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Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great

promise for substituting the traditional energy-intensive Haber–Bosch process,

which entails sunlight as an inexhaustible resource and water as a hydrogen

source under mild conditions. Remarkable progress has been achieved

regarding the activation and solar conversion of N2 to NH3 with the rapid

development of emerging photocatalysts, but it still suffers from low efficiency.

A comprehensive review on photocatalysts covering tungsten and related

metals as well as their broad ranges of alloys and compounds is lacking. This

article aims to summarize recent advances in this regard, focusing on the

strategies to enhance the photocatalytic performance of tungsten and related

metal semiconductors for the NRR. The fundamentals of solar-to-NH3

photocatalysis, reaction pathways, and NH3 quantification methods are

presented, and the concomitant challenges are also revealed. Finally, we

cast insights into the future development of sustainable NH3 production,

and highlight some potential directions for further research in this vibrant field.
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1 Introduction

As the cornerstone of modern civilization, ammonia (NH3) is an incontrovertible raw

material for modern industry and agriculture, which plays a crucial role in human survival

and economic growth. Moreover, due to its high hydrogen content (17.7 wt%),

gravimetric energy density (3 kWh kg−1) and easy liquification (−33°C under

atmospheric pressure), NH3 also serves as a useful commodity for chemicals used in

industries and as a carbon-free clean energy carrier (Guo and Chen, 2017). NH3 is by far

predominantly fabricated via the energy- and capital-intensive Haber-Bosch process

requiring extreme reaction conditions of 300–500°C and 15–25 MPa, which gives rise to

excessive consumption of feedstocks and consequently high CO2 emissions. Therefore,

exploring and developing renewable, environment-friendly, and green routes to yield

NH3 is desirable. Photocatalytic N2 fixation is perceived as an alternative sustainable
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strategy for facile, cost-effective ammonia production using

water and nitrogen gas under ambient conditions. There is

enormous, acknowledged and untapped potential in this

emerging field. Considering that nitrogen reduction reaction

(NRR) coupled with water oxidation is a thermodynamically

uphill reaction, solar energy is hence crucial to induce incoming

photons generating electronic charge carriers to initiate the

catalytic reaction. Since the pioneering research by Schrauzer

and co-workers embarked on the photocatalytic reduction of N2

to NH3 by employing TiO2-based photocatalysts (Schrauzer and

Guth, 1977), explorative efforts in this sector have been exerted to

develop novel photocatalysts with high efficiency, especially in

recent years (Schrauzer and Guth, 2002). The initial attempts are

currently expanded to widen the scope of investigated materials

and their modifications, as well as effective strategies of tuning

crystalline phase, surface defects, heteroatom doping, surface

modification and/or heterostructure construction for enhancing

photocatalytic performances. The photochemical process

underpins the terms of selectivity, efficiency, and low

operational cost for the production of NH3 toward the

practical implementation at relatively ambient conditions

using solar energy. Despite the huge potentials, the

photocatalytic NH3 production still falls far short of the ideal

of being commercialized, which results from weak adsorption/

activation of the nonpolar N≡N triple bond of N2 (941 kJ mol−1),

inefficient light absorption, and poor photo-induced charge

separation (Shen et al., 2021).

Design and development of efficient photocatalysts hold

the key to achieve improved performance of photocatalytic

NRR. To date, several prior articles (Chen et al., 2018; Shi

et al., 2019; Shuai Zhang et al., 2019; Huang et al., 2020; Chen-

Xuan Xu et al., 2021; Lee et al., 2021; Shen et al., 2021; Tong Xu

et al., 2021) have outlined the recent advancements of

photoreduction of N2 to NH3 and photocatalysts

engineering strategies. Transition metals, especially the

early transition metals (e.g., tungsten, molybdenum,

vanadium etc.), which possess both empty orbitals and

abundant d-orbital electrons as well as suitable bandgap

energies, could activate dinitrogen molecules through σ-

donation/π-backdonation effects, showing huge potential

for applications as photocatalysts for photocatalytic NRR.

