breath, and red if their mind
wanders elsewhere). The consensus on the reporting and experimental design of clinical
and cognitive-behavioral neurofeedback studies (CRED-nf checklist) [62] is included in
Appendix B Table A1.
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Figure 1. Real-time fMRI neurofeedback-augmented mindfulness training task [49]. (a) Posterior cin-
gulate cortex (PCC, MNI coordinates: x = −5, y = −55, z = 23) was selected as the target (ROI, spheres
of 7 mm radius) for the real-time fMRI neurofeedback (rtfMRI-nf) training. (b) The experimental
protocol consisted of eight fMRI runs, including an anatomical scan, Resting State scan 1 (Rest-1),
Observe (OBS), three neurofeedback runs (NF-1, NF-2, NF-3), a Transfer run (TRS), and Resting
State scan 2 (Rest-2). During Rest runs (lasting 6 min), the participants were instructed to clear their
minds and not to think about anything in particular while fixating at the display screen. OBS, NF-1,
NF-2, NF-3, and TRS runs each lasted 6 min and 56 s. They started with a 66 s rest block, followed
by alternating Focus-on-Breath (mindfulness training condition; 70 s), Describe (Active baseline
condition; 20 s), and Rest (Baseline condition; 30 s) blocks. During the Focus condition, participants
were instructed to pay attention to the physical sensations of their breath, not trying to change it
in any way, and if their attention were to wander to something else, to gently bring it back to their
breath. In the Describe condition, participants were presented with various adjectives, which they
had to mentally categorize as descriptive or not descriptive of them. During the Rest condition,
the participants were presented with the cue “Rest” and asked to relax while looking at the display
screen. No neurofeedback was provided (no bars displayed) during the Rest and Describe conditions
or during the entire OBS and TR runs. (c) During the Focus condition, participants viewed a graphical
user interface (GUI) screen with neurofeedback bars (blue) and target bars (green). The participants
were told that the blue bar may change with their experience of focusing on the breath, and that
their goal was to make the blue bar match the green bar as often as possible. The target levels were
−0.5%, −0.75%, and −1.0% (% signal change relative to the preceding rest block) for NF-1, NF-2,
and NF-3, respectively.

2.2.2. Psychological Measurements

Following each fMRI run, participants completed task ratings, including the following
items: “How much did your mind wander while you were asked to focus on your breath?”,
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“How easy did you find it to focus on your breath?”, “How do you feel right now?”,
each rated from 1 to 10. Participants completed the SMS at T1 (pre-) and T2 (post-NAMT)
to quantify adolescents’ perceived level of attention to and awareness of their present
experience (i.e., mind, body, the pleasant/unpleasant/neutral hedonic tones of these
objects of awareness, and the qualities thought to characterize mindful awareness) [52].
Additionally, adolescents completed the following PROMIS Pediatric scales pre-NAMT:
life satisfaction (example items: Thinking about the past 4 weeks, “I was satisfied with
my life”, “I had a good life”, 1—Not at all, 5—Very much) [53], meaning and purpose
(example items: Thinking about my life “I can reach my goals in life”, “I have a reason for
living”, 1—Not at all, 5—Very much) [54], positive affect (example items: In the past 7 days,
“I felt happy”, “I felt peaceful”,1—Never, 5—Always) [55], pain behavior (example items:
In the last 7 days, when I was in pain, “It showed on my face”, “I talked about my pain.”
1—Never, 5—Always) [56], pain interference (example items: In the past 7 days, “I had
trouble sleeping when I had pain”, “I felt angry when I had pain”, 1—Not at all, 5—Very
much) [57], and fatigue (example items: In the past 7 days, “How often did you have to
push yourself to get things done because of your fatigue?”, “I have trouble starting things
because I am tired”, 1—Not at all, 5—Very much) [58].

2.2.3. Data Acquisition

Neuroimaging was performed using a GE MR750 3T MRI scanner with the 8-channel
receive-only head coil. To acquire T1-weighted anatomical images, a 3D magnetization-
prepared rapid gradient echo (MPRAGE) pulse sequence accelerated with sensitivity en-
coding (SENSE) [63] was used. The MPRAGE parameters were as follows: FOV/slice
thickness = 240/1.2 mm, axial slices per slab = 128, image matrix size = 256 × 256,
TR/TE = 5.0/1.9 ms, SENSE acceleration factor R = 2, flip angle = 8◦, delay/inversion times
TD/TI = 1400/725 ms, sampling band- width = 31.2 kHz, and scan time = 5 min 33 s.

For the whole-brain fMRI recording, an accelerated single-shot gradient EPI with
SENSE was used. EPI sequence parameters were optimized to maximize sensitivity to
BOLD contrast and minimalize image distortion and susceptibility dropouts [64,65]. EPI
parameters were as follows: FOV/slice = 240/2.9 mm, TR/TE = 2000/25 ms, SENSE
acceleration R = 2, acquisition matrix: 96 × 96, flip angle = 90◦, image matrix: 128 × 128,
46 axial slices, and voxel volume: 1.9 × 1.9 × 2.9 mm3. To allow the fMRI signal to reach
a steady state, three EPI volumes (6 s) were added at the beginning of each run and were
excluded from data analysis. Physiological pulse oximetry and respiration waveforms were
recorded simultaneously with fMRI (with 25 ms sampling interval, i.e., the sampling rate
of the pulse oximeter and respiration measurements) using a photoplethysmograph placed
on the subject’s finger and a pneumatic respiration belt, respectively. rtfMRI-nf procedures
are described elsewhere [49] and in Appendix A.

2.2.4. Data Processing and Analysis

AFNI [66] was used for data image analysis. The first 5 fMRI volumes were discarded
to wait for a steady state. fMRI data preprocessing included despiking, RETROICOR [67],
respiration volume per time correction [68], slice-timing and motion corrections, non-linear
warping to the Montreal Neurological Institute (MNI) template brain with resampling
to 2 mm3 voxels using the ANTs [69], spatial smoothing with a 6 mm FWHM Gaussian
kernel, and scaling signal to percent change relative to the mean in each voxel. The general
linear model (GLM) analysis was used for independently evaluating the brain response
in the OBS, NF-1, NF-2, NF-3, and TRS runs. One participant included in analysis had
no NF-2 due to technical difficulties. The design matrix included a modeled response
to the Focus-on-Breath block (boxcar function convolved with hemodynamic response
function), 12 motion parameters (3 shift and 3 rotation parameters with their temporal
derivatives), three principal components of the ventricle signal, local white matter av-
erage signal (ANATICOR) [70], and low-frequency fluctuation (fourth-order Legendre
polynomial model).
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Our study is one of the first to include real-time physiological noise correction,
and then offline RETROICOR correction in our preprocessing pipeline was followed by
further physiological noise correction during the subsequent GLM analysis. Such a sequen-
tial approach of artifact removal can potentially reintroduce previously removed noise
artifacts in later steps [71], thus it is important to evaluate the efficacy of physiological noise
correction. We calculated the signal variance ratio (R2 value) explained by the physiological
noise regressors (RETROICOR) for the real-time processed and offline processed signals in
the PCC region. This measure indicates an amount of residual physiological noise effect
in the processed signal [72]. The R2 was small for both real-time and offline-processed
signals on average (Appendix B Figure A1). While some subjects’ runs showed a relatively
high residual noise variance ratio, there was no significant correlation between the mean
neurofeedback signal amplitude and the residual noise variance ratio for the real-time
processed data (Spearman’s rho = −0.091, p = 0.361). Although a relatively high residual
physiological noise variance ratio was seen for the offline-processed data, the correlation
between the PCC parameter estimates (beta value) and the physiological noise variance
ratio was not significant for the offline-processed data (Spearman’s rho = 0.031, p = 0.744).
These indicate that the physiological noise effect was not significant on the neurofeedback
signal in the real-time analysis and the PCC parameter estimation in the offline analysis.

Regression coefficients estimated from the GLM were extracted from both hemispheres
of all three probabilistic cytoarchitectonic segmentations of INS regions defined by the
Brainnetome atlas [73]: aINS (ventral and dorsal agranular), mINS (ventral dysgranular
and granular, and dorsal dysgranular), and pINS (hypergranular and dorsal granular)
averaged across left and right hemispheres (Figure 2a). See Appendix B Table A2 for peak
coordinates of each subregion. The average parameter estimate (beta coefficient) of the
Focus-on-Breath vs. Describe block regressor was extracted to evaluate brain activation
during each run (OBS, NF-1, NF-2, NF-3, and TRS; H1).

All remaining statistical analyses were performed using the R statistical package [74].
Descriptive statistics regarding participant characteristics and PROMIS pediatric measures
were obtained using the R package ‘psych’ [75]. To test H2, first, Pearson’s correlation was
conducted to examine the relation between parameter estimate (Focus-on Breath vs. De-
scribe) in PCC and INS subregions; then separate linear mixed-effects models (LMEs) were
conducted to examine task ratings and INS subregions activity across runs (OBS, NF-1,
NF-2, NF-3, and TRS) using the ‘lmer’ function in the R package ‘lme4′ [76], with Run
entered as a fixed effect and subjects as a random effect. Regarding exploratory outcomes
(H3), LME was conducted for SMS, where Time (T1: pre-, T2: post-NAMT) was entered as
a fixed effect and subjects as a random effect. Follow-up pairwise comparisons for LMEs
were conducted using the ‘glht’ function in R package [77] and corrected for multiple
comparisons with Tukey’s Honestly Significant Difference test. Spearman’s correlation
analysis was conducted to examine the relation between parameter estimate (Focus-on
Breath vs. Describe) in each INS subregion during neurofeedback runs (averaged across
NF-1, NF-2, NF-3) and PROMIS pediatric measures. Bonferroni correction was used to
correct for multiple correlation comparisons.

2.2.5. Data and Code Availability Statement

The data and data analysis scripts that support the findings of this study are available
on request from the corresponding author after a formal data sharing agreement has been
signed. The data are not publicly available due to privacy or ethical restrictions.
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3.1. Demographic, Task, and Clinical Characteristics 

Participants were 37 adolescents (age 14.61 ± 1.25 years, 16 female), and the majority 
were White (71%). Table 1 provides additional demographic information. LME results of 
self-report data are in Table 2. In general, adolescents reported moderate to high ability to 
focus on their breath during the Focus-on-Breath condition, moderate mind wandering 
during the Focus-on-Breath condition, and moderate calmness during the task. The scores 
on these measures did not differ across fMRI runs (OBS, NF-1, NF- 2, NF-3, and TRS; Fo-
cus-on-Breath: [F(4, 135) = 0.93, p = 0.45; R2 = 0.31]; mind wandering: [F(4, 135) = 2.03, p = 0.09; R2 

= 0.45]; and current feeling: [F(4, 135) = 0.65, p = 0.63; R2 = 0.56]). State mindfulness (SMS) 
increased from pre- to post-NAMT session [F(1, 36) = 5.82, p = 0.02; R2 = 0.79]. The PROMIS 
scales are anchored with a mean of 50 for the United States general population, thus the 
current sample displayed average levels of life satisfaction (M ± SD = 49.05 ± 8.8), slightly 
lower levels of meaning and purpose (M ± SD = 47.41 ± 7.59), and slightly higher levels of 
positive affect (M ± SD = 55.42 ± 6.15), as well as lower levels of fatigue (M ± SD = 43.8 ± 
10.62), pain behavior (M ± SD = 35.75 ± 10.52), and pain interference (M ± SD = 40.65 ± 
7.48).  
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Figure 2. (a) Three insular cortex regions of interest (ROIs) extracted from the Brainnetome Atlas.
(b–d) Parameter estimate (Focus-on-Breath vs. Describe) across each run in each insula subregion. See
Appendix B Table A2 for peak coordinates for each insula subregion. Abbreviations: OBS, Observe;
NF, Neurofeedback; TRS, Transfer.

3. Results
3.1. Demographic, Task, and Clinical Characteristics

Participants were 37 adolescents (age 14.61 ± 1.25 years, 16 female), and the majority
were White (71%). Table 1 provides additional demographic information. LME results of
self-report data are in Table 2. In general, adolescents reported moderate to high ability
to focus on their breath during the Focus-on-Breath condition, moderate mind wandering
during the Focus-on-Breath condition, and moderate calmness during the task. The scores
on these measures did not differ across fMRI runs (OBS, NF-1, NF- 2, NF-3, and TRS;
Focus-on-Breath: [F(4, 135) = 0.93, p = 0.45; R2 = 0.31]; mind wandering: [F(4, 135) = 2.03,
p = 0.09; R2 = 0.45]; and current feeling: [F(4, 135) = 0.65, p = 0.63; R2 = 0.56]). State
mindfulness (SMS) increased from pre- to post-NAMT session [F(1, 36) = 5.82, p = 0.02;
R2 = 0.79]. The PROMIS scales are anchored with a mean of 50 for the United States
general population, thus the current sample displayed average levels of life satisfaction
(M± SD = 49.05± 8.8), slightly lower levels of meaning and purpose (M± SD = 47.41± 7.59),
and slightly higher levels of positive affect (M ± SD = 55.42 ± 6.15), as well as lower levels
of fatigue (M ± SD = 43.8 ± 10.62), pain behavior (M ± SD = 35.75 ± 10.52), and pain
interference (M ± SD = 40.65 ± 7.48).
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Table 1. Sample demographic information.