However, few reviews, to the best of our knowledge, have

hitherto summarized tungsten and related metals

photocatalysts together with a specific focus on strategies to

enhance their performances. This review elaborated the state-

of-the-art understanding of the basic principles of NRR

photocatalysis, reaction mechanisms, thermodynamic

limits, and enforceable protocols involved in the overall

photochemical processes. We comprehensively discuss

recent progress over semiconductors containing tungsten

(W), molybdenum (Mo), cobalt (Co), vanadium(V),

tantalum (Ta), niobium (Nb), rhenium (Re), zirconium

(Zr), hafnium (Hf), and their major advantages as to

photocatalysis activity. Furthermore, we emphasize several

strategies to improve the photocatalytic performance and also

highlight the challenges and future directions for sustainable

NH3 production.

2 Fundamentals for
photochemical NRR

2.1 Properties of N2 molecules

Molecular dinitrogen possesses a triple bond between the

nitrogen atoms and a non-bonding pair of electrons on each

atom. Atomic nitrogen has 5 valence electrons and 4 valence

orbitals (2s, 2px, 2py, and 2pz), whereas hybridization of the s-p

atomic orbitals of N2 consists of four bonding orbitals (two σ and

two π orbitals) and four antibonding orbitals (two σ* and two π*

orbitals). The electrons from the π and 2σ orbitals are shared to

form N≡N bond leaving these from 1σ* and 1σ orbitals the non-

bonding electron pairs (Figure 1A) (Kitano et al., 2012). Hence,

the large energy gap of 10.82 eV between the highest occupied

molecular orbital (HOMO) and lowest unoccupied molecular

orbital (LUMO) seriously hinders electron injection into N2

antibonding orbitals (Jia and Quadrelli, 2014). A strong N≡N
bond energy (945 kJ mol−1) and first-bond breaking energy

(410 kJ mol−1) render N2 molecules extremely

thermodynamically stable (Gambarotta and Scott, 2004),

meanwhile, N2 molecules are chemically inert by virtue of

high ionization energy of 15.85 eV and negative electron

affinity of −1.9 eV (Figure 1B). Therefore, adsorption and

dissociation of N2 with weak polarizability and lacking dipole

moment are widely regarded to be the rate-determining steps of

NRR (Guo et al., 2018; Liang Yang et al., 2020; Yi-Fei Zhang et al.,

2020). Both computational and experimental works have

demonstrated that transition metal-based materials interact

strongly with N2 through the formation of N–metal bonds,

thanks to the empty d orbitals in the transition metals (TMs)

accepting the lone pair electrons of N2 and back donating d-p

electrons into the anti-binding orbitals of N2 based on an

“acceptance-donation” protocol, whereby the triple bond can

be weakened and activated to facilitate the bond dissociation

(Figure 1C). Some advances have demonstrated the

incomparable advantages of d block compounds, but this

realm remains elusive.

2.2 Principles and mechanisms of
photochemical NRR to NH3

Ideally, photocatalytic NRR into NH3 involves transfer of

6 protons and 6electrons, which is a strong endothermic reaction

with stoichiometric O2 production formed by water oxidation

(overall reaction: N2 (g) + 3H2O (l) ↔ 2NH3 (g) + 3/2O2 (g),
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ΔG = +7.03 eV) (Medford and Hatzell, 2017). The photochemical

NRR requires a potential of at least 1.17 eV per electron (Comer

and Medford, 2018), which is initiated by the absorption of

photons with an energy higher than the energy bandgap (Eg) of a

semiconductor photocatalyst to generate photoexcited electron-

hole pairs and an energy >1.17 eV demanded for the overall NH3

production (Figure 2A). Upon photo-irradiation with sufficient

energy supply, electrons (e−) leap into the conduction band

(CB) with simultaneous generation of holes (h+) at valence band

(VB), thus triggering the reduction of N2 to NH3 with photo-

excited electrons and water oxidation with created holes

(Linsebigler et al., 1995). The photoinduced separation of

charge carriers is the prerequisite for all semiconductor

photocatalysis. However, the migration and separation of

photoexcited electron-hole pairs to the semiconductor

surface active sites to participate in the redox reactions

competes with their recombination in the bulk and on the

surface. Eventually, the reaction products desorb from the

photocatalyst surface and are transferred to the medium to

close the cycle (Figure 2B). Note that the NRR is an uphill

reaction. As a consequence, the CB and VB positions of a

photocatalyst must bestride the reduction potential of N2 and

the oxidation potential of H2O. Theoretically, the bottom of the

CB should be more negative than the reduction potential of N2/

N2H (−3.2 V vs. normal hydrogen electrode, NHE), while the

top of VB must be beyond the oxidation potential of H2O/O2

(+1.23 V vs. NHE). Satisfying both of the above requirements

with a singular conventional semiconductor seems to be

incompatible, which is unfavorable for harvesting most of

the light across the solar spectrum. Since a considerable

number of electron-hole pairs recombine inside or on the

surface of the catalyst with a rather fast kinetics rate (Zhang

et al., 2012), or dissipate in the form of heat or light energy,

thus resulting in a decrease of reaction efficiency. Accordingly,

most of the reported catalysts for photocatalytic NH3

production still suffer from low light utilization, fast

recombination of photoexcited electron-hole pairs, poor N2

adsorption/activation, and sluggish electron-to-N2 transfer

kinetics, hobbling the overall solar-to-ammonia conversion

efficiency. Additionally, the insufficient stability of the

photocatalysts is another serious issue. Many

semiconductors could undergo photo-corrosion upon light

irradiation, which can be induced by the photo-generated

electrons or holes, thus leading to degradation of NRR

performance and inhibiting the long-time photocatalytic

ammonia synthesis.

The current well-established mechanisms for

photocatalytic NRR can be roughly divided into the

following: dissociative, associative or enzymatic pathways as

shown in Figure 3 (van der Ham et al., 2014; Hao Li et al.,

2016; Shipman and Symes, 2017). For the dissociative

pathway, the breaking of the N≡N bond precedes the

hydrogenation process, followed by the stepwise

protonation of the adsorbed nitrogen atoms to form NH3,

analogous to the reaction mechanism of the industrial Haber-

Bosch process (Garden and Skulason, 2015), which is however

unfavorable for N2 photoreduction to NH3 resulting from the

large external energy input required for the cleavage of the

N≡N triple bond (Shipman and Symes, 2017). According to

the different hydrogenation sequences, the associative N2

reduction mechanism follows either distal pathway or

alternating pathway. In the distal associative pathway, the

nitrogen atom far from the adsorption site is protonated

successively before generating the first NH3 molecule,

leaving another N atom to yield the second NH3 molecule.

Conversely, in the alternate pathway, the hydrogenation

reaction occurs alternately at two nitrogen atoms, each of

which could react with injected electrons and protons,

forming key intermediates such as metal-bound diazene

(HN = NH) and reaction byproducts such as N2H4 (Bo

et al., 2021). As for the enzymatic pathway, the 2 N atoms

of the nitrogen molecule are simultaneously adsorbed by the

FIGURE 1
(A)Diagram of N atomic orbitals and N2molecular orbitals. (B) Energy diagram for N2. EVAC, Eg, WF, IE, EA, and EF represent vacuum level, energy
gap, work function, ionization energy, electron affinity, and Fermi level, respectively. (C) Schematic illustration of N2 bonded to TMs.
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active center of the catalyst, anchored on the catalyst surface

via the “side-on” configuration, and then hydrogenated

(Hinnemann and Norskov, 2006; Xiao-Fei Li et al., 2016).

The proposal that gained the widest support was that

photocatalytic NH3 synthesis follows associative pathways,

during which the adsorption and activation of N2 and then the

transfer of photogenerated electrons from the photocatalyst to

N2 provide a lower reaction energy barrier for the dissociation

of N≡N triple bonds (Montoya et al., 2015). The activation of

N2 involves the formation of a coordinate bond with the active

site proceeded on a catalytic surface, and the subsequent

electron transfer and protonation are the keys to weakening

the N≡N bonding energy (Jacobsen et al., 2001). Different

mechanisms have been proposed, but deep mechanistic

understanding of NRR that may vary for distinct catalytic

systems remains to be further explored.

2.3 Thermodynamic limits of
photocatalytic NRR to NH3

Due to the proton-electron transfer of multiple

intermediates resulting in sluggish reaction kinetics, the

thermodynamic constraints relying on the reaction

intermediates and the overall and half-reaction

thermodynamics independent of the photocatalysts play the

decisive role in the photocatalytic NRR process (Table 1).