Demographic %

Race
White 71
Black 2
Asian 5
American Indian/Alaska Native 11
Biracial/Multiracial 11

Education
7th grade 18
8th grade 38
9th grade 18
10th grade 16
11th grade 7
13th grade 3

Family Income
$0–$49,999 7
$50,000–$99,999 38
$100,000–$149,999 21
$150,000–$199,999 17
>$200,000 17

Table 2. Unadjusted means, standard deviations, effect sizes, and main analyses of task ratings and
symptom measures.

Task Ratings Mean SD Estimate SE t p Cohen’s d

Focus-on-Breath
OBS 7.09 1.54
NF-1 6.56 1.67 −0.51 0.36 −1.42 0.16 −0.25
NF-2 6.45 1.70 −0.63 0.36 −1.72 0.09 −0.30
NF-3 6.70 2.04 −0.37 0.35 −1.05 0.30 −0.18
TRS 6.53 1.61 −0.50 0.35 −1.42 0.16 −0.25

Mind Wander
OBS 5.23 2.12
NF-1 4.85 1.86 −0.47 0.36 −1.31 0.19 −0.23
NF-2 5.21 2.09 −0.11 0.36 −0.31 0.76 −0.05
NF-3 5.83 1.83 0.10 0.35 0.29 0.77 0.05
TRS 5.75 1.84 0.45 0.36 1.26 0.21 0.22

Current Feeling
OBS 2.89 1.53
NF-1 3.41 1.76 0.38 0.29 1.30 0.20 0.22
NF-2 3.06 1.69 0.15 0.29 0.51 0.61 0.09
NF-3 3.03 1.78 0.05 0.29 0.16 0.87 0.03
TRS 3.06 2.04 0.10 0.29 0.34 0.74 0.06

Measure Mean SD Estimate SE t p Cohen’s d

State Mindfulness Scale (SMS)
T1 71.22 14.09
T2 74.68 12.69 3.46 1.43 2.41 <0.05 0.53

Note. Task ratings were answered following the completion of each run. Questions included “ How easy did
you find it to focus on your breath?” (1 = not easy at all; 10 = very easy); “How much did your mind wander
while you were asked to focus on your breath?” (1 = not at all; 10 = all the time); “How do you feel right
now?” (1 = perfectly calm; 10 = very anxious). Abbreviations: OBS, Observe; NF, Neurofeedback; TR, Transfer;
T1, Pre-NAMT; T2, Post-NAMT.

3.2. Insula Region of Interest (ROI) Results

Table 3 shows the uncorrected correlations between parameter estimate (Focus-on-
Breath vs. Describe) in PCC and insula subregions across runs. Overall, INS subregions
were positively correlated with PCC. pINS showed moderate to strong correlations with
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PCC across runs, while aINS and mINS showed moderate correlation with PCC in all runs
except for NF-1, where no correlations were found. Notably, only the correlations between
INS subregions and PCC in OBS, as well as pINS and PCC in NF-2 and NF-3 survived the
multiple comparison threshold (p = 0.05/15 = 0.003).

Table 3. Uncorrected correlations between parameter estimate (Focus-on-Breath vs. Describe) in PCC
and insula subregions across runs.

INS Subregions Run PCC_OBS PCC_NF-1 PCC_NF-2 PCC_NF-3 PCC_TRS

aINS OBS 0.65 *** - - - -
NF-1 - 0.12 - - -
NF-2 - - 0.35 * - -
NF-3 - - - 0.37 * -
TRS - - - - 0.34 *

mINS OBS 0.69 *** - - - -
NF-1 - 0.09 - - -
NF-2 - - 0.36 * - -
NF-3 - - - 0.42 ** -
TRS - - - - 0.35 *

pINS OBS 0.71 *** - - - -
NF-1 - 0.45 ** - - -
NF-2 - - 0.56 *** - -
NF-3 - - - 0.53 *** -
TRS - - - - 0.42 **

Abbreviations: NF, Neurofeedback; OBS, Observe; TR, Transfer. * p < 0.05. ** p < 0.01. *** p < 0.001.

LME analyses revealed the main effect of run for parameter estimate (Focus-on-Breath
vs. Describe) in aINS [F(4, 143) = 4.98, p < 0.001; R2 = 0.39] and pINS [F(4, 143) = 11.80,
p < 0.001; R2 = 0.33], but not mINS [F(4, 143) = 1.56, p = 0.18; R2 = 0.34] (Figure 2; Table 4).
Post hoc analyses performed for aINS and pINS subregions revealed significant differences
between neurofeedback and non-neurofeedback runs. Specifically, parameter estimate
(Focus-on-Breath vs. Describe) was greater in neurofeedback runs than OBS in aINS
(p < 0.01 for NF-1 and NF-2, p < 0.05 for NF-3), but was lower in neurofeedback runs than
OBS (all ps < 0.001) and TRS (p < 0.01 for NF-1 and NF-3, p < 0.05 for NF-2) in pINS (Table 5).
Additional analyses in parameter estimate (Focus-on-Breath vs. Rest) confirmed activation
in aINS and deactivation in pINS during neurofeedback runs. For parameter estimate
(Focus-on-Breath vs. Rest) across each run for insula subregions, the LME results and post
hoc tests are summarized in Appendix B Tables A3 and A4, respectively. Line graphs are
displayed in Appendix B Figure A2.

Table 4. Unadjusted means, standard deviations, effect sizes, and main analyses of fMRI coefficient
for the Focus-on-Breath vs. Describe contrast in subregions of insula across runs.

Run Mean SD Estimate SE t p Cohen’s d

Anterior insular cortex (aINS)
OBS −0.16 0.19
NF-1 −0.01 0.18 0.16 0.04 3.81 <0.001 0.63
NF-2 −0.02 0.21 0.14 0.04 3.26 <0.01 0.54
NF-3 −0.05 0.28 0.11 0.04 2.75 <0.01 0.46
TRS −0.12 0.24 0.05 0.04 1.16 <0.001 0.19

Mid-insular cortex (mINS)
OBS 0 0.18
NF-1 −0.06 0.17 −0.06 0.03 −1.70 0.09 −0.28
NF-2 −0.05 0.15 −0.05 0.03 −1.47 0.15 −0.24
NF-3 −0.08 0.2 −0.08 0.03 −2.42 0.05 −0.40
TRS −0.06 0.19 −0.06 0.03 −1.63 0.11 −0.27



Brain Sci. 2022, 12, 363 11 of 26

Table 4. Cont.

Run Mean SD Estimate SE t p Cohen’s d

Posterior insular cortex (pINS)
OBS 0.01 0.17
NF-1 −0.17 0.14 −0.18 0.03 −5.25 <0.001 −0.88
NF-2 −0.16 0.15 −0.17 0.03 −4.91 <0.001 −0.82
NF-3 −0.17 0.18 −0.18 0.03 −5.27 <0.001 −0.88
TRS −0.05 0.17 −0.06 0.03 −1.72 0.09 −0.29

Abbreviations: OBS, Observe; NF, Neurofeedback; TRS, Transfer.

Table 5. Post hoc comparisons for parameter estimates (Focus-on-Breath vs. Describe) in INS
subregions across runs.

Run Estimate Std. Error z Statistic p Value

Anterior insular cortex (aINS)

NF-1:OBS 0.16 0.04 3.81 <0.01
NF-2:OBS 0.14 0.04 3.26 <0.05
NF-3:OBS 0.11 0.04 2.75 <0.05
TR:OBS 0.05 0.04 1.16 0.78

NF-2:NF-1 −0.02 0.04 −0.52 0.98
NF-3:NF-1 −0.04 0.04 −1.06 0.83
TR:NF-1 −0.11 0.04 −2.66 0.06

NF-3:NF-2 −0.02 0.04 −0.53 0.98
TR:NF-2 −0.09 0.04 −2.11 0.22
TR:NF-3 −0.07 0.04 −1.60 0.50

Mid-insular cortex (mINS)

NF-1:OBS −0.06 0.03 −1.70 0.43
NF-2:OBS −0.05 0.03 −1.47 0.59
NF-3:OBS −0.08 0.03 −2.42 0.11
TR:OBS −0.06 0.03 −1.63 0.48

NF-2:NF-1 0.01 0.03 0.22 1.00
NF-3:NF-1 −0.02 0.03 −0.72 0.95
TR:NF-1 0.00 0.03 0.07 1.00

NF-3:NF-2 −0.03 0.03 −0.93 0.89
TR:NF-2 −0.01 0.03 −0.15 1.00
TR:NF-3 0.03 0.03 0.79 0.93

Posterior insular cortex (pINS)

NF-1:OBS −0.18 0.03 −5.25 <0.001
NF-2:OBS −0.17 0.03 −4.91 <0.001
NF-3:OBS −0.18 0.03 −5.27 <0.001
TR:OBS −0.06 0.03 −1.72 0.42

NF-2:NF-1 0.01 0.03 0.30 1.00
NF-3:NF-1 0.00 0.03 −0.02 1.00
TR:NF-1 0.12 0.03 3.52 <0.01

NF-3:NF-2 −0.01 0.03 −0.32 1.00
TR:NF-2 0.11 0.03 3.20 <0.05
TR:NF-3 0.12 0.03 3.55 <0.01

Abbreviations: NF, Neurofeedback; OBS, Observe; TR, Transfer.

We also tested parameter estimate (Focus-on-Breath vs. Describe) in aINS, mINS,
and pINS across experimental runs, separately (Figure 2). In aINS, parameter estimate for
Focus-on-Breath was significantly lower than that in Describe during OBS and TRS [OBS:
t(36) = −5.21, p < 0.001, Cohen’s d = −0.86; TRS: t(36) = −2.98, p < 0.01, Cohen’s d = −0.49],
but not NF-1, NF-2, and NF-3 runs (all ps > 0.10), in mINS during NF-1 and NF-3 [NF-1:
t(36) = −2.13, p < 0.05, Cohen’s d = −0.35; NF-3: t(36) = −2.50, p < 0.05, Cohen’s d = −0.41],
but not OBS, NF-2, and TRS (all ps > 0.05), and in pINS during NF-1, NF-2, and NF-3 [NF-1:
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t(36) = −7.23, p < 0.001, Cohen’s d = −1.19; NF- 2: t(35) = −6.14, p < 0.001, Cohen’s d = −1.01;
NF-3: t(36) = −5.83, p < 0.001, Cohen’s d = −0.96], but not OBS and TRS runs (all ps > 0.05).

3.3. Self-Reported Questionnaire Responses and Insula ROI Results

Relationship between insula subregions and self-reported task ratings and psychologi-
cal function are reported in Appendix B Table A5 and Figure A3. None of the correlations
met Bonferroni correction; p = 0.05/9 = 0.005. pINS activity was negatively correlated with
mind wandering during OBS, r = −0.34, p < 0.05, while current feeling (1 = perfectly calm,
10 = very anxious) was negatively correlated with aINS, r = −0.43, p < 0.01. and mINS,
r = −0.37, p < 0.05 in TRS. During neurofeedback runs, aINS activity was negatively cor-
related with PROMIS life satisfaction (r = −0.37, p < 0.05), whereas pINS activity was
positively correlated with PROMIS pain behavior (r = 0.33, p < 0.05).

4. Discussion

Based on our previous findings that established the successful downregulation of PCC
as a function of rtfMRI-nf-augmented mindfulness training, as well as the co-modulation
of the posterior INS [49], the present study sought to directly examine the role of INS
in mindfulness in healthy adolescents during the PCC-targeted rtfMRI-nf. Given that
different subregions of INS specialize in integrating across the body, cognitive, affective,
and awareness domains, we focused our examination on activity in the anterior (aINS),
mid- (mINS), and posterior (pINS) subregions and their associations with self-reported
affective and sensory measures. The observed correlations between PCC activity and insula
subregions confirmed previously reported whole-brain and functional connectivity find-
ings. Contrary to our hypothesis, relative to self-referential processing (i.e., Describe), MT
(i.e., Focus-on-Breath) significantly reduced aINS activity during non-neurofeedback runs
(OBS and TRS). However, this deactivation in aINS was not further modulated consequent
to rtfMRI-nf. Instead, as hypothesized, aINS showed more activation during MT when PCC
neurofeedback was given (NF-1 to NF-3). Second, we observed an opposite effect in pINS,
such that no differences between conditions were present during non-neurofeedback runs,
while significant deactivations occurred for MT during neurofeedback runs. Finally, mINS
activity did not differ between conditions during non-neurofeedback runs but reduced for
MT during the first and the last neurofeedback runs. Correlational analyses showed that
pINS activity was negatively correlated with mind wandering during OBS, while aINS
and mINS were negatively correlated with current feeling (calm vs. anxious) during TRS.
During neurofeedback runs, aINS activity was negatively correlated with life satisfaction
and pINS activity was positively correlated with pain behavior, while no associations were
found for mINS activity. These findings provide direct evidence for the involvement of INS
in MT and demonstrate that MT elicited distinct responses across INS subregions that may
partially explain the previously reported mixed findings regarding INS activity during MT.