Despite the overall reaction of NH3 production via N2

reduction in water (N2 (g) + 6H+ + 6e− ↔ 2NH3 (g), E0 =

+0.55 V vs. NHE) is more thermodynamically feasible than the

competing hydrogen evolution reaction (HER) by water

reduction, HER is more likely to occur with fewer electrons,

decreasing the selectivity toward NH3. Besides, the more

negative potentials for the intermediate reactions, such

FIGURE 2
(A) Schematic energy diagram related to the reduction of N2 to NH3. (B) Schematic illustration of the complete photocatalytic NH3 synthesis
over semiconductor-based photocatalysts.

TABLE 1 Thermodynamic potentials of hydrogenation reactions related to the whole nitrogen fixation pathways.

Reaction equilibrium Eo Ref. Eqn.

N2 (g) + 3H2O (l) ↔ 2NH3 (g) + 3/2O2 (g) −1.137 V vs. SHE (pH 0) Hochman et al. (2020) 1

2H+ + 2e– ↔ H2 (g) 0 V vs. SHE (pH 0) Shi et al. (2020a) 2

3H2O (l) ↔ 3/2O2 (g) + 6H+ + 6e– +1.23 V vs. NHE (pH 0) Hochman et al. (2020) 3

N2 (g) + 6H+ + 6e– ↔ 2NH3 (aq) +0.092 V vs. RHE Lindley et al. (2016) 4

N2 (g) + 6e– ↔ N2
− (aq) −4.16 V vs. NHE or −3.37 V vs. RHE (pH 14) Shi et al. (2020b) 5

N2 (g) + 6H+ + 6e– ↔ 2NH3 (g) +0.55 V vs. NHE (pH 0) Bazhenova and Shilov, (1995) 6

N2 + 8H+ + 8e− ↔ 2NH4
+ +0.27 V vs. NHE (pH 0) Chen et al. (2018) 7

N2 (g) + H+ + e– ↔ N2H –3.20 V vs. RHE Shi et al. (2020a) 8

N2 + 2H+ + 2e– ↔ N2H2 (g) –1.10 vs. RHE Shi et al. (2020a) 9

N2 + 4H+ + 4e– ↔ N2H4 (g) –0.36 V vs. RHE Shi et al. (2020a) 10

N2H2 (g) + 2H+ + 2e– ↔ N2H4 (aq) 0.529 vs. RHE Fu et al. (2022) 12

N2H4 (aq) + 2H+ + 2e– ↔ 2NH3 (aq) 0.939 vs. RHE Fu et al. (2022) 13

N2 (g) + 6H2O ↔ 2NO3
− + 12H+ + 10e– +1.24 V vs. NHE Yifu Chen et al. (2020) 14
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as −4.2 V (vs. RHE) for one-electron activation to form surface-

bound N2 and −3.2 V (vs. RHE) for first proton-coupled one-

electron hydrogenation of N2 (Zhu et al., 2013; Shi et al., 2020a;

Huang et al., 2020), are beyond the photocatalysis capability of

most semiconductors without active sites.

The initial chemisorption and activation of N2 could trigger

the formation of different kinds of species in the subsequent

reactions owing to multiple complicated electrons transferred

hydrogenation procedures and the presence of reactive oxygen

species by water oxidation half-reaction, such as oxygen,

hydroxyl radicals ·OH (2H2O+ 4h+ → O2 + 4H+, E0 = 0.81 V

vs. NHE at pH 7 or H2O+ h+→OH+H+, E0 = 2.32 V vs. NHE at

pH 7) (Sun et al., 2018). Adversely, the formed O2 further

captures electrons in the CB to suppress the NH3

photosynthesis (Shiraishi et al., 2018; Sun et al., 2018), and

the strong oxidation agents ·OH can also further generate nitrite

or nitrate from the generated NH3 by photooxidation, which

are detrimental to N2 photoreduction to NH3. Because of its

weaker interaction with the surface O atom caused by vacancies

or doping, metal is further less firmly bound to O following the

release of one H atom from adsorbed H2O* onto the surface O

atom, thus two OH* bonded at the neighboring catalytic sites

are easily coupled forming peroxide H2O2* preferentially

adsorbed at active sites, thereafter poisoning the

photocatalyst (Liu et al., 2012). The oxidation half-reaction

products also oxidize the photogenerated NH3 to HNO3,

leading to a decrease in the NH3 yield. Yang et al. (2021)

transformed the N2 disproportionation reaction into a

complete reductive nitrogen photofixation by introducing Au

nanoparticles into Fe-TiO2 to effectively decompose H2O2.