INS subregions have distinct functions. An activation-likelihood-estimation meta-
analysis of 1768 neuroimaging studies revealed that sensorimotor tasks consistently activate
mid-posterior INS, whereas social-emotional and cognitive tasks activate aINS [78]. Given
that aINS is an important hub for interoceptive awareness, accumulated studies have shown
aINS to be sensitive to MT relative to mINS and pINS [79–81]. For example, following 7- to
8-week MT, aINS activation was observed in healthy participants while focusing attention
on breathing, body, and thoughts [36], in patients with general anxiety disorder performing
affect labeling of emotional facial expressions [82], and in elite athletes experiencing an
interoceptive challenge [83]. Consistent with prior research, we found that, relative to
self-referential processing, mindful attention to breathing led to an increase in aINS activity,
however, only during neurofeedback runs.

Recent fMRI studies have suggested aINS to be part of the “salience network”, impor-
tant in attentional control and detecting behaviorally salient stimuli [84–86]. Various factors
may contribute to activation in the salience network, including increases in cognitive effort,
reward anticipation [87,88], heightened sympathetic arousal [89], and the pressure to per-
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form self-regulation within limited time period [90]. Moreover, aINS is critical in detecting
discrepancies between actual and desired states [91,92], as well as integrating the feedback
display (external) with brain activity (internal) [93]. Neurofeedback training may enhance
these processes because participants must integrate information from the feedback and
regulate their breathing in order to obtain the desired state. For example, aINS engagement
is observed when participants actively tried to move the neurofeedback signal relative to
a passively watching condition [94]. Furthermore, neurofeedback training may enhance
self-referential processing due to self-evaluation of one’s performance while attempting
to control the neurofeedback bar. Therefore, aINS activity during neurofeedback relative
to non-neurofeedback MT runs in the present study may reflect the complex process of
integrating state awareness of physical sensations of breath with increased attentional con-
trol and self-evaluation. A modest trend toward greater deactivation across neurofeedback
runs potentially suggests habituation to the neurofeedback signal bar. Together with the
minimal difference in aINS activity between OBS and TRS runs, it is possible that aINS
activity during neurofeedback training in part reflects the introduced cognitive load of the
feedback signal.

aINS, particularly its dorsal region, has long been linked to subjective well-being,
a multidimensional construct that involves both cognitive and affective evaluation of
life satisfaction [95–99]. Associations have been found between well-being and INS gray
matter volume [100], as well as functional connectivity of the dorsal aINS [98]. Remarkably,
aINS activation has been reported to be positively correlated with momentary happiness
ratings [95]. This is consistent with our findings which showed a relationship between
higher activity in aINS and mINS feeling more calm during the task, as well as between
higher activity in pINS and less mind wandering.

It is well known that MT increases subjective well-being by promoting greater aware-
ness of the present moment [101]. Therefore, greater interference of external stimuli (i.e., at-
tentional and evaluative engagement with the neurofeedback signal bar) during MT may
indicate overall propensity toward less present moment awareness in the presence of salient
and self-relevant stimuli. This may not only further explain the difference in aINS activity
between neurofeedback and non-neurofeedback runs, but also the association between
mindful awareness and psychological well-being.

pINS is considered the primary interoceptive cortex and plays a crucial role in in-
tegrating somatic processing and pain perception [85,102–104]. Further, pINS has been
shown to play a role in momentary self-referential processing [105]. Previous literature is
scant on pINS activity in response to MT. In contrast to one study that reported greater
pINS activation during an interoceptive breath-focused task in participants who completed
MBSR [102], we found that augmenting MT with neurofeedback decreased pINS activation.
Deactivation in pINS during neurofeedback runs might be a result of decreased momen-
tary self-referential processing given that participants were engaged in monitoring the
feedback signal and with the physical sensations of their breath. This assumption was
further supported by the fact that pINS activity was increased during the TRS where the
neurofeedback signal (and thus, attentional engagement with the signal bar) was removed,
albeit to a lesser extent than during the OBS run. Consistent with past studies showing
increased INS activity during processing of painful stimuli [106–108], we found that adoles-
cents who reported more pain behaviors also showed increased pINS activity during MT
relative to self-referential processing in neurofeedback runs. pINS activity during NAMT
may be related to the individual’s levels of sensory processing of pain (e.g., individuals
who have greater sensory awareness of pain may have poor inhibited sensory processing
of pain), which may lead to the relatively increased pINS activity during MT compared to
self-referential processing; however, the mechanism underlying this is unclear. These find-
ings are further linking INS activity to attentional deployment, engagement with physical
sensations, and self-referential processing.

Although mINS activity reduced during NF-1 and NF-3 of MT relative to self-referential
processing, it did not differ significantly across experimental runs, nor was it related to
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any PROMIS pediatric measures. The lack of consistent change in mINS activity during
neurofeedback runs could potentially be explained by its unique anatomical position,
a connecting structure between aINS and pINS. Thus, mINS activity might be affected by
both aINS activation and pINS deactivation during neurofeedback runs [85]. Furthermore,
the absence of change in mINS activity across all experimental runs during MT could be
due to its main role being integrating interoception with motivated behavior, or select-
ing action-outcome behaviors [109]. As a result, the current study might fail to engage
mINS because it did not provide motivated signals or require action selection. Further
research that aims to determine the role of mINS in MT might consider these factors in the
experimental design.

INS is involved in a wide variety of functions ranging from sensory and affective
processing to high-level cognition [27,85], which may be implicated in the rich cortical
connections of INS. For example, aINS has connections with the cingulate cortex, frontal,
orbitofrontal, anterior temporal and limbic areas [85,110–113], affording its role underlying
various cognitive and affective functions; as well as the pregenual anterior cingulate and the
anterior mid-cingulate that are related with emotional and pain processing [114,115]. mINS
mainly projects to the mid-cingulate cortex [116,117], a region important for integrating
bodily sensations and exteroceptive sensory afferents [118], supporting its main role as
discussed above; while pINS is primarily connected to regions for sensorimotor processing
such as posterior temporal, parietal, and sensorimotor areas. Recent rodent model suggests
that pINS is also involved in top-down modulation of behavior upon the detection of
internal aversive state [119].

Given that attention control and acceptance are the two core components of mind-
fulness [120–122], INS function is particularly relevant for MT due to its involvement in
interoception [30], self-awareness [123], attention control, and emotion regulation. Atten-
tion control enables attending to the moment-to-moment experience (i.e., breathing), which,
in turn, cultivating interoceptive awareness and provides an integrated representation of
the present moment [93]. In addition, achieving a non-judgmental attitude toward the
present experience requires both cognitive reappraisal and emotion regulation [124]. Thus,
INS is integral to mindfulness in that it senses, interprets, integrates, and regulates internal
and external inputs [125]. Finally, INS-dependent interoceptive regulation is particularly
important during adolescence when self-regulatory abilities rapidly develop [126]. Atypical
interoception may contribute to onset of psychopathology and decreased socio-emotional
competence in late adulthood [127]. Heightened interoceptive reactivity to pleasant stim-
uli accompanied by increased pINS activity in adolescents relative to young and mature
adults may explain developmentally appropriate increased levels of risky decision making
during this period of life [128–130]. Taken together, findings from our studies and others
suggest that MT may influence INS function and interoceptive processing in clinically
relevant ways.

Limitations

Several limitations should be mentioned for this study. First, although this study
was well powered to detect differences in activation across experimental conditions in
a single population, the sample size of the present study remains relatively small (n = 37).
Second, the pain behavior rating is of low variability in nearly half of this healthy sample
(n = 15 rated 23.9). Future studies would benefit from more diverse samples across the
gender, age, race/ethnicity, and clinical domains. Importantly, clinical samples will give
evidence to whether INS-level changes translate into modifications in symptom measures.
Third, the present study employed rtfMRI-nf targeting PCC and not INS directly. Future
work employing rtfMRI-nf targeting INS might provide a more accurate investigation
of MT on INS activity, thus to directly evaluate the success of modulating INS activity
with neurofeedback and the downstream effects of NAMT targeting INS. Fourth, we did
not employ a sham condition against which the effects of PCC-targeted rtfMRI-nf on INS
activity could be evaluated. Furthermore, although we provided the associations between
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PCC and INS subregions, future work should examine changes in functional connectivity
between the INS subregions and PCC as a function of rtfMRI-nf using resting state data
to provide more details regarding this relationship. Lastly, it is worth noting that the self-
referential task might elicit emotional responses that further induce bodily change because
participants were instructed to determine whether the adjectives described themselves or
not [131]. Future studies could improve the control task to provide a more stable reference
by avoiding instructions that elicit potential bodily changes.

5. Conclusions

This is the first study to examine activity in INS subregions during PCC-targeted
rtfMRI-nf MT in healthy adolescents. These findings add to the existing literature for the
integral role of INS in MT. The data also showed a relation between INS activity during
NAMT and self-reported cognitive/affective/sensory processing. The divergent effect
of PCC rtfMRI-nf on anterior vs. posterior INS subregions during mindfulness practice
relative to self-referential processing may support previous findings whereby aINS is
involved in the experience of cognitive-affective states, while pINS plays a more prominent
role in somatosensory processes. Future studies are needed to directly examine how distinct
mindfulness practices modulate INS along the proposed subregion specializations given
that we focused only on focused-attention MT. Finally, studies with larger and clinical
samples will determine whether MT impacts INS activity and interoceptive processes to
improve clinical outcomes.
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Appendix A

Appendix A.1. Neurofeedback-Augmented Mindfulness Training Task (NAMT)

Prior to the rtfMRI-nf session, adolescents underwent brief mindfulness training (MT).
Participants were first given a brief psychoeducational introduction into mindfulness, in-
cluding that (1) mindfulness refers to paying attention to thoughts, feelings, and physical
sensations in the present moment without any judgment, and (2) mindfulness can reduce
stress and increase attention. Next, participants were guided through a traditional mind-
fulness practice focused on the breath [43,48], that is: “Please pay attention to the physical
sensations of your breath where you most strongly feel it. Follow the natural and spontaneous
movement of the breath, not trying to change it any way. Just pay attention to it. If you find that
your attention wanders to something else, gently but firmly bring it back to the physical sensations
of the breath.” Difficulty of performing the task and how mindful they currently feel of
their body and mind were assessed. Following practice, adolescents were provided with
an opportunity to ask clarification questions. Next, adolescents went into the mock scanner
and completed the same mindfulness practice and assessment with MRI noises in the back-
ground. Adolescents were also given instructions and feedback around minimizing motion
while in the scanner. Finally, adolescents were given instructions for the neuroimaging
session. Training was manualized to ensure fidelity across participants. MT was delivered
by a trained research assistant under the supervision of a licensed clinical psychologist.
Training sessions were audio recorded and up to 20% sessions were randomly selected for
fidelity ratings by research staff.

The neuroimaging session included 8 runs (Figure 1a), including an anatomical scan,
Resting State scan 1 (Rest-1), Observe (OBS), three neurofeedback runs (NF-1, NF-2, NF-3),
Transfer run (TRS), and Resting State scan 2 (Rest-2). During Rest-1 and Rest-2 (6 min
each), participants were instructed to clear their mind and not think about anything while
fixating upon a fixation cross. OBS, NF-1, NF-2, NF-3, and TRS runs each lasted 6 min
and 56 s. Runs started with a 66 s rest block, followed by alternating Describe (Active
Control condition without neurofeedback; 20 s), Focus-on-Breath (MT condition with PCC
neurofeedback; 70 s), and Rest (Baseline condition; 30 s) blocks. OBS and TRS runs did
not involve neurofeedback (no bar displayed) during the Focus-on-Breath condition. The
initial long Rest block was required for obtaining enough samples for real-time noise
regression analysis [132].

During the Focus-on-Breath condition [48], adolescents were instructed to pay atten-
tion to the physical sensations of their breath, not trying to change their breathing in any
way, and if their attention were to wander to something else, to gently bring their attention
back to their breath [43]. To aid in MT, numerous useful strategies were provided prior to
scanning, including “Notice the feeling of your belly rising when you breath in, and gently
falling when you breath out”; “Notice if it enters and leaves through your nose or your
mouth.” In the Describe condition, adolescents were presented with various adjectives,
which they had to mentally categorize as descriptive or not descriptive of them for the
entire duration the word was displayed on the screen [61]. The Describe condition is de-
signed to elicit self-referential thinking, and therefore is thought to be a better comparator
to Focus-on-Breath than Rest [43]. During the Rest condition, adolescents were presented
with the cue “Rest” and asked to relax while looking at the display screen.