Some neglected N2 fixation products (e.g., N2H4, NO2
−, and

NO3
−, etc.) as essential chemicals should be noted (Table 1, Eqs.

10 and 14), in which N2H4 as a by-product from afore-

mentioned associative alternating pathways has also been

detected in the same research (Schrauzer and Guth, 2002;

Xiao-Fei Li et al., 2016). Li et al. (Hao Li et al., 2016)

discovered that N2H4 was quickly generated over the BiOCl

nanosheets exposed with (010) facets and then gradually

disappeared to produce NH3, which strongly supports the

alternative mechanism. In terms of thermodynamic

potentials (Table 1, Eqs. 9 and 12), N2H4 is more prone to

be transformed to NH3 from surface–N2H4 intermediates due

to its much weaker N–N single bond. Similar to the

hydrogenation pathway to NH3, dissociated adsorbed N2

molecule is oxidized to the intermediate of metastable NO*

by photogenerated h+, followed by further oxidation with O2

and H2O from the reaction media, by which N2 is converted to

nitrate and nitrite through continuous photooxidation

reactions (Comer and Medford, 2018). The previously

reported N2 photoreduction products are either NH4
+ or

NO3
− (Liu et al., 2019; Dong Zhang et al., 2022),

simultaneous coproduction of NH4
+ and NO3

− through

simultaneous reduction and oxidation of N2 in pure water,

which was demonstrated to occur spontaneously in aqueous

solutions (Ren et al., 2020). Another critical aspect in NH3

production via photochemical N2 reduction is that some key

reaction intermediates are instrumental in NH3 conversion.

Zhao et al. (2022) established a redox pathway with a lower

kinetic barrier for NH3 photosynthesis, in which N2 and O2 can

be trapped at the oxygen vacancies in ultrathin two-

dimensional (2D) CuCo metal-organic frameworks (MOFs)

to generate *NO and further be reduced to NH3 by visible

light. Although the desired NH3 conversion and selectivity are

swayed by these competing reactions, some by-products also

play imperative roles in industrial production and living needs.

The addition of sacrificial agents (typically electron donors

such as sulfites, amines, humic acid, ascorbic acid, and alcohols)

with oxidation potentials lower than water appeases the

requirement for oxidizing ability in some SC photocatalysts,

further suppressing electron-hole pair recombination (Shen

et al., 2020). On the other hand, the overall production rate of

NH3 is kinetically balanced by the hole consumption rate on the

photocatalyst since electrons and holes are generated in pairs

under illumination. Organic alcohols with an α-H adjacent to the

OH group(s)-to wit, methanol, ethanol, 2-propanol, ethylene

glycol, and so forth, can react with holes in VB to accelerate the

production of electrons and liberation of protons (Chen et al.,

2015). Among them, methanol is demonstrated to be more

appropriate and efficient than other hole sacrificial reagents.

Methanol not only loses electrons more easily to consume the

accumulated holes due to its lower HOMO (Zhao et al., 2015),

but also promotes the solubility of N2, which could act as a

proton donor and partial electron donor for subsequent

reduction reactions (Li et al., 2018). However, methanol as the

sacrificial agent could be oxidized to form carbonyl-containing

compounds (e.g., aldehyde or ketone) and finally CO2, which

might interfere with product detection and quantification. The

N2 fixation reaction can also be facilitated by *CO2
− produced

from the oxidation process of methanol (Swain et al., 2020). Cao

and co-workers (Cao et al., 2018) found that the·CO2
−

intermediates transformed from methanol or absorbed CO2

affected the nitrogen fixation due to their strongly reducing

ability (ECO2/·CO2− = 1.8 V) (5N2 + 2CO2
− + 4H2O → 2NH3 +

2CO2 + 2OH−) (Dimitrijevic et al., 2011). It should be noted that

the NH3 formation mechanism in such sacrificial systems should

be taken with great caution, the target scavenger should be

chosen carefully.

2.4 Protocols, evaluation, and detection
methods in photocatalytic NRR

Despite the great strides toward photon-driven ammonia

production that have been taken, unified rules and standards in

this fledgling field should be formulated to ensure the authority

and accuracy, by which the impetus imparted forcefully
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contribute to advance of the sustainable technology. Since

the low NH3 yield (ppb/ppm level) and ubiquitous

contaminants plague experimental practices (Gao et al.,

2018; Tang and Qiao, 2019; Zhao et al., 2019), establishing

a uniform protocol for rigorous experiments preceding the

detection and quantification of NH3 are noncontroversial.

Therefore, to clarify the source of NH3 and ensure data

reproducibility, various contamination sources from the

environment, latex gloves, human respiration, stable

deionized water, photochemical reactor, or the used feed

gas, even NH3 or amine groups unintentionally introduced

by catalysts, should be ruled out to avoid overestimation of

the NH3 concentration (Bai et al., 2017; Zhao et al., 2021).

The photocatalysts, photoreaction set-up and all its

components as well as sample tubing should be

thoroughly rinsed with fresh ultrapure water and properly

stored. Particular emphasis should be put on the NOx

contaminants derived from N-containing chemicals, protic

solvents, or supply gas, which are easily reduced to NH3 (Xue

Chen et al., 2020; Li et al., 2022a; Feng Wang et al., 2022; Xu

et al., 2022). To account for the reliability and repeatability of

photoactivity, it is strongly recommended to use reported

rigorous experimental protocols (Andersen et al., 2019; Tang

and Qiao, 2019; Choi et al., 2020; Shen et al., 2021), which

clearly list experimental methods, gas purification, blank and

control experiments, especially the isotopic labeling

experiments. The 14N2 and 15N2 feed gases should be pre-

purified to remove any possible NOx or NH3 to eliminate

uncertainty and even false positives of catalytic data (Zhao

et al., 2020; Hui et al., 2022; Yuting Wang et al., 2022).

However, controversy exists as to how to obtain reliable

detection and quantification of NH3 and NH4
+, which

severely hampered the growth of this field. Fortunately,

the development of measuring techniques further pushed

the advance of NH3 evaluation. Currently, detection and

quantification of NH3 could be mainly divided into five

methods, including spectrophotometric/colorimetric assays

using indophenol blue or Nessler’s reagent, ion

chromatography (IC), ion-selective electrode (ISE),

fluorescence, and 1H-NMR spectroscopy methods (Gao

et al., 2018; Zhao et al., 2019). These methods are

methodologically sound and get concordant precise results

for NH3 determination in water systems (Mansingh et al.,

2021). However, each of these methods has both advantages

and limits for measuring NH3. Colorimetric assays are widely

available with benefits of good sensitivity, fine accuracy

(0–500 µgNH3 L
−1), and low cost (Zhao et al., 2019). The

pH, solvent used, presence of certain metal ions, sacrificial

agents and their oxides, and nitrogen-containing chemicals

can all adversely increase the amount of NH3 detected by the

coloration methods (Gao et al., 2018). IC is recommended for

NH3 quantification given its reproducible, precise results

with a wider range of NH3 estimation, superior efficiency

and selectivity, and good stability, but it still suffers from the

disadvantage that certain sacrificial agents affect the

separation efficiency of the cation-exchange column. NMR

spectroscopy, mass spectroscopy, and enzyme assays are also

employed as supplementary measures to eliminate the

possible false-positive results, the first of which, even

quantitatively, could not prove the origin of all ammonia

generated. For consistency and scientific rigor, the

concentration of NH3 detected should be cross-checked

with two or more different quantitative methods, even

conducted in in-situ and continuous monitoring processes

for reliable evidences from an unimpeachable source.