During neurofeedback runs, adolescents were told that they would see a bar displayed
on the screen, representing the relative brain activity in a particular brain region in real time
(Figure 1b). The instructions further indicated that the bar may change with the experience
of focusing on the breath (i.e., the bar may go blue if they are fully concentrating on their
breath, and red if their mind wanders elsewhere). The green bar represented the target
to attain, and adolescents’ goal was to try and see how much they could make the bar
change to blue to match the green bar. The target levels were −0.5%, −0.75%, and −1.0%
(percent signal change is relative to the preceding rest block) for the NF-1, NF-2, and NF-
3 runs, respectively. Adolescents were told that there might be a 5–6 s delay between their
experience and the change in the blue bar. To assess for aspects of feasibility and tolerability,
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adolescents answered the following questions via a response box and visual analog scale
after reach run: (1) How well were you able to follow instructions on the screen? (2) How
easy did you find it to focus on your breath? (3) How much did your mind wander while
you were asked to focus on your breath? (4) How easy did you find it to mentally decide
whether or not the words described you? (5) How easy did you find it to clear your mind
while resting? (6) How do you feel right now (1 = perfectly calm, 10 = very anxious)?
Two additional questions followed the neurofeedback runs only: (1) How well did the blue
bar correspond with your experience of focusing on your breath? (2) How well did the red
bar correspond with the experience of your mind wandering elsewhere?

Appendix A.2. Real-Time fMRI Processing

The region of interest (ROI) and rtfMRI-nf target location (spherical ROI, 7mm radius,
[MNI coordinates: x = −5, y = −55, z = 23]; Figure 1a) were selected based on a meta-
analysis investigating functional neuroimaging studies of the DMN [133], mindfulness
meditation studies, including neurofeedback [43,48], and conducted pilot testing.

We employed an advanced fMRI real-time processing (RTP) protocol which included
slice-timing correction, motion correction, spatial smoothing with 6 mm-FWHM Gaussian
kernel within the brain mask, scaling to a percent change relative to the average for the first
19 TRs (in the initial rest period), and regressing out noise components [72,132]. The noise
regressors were six motion parameters, eight RETROICOR [67] regressors (four cardiac
and four respiration), white matter mean signal, ventricle mean signal, and Legendre
polynomial models of slow signal fluctuation. This comprehensive noise reduction was
performed in real-time (less than 400 ms [132]). This fMRI RTP system operates real-time
motion tracking, alignment, and motion parameter regression, thus allowing for suppres-
sion of head motion effects, and importantly, providing physiological noise correction
(RETROICOR) in real time before the PCC-based neurofeedback signal computation and vi-
sual presentation to the adolescent [132,134,135]. This ensured that the PCC neurofeedback
signal reflected the largest possible extent the underlying neuronal activity and does not
reflect head motion, heart rate, and/or respiratory motions, all of which overlap with DMN
neural activity [136,137]. After real-time noise regression, the fMRI RTP system exports the
mean value of the noise-reduced signals for the PCC ROI for each acquired data volume.

The PCC ROI (i.e., neurofeedback target signal) in the MNI space was warped into
the individual brain space using the Advanced Normalization Tools (ANTs) software [69]
(http://stnava.github.io/ANTs/). The neurofeedback stimulus was delivered via custom-
developed software using PsychoPy [138]. The neurofeedback value was a signal change
relative to the baseline obtained by averaging the preceding 30 s long Rest condition. The
two initial volumes in the Rest condition were excluded from the baseline calculation to
avoid the delayed hemodynamic response effect of the preceding Describe block. The
neurofeedback started from the third volume in the Focus block to wait for a hemodynamic
response delay. The bar height was updated at every TR as a moving average of the current
and up to the two available preceding values to reduce the bar fluctuation [139]. The
consensus on the reporting and experimental design of clinical and cognitive-behavioral
neurofeedback studies (CRED-nf checklist) is shown in Appendix B Table A1 [62].

Appendix B

Table A1. Consensus on the reporting and experimental design of clinical and cognitive-behavioral
neurofeedback studies (CRED-nf) best practices checklist 2020.

Domain Item # Checklist Item Reported on Page #
Pre-experiment

1a Pre-register experimental protocol and planned analyses n/a
1b Justify sample size 4

http://stnava.github.io/ANTs/
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Table A1. Cont.

Domain Item # Checklist Item Reported on Page #
Control groups

2a Employ control group(s) or control condition(s) 5

2b When leveraging experimental designs where a double-blind is possible, use
a double-blind n/a

2c Blind those who rate the outcomes, and when possible, the statisticians involved n/a
2d Examine to what extent participants and experimenters remain blinded n/a

2e In clinical efficacy studies, employ a standard-of-care intervention group as
a benchmark for improvement n/a

Control measures
3a Collect data on psychosocial factors 5–6
3b Report whether participants were provided with a strategy 5
3c Report the strategies participants used n/a
3d Report methods used for online-data processing and artifact correction 6–7
3e Report condition and group effects for artifacts n/a

Feedback specifications
4a Report how the online-feature extraction was defined 6
4b Report and justify the reinforcement schedule n/a
4c Report the feedback modality and content 4–5

4d Collect and report all brain activity variable(s) and/or contrasts used for feedback,
as displayed to experimental participants 4–5

4e Report the hardware and software used 6–9
Outcome measures

Brain 5a Report neurofeedback regulation success based on the feedback signal n/a

5b Plot within-session and between-session regulation blocks of feedback variable(s),
as well as pre-to-post resting baselines or contrasts n/a

5c Statistically compare the experimental condition/group to the control
condition(s)/group(s) (not only each group to baseline measures) n/a

Behavior 6a Include measures of clinical or behavioral significance, defined a priori,
and describe whether they were reached n/a

6b Run correlational analyses between regulation success and behavioral outcomes n/a
Data storage

7a Upload all materials, analysis scripts, code, and raw data used for analyses, as well
as final values, to an open access data repository, when feasible n/a

Note: Darker shaded boxes represent Essential checklist items; lightly shaded boxes represent Encouraged
checklist items. We recommend using this checklist in conjunction with the standardized CRED-nf online tool
(rtfin.org/CREDnf) and the CRED-nf article, which explains the motivation behind this checklist and provides
details regarding many of the checklist items.

Table A2. Peak coordinates of the clusters from group fMRI analysis for the mean Focus-on-Breath
vs. Describe contrast. Insular regions defined by the Brainnetome atlas [73].

Gyrus ROI Label ID.L Label ID.R Anatomical and Modified
Cyto-Architectonic Descriptions

Left Hemisphere
MNI Coordinates

Right Hemisphere
MNI Coordinates

Insular
Gyrus

Anterior Insula
165 166 vIa, ventral agranular insula −32, 14, −13 33, 14, −13
167 168 dIa, dorsal agranular insula −34, 18, 1 36, 18, 1

Mid-Insula
169 170 vId/vIg, ventral dysgranular and

granular insula −38, −4, −9 39, −2, −9

173 174 dId, dorsal dysgranular insula −38, 5, 5 38, 5, 5

Posterior Insula
163 164 G, hypergranular insula −36, −20, 10 37, −18, 8
171 172 dIg, dorsal granular insula −38, −8, 8 39, −7, 8

Note. Anterior insula was obtained by combining left and right hemisphere, dorsal and ventral agranular
insula. Mid-insula was obtained by combining left and right hemisphere, ventral dysgranular and granular
insula, and dorsal dysgranular insula. Posterior insula was obtained by combining left and right hemisphere,
hypergranular insula, and dorsal granular insula. See Figure 2a.
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Table A3. Unadjusted means, standard deviations, effect sizes, and main analyses of parameter
estimate (Focus-on-Breath vs. Rest) in insula subregions across runs.

Run Mean SD Estimate SE t p Cohen’s d

Anterior insula
OBS −0.12 0.17
NF-1 0.03 0.18 0.16 0.04 4.40 <0.001 0.74
NF-2 −0.02 0.17 0.10 0.04 2.74 <0.01 0.46
NF-3 −0.03 0.23 0.09 0.04 2.59 <0.05 0.43
TRS −0.12 0.18 0.01 0.04 0.23 0.81 0.04

Mid-insula
OBS −0.07 0.14
NF-1 −0.09 0.15 −0.02 0.03 −0.75 0.45 −0.13
NF-2 −0.10 0.14 −0.03 0.03 −1.22 0.23 −0.20
NF-3 −0.09 0.16 −0.02 0.03 −0.71 0.48 −0.12
TRS −0.11 0.14 −0.04 0.03 −1.53 0.13 −0.26

Posterior insula
OBS −0.08 0.13
NF-1 −0.20 0.16 0.03 0.03 1.11 0.27 0.19
NF-2 −0.17 0.15 0.07 0.03 2.25 <0.05 0.38
NF-3 −0.13 0.13 0.12 0.03 4.16 <0.001 0.70
TRS −0.09 0.15 0.11 0.03 3.56 <0.001 0.60

Abbreviations: OBS, Observe; NF, neurofeedback run; TRS, Transfer.

Table A4. Post hoc comparisons for parameter estimate (Focus-on-Breath vs. Rest) in insula subre-
gions across runs.

Run Estimate Std. Error z Statistic p Value

Anterior insular cortex (aINS)

NF-1:OBS 0.16 0.04 4.40 <0.001
NF-2:OBS 0.10 0.04 2.74 0.05
NF-3:OBS 0.09 0.04 2.59 0.07
TR:OBS 0.01 0.04 0.23 1.00

NF-2:NF-1 −0.06 0.04 −1.63 0.48
NF-3:NF-1 −0.06 0.04 −1.81 0.37
TR:NF-1 −0.15 0.04 −4.17 <0.001

NF-3:NF-2 −0.01 0.04 −0.17 1.00
TR:NF-2 −0.09 0.04 −2.50 0.09
TR:NF-3 −0.08 0.04 −2.36 0.13

Mid-insular cortex (mINS)

NF-1:OBS −0.02 0.03 −0.75 0.94
NF-2:OBS −0.03 0.03 −1.22 0.74
NF-3:OBS −0.02 0.03 −0.71 0.96
TR:OBS −0.04 0.03 −1.53 0.54

NF-2:NF-1 −0.01 0.03 −0.47 0.99
NF-3:NF-1 0.00 0.03 0.04 1.00
TR:NF-1 −0.02 0.03 −0.78 0.94

NF-3:NF-2 0.01 0.03 0.52 0.99
TR:NF-2 −0.01 0.03 −0.30 1.00
TR:NF-3 −0.02 0.03 −0.82 0.92

Posterior insular cortex (pINS)

NF-1:OBS −0.12 0.03 −4.16 <0.001
NF-2:OBS −0.09 0.03 −3.02 <0.05
NF-3:OBS −0.06 0.03 −1.92 0.31
TR:OBS −0.02 0.03 −0.60 0.98
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Table A4. Cont.

Run Estimate Std. Error z Statistic p Value

NF-2:NF-1 0.03 0.03 1.11 0.80
NF-3:NF-1 0.07 0.03 2.25 0.16
TR:NF-1 0.11 0.03 3.56 <0.01

NF-3:NF-2 0.03 0.03 1.12 0.80
TR:NF-2 0.07 0.03 2.43 0.11
TR:NF-3 0.04 0.03 1.32 0.68

Abbreviations: NF, Neurofeedback; OBS, Observe; TR, Transfer.

Table A5. Correlations between parameter estimate (Focus-on-Breath vs. Describe) in insula subre-
gions during neu-rofeedback runs and variables of interest.

Neurofeedback Runs Observe Run Transfer Run

aINS mINS pINS aINS mINS pINS aINS mINS pINS

PROMIS Positive Affect −0.2 −0.15 −0.1 −0.24 −0.16 −0.19 0.08 0.15 0.16
PROMIS Meaning and Purpose −0.23 −0.24 −0.06 −0.23 −0.09 −0.19 0.07 0.09 0.22

PROMIS Life Satisfaction −0.37 * −0.32 −0.19 −0.21 −0.2 −0.17 0.06 0.00 0.11
PROMIS Pain Interference 0.2 0.18 0.29 0.12 0.03 0.15 0.15 0.09 0.12

PROMIS Pain Behavior 0.18 0.32 0.33 * −0.09 −0.02 −0.04 0.13 0.20 0.18
PROMIS Fatigue 0.28 0.3 0.23 0.27 0.21 0.29 0.06 0.05 0.10

Task Ratings Current Feeling −0.13 −0.22 −0.25 0.01 −0.25 −0.18 −0.43 ** −0.37 * −0.19
Task Ratings Mind Wander −0.31 −0.36 −0.24 −0.11 −0.24 −0.34 * −0.20 −0.28 −0.22

Task Ratings Focus-on-Breath −0.03 −0.14 −0.18 −0.14 −0.17 −0.04 0.11 0.26 0.16

Note. aINS: anterior insular cortex, mINS: mid-insular cortex, pINS: posterior insular cortex. PROMIS = Patient-
Reported Outcomes Measurement Information System. Task rating scores were averaged across three neurofeed-
back runs.* p < 0.05. ** p < 0.01.
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regressors (RETROICOR) for the real-time processed and offline processed signals in the PCC region.
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