Given the lack of the standard photocatalytic reaction

systems used in conventional laboratory tests (Ziegenbalg

et al., 2021), it is therefore necessary to pay particular

attention to various vital details during the assessment of

photocatalytic nitrogen fixation. Figure 4 presents the effect

of important experimental parameters on the observed

catalytic performance for photo-driven NH3 production.

An objective and meaningful comparison of photocatalytic

NH3 synthesis performance among different groups is

heavily reliant on a set of standard experimental

conditions (e.g., light source intensity, irradiation

wavelength range, photocatalyst dosage, reaction solution

volume, reactor type, reaction temperature and pressure,

etc.). Many technical aspects especially the light source are

often missing or not stated in sufficient details.

Standardization of reactor design is desirable, thereby

minimizing the impact of geometry. Reported performance

evaluation is primarily based on NH3 yield, apparent

quantum yield/efficiency (AQY/AQE) and turnover

frequency (TOF). However, mass-based performance

metrics (e.g., μmol h−1 g−1) are insufficient because

photocatalytic activity is not necessarily proportional to

the catalyst mass (Kramm et al., 2019; Huimin Liu et al.,

2021). Similarly, AQY/AQE is often used to evaluate the

photocatalytic activity under monochromatic light excitation

of the same specific wavelength, which is closely related to

the wavelength of incident photons and the intrinsic

properties of the materials, since photocatalysts generally

behave differently on absorption coefficients and

photocatalytic activities at each irradiation wavelength

(Yuhua Wang et al., 2019). TOF differs as well in terms of

the active centers. Solar-to-NH3-yield (SAY)/solar-to-NH3

(STA) efficiency can be universally used as the practical

standard for comparison, which is determined by a solar

simulator (AM 1.5G) with an irradiance of 100 mW cm−2.

With more regard to normalizing evaluation systems, solar-

to-NH3 energy conversion (SEC) efficiency is suggested to

objectively compare the catalytic activity of different

materials and assay the future industrialization

opportunities (targeted SEC ≈10%) (Rong Zhang et al.,

2019; Ziegenbalg et al., 2021).
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3 Tungsten-based and related
photocatalysts for NRR

3.1 Metal oxide-based photocatalysts

3.1.1 Tungsten oxides
Tungsten oxides, commonly denoted as WO3−x·nH2O (x < 1,

n = 0–2), are somewhat distorted in their crystal structure made

up of perovskite units, rather not perfect octahedral, with

bandgap energies ranging from 2.4 to 2.8 eV depending on

their stoichiometries, crystalline structure and density of

defects (Zheng et al., 2011; Sun et al., 2019). Tungsten

trioxide (WO3) is the most popular semiconductor among all

tungsten oxides because of its exceptional chromic properties and

mixed polymorphs, which manifest in rich and diverse structures

(Girish Kumar and Koteswara Rao, 2015; Yin and Asakura, 2019;

FIGURE 3
Schematic representation of possible pathways for N2 fixation to NH3 on catalyst surfaces.

FIGURE 4
Guidelines for experiment normalization to rule out the impact of various parameters that influence the overall and specific performance
indices. Reproduced from ref. (Ziegenbalg et al., 2021). With permission from the John Wiley and Sons.
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Cheng and Zhang, 2020). Among different structures of WO3,

the monoclinic phase is a preferred photocatalyst with the most

relatively thermodynamically stable configuration than

orthorhombic and hexagonal phases, while triclinic and cubic

crystal structures rarely get attention (Zheng et al., 2011; Girish

Kumar and Koteswara Rao, 2015; Fan et al., 2021). Hou et al.

(Hou et al., 2019) developed a facile method to prepare

monoclinic WO3 via thermal treatment of nanoporous metals,

FIGURE 5
(A) Scanning electron microscopy (SEM) image, (B) high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
image, and (C) high-resolution TEM (HRTEM) image of WO3-600. (D) Photocatalytic NH3 production rates over WO3-NPs, WO3/W-400, WO3-600,
and WO3-800. (E) NH3 production rates for WO3-600 and WO3/W-400 over the course of ten rounds of successive reactions. (F)Quasi in situ XPS
spectra of O 1s in WO3-600 before and after treatment. (G) In situ ESR spectra of WO3/W-400 and WO3-600 before and after light irradiation.
(H)N2-TPD profiles of WO3/W-400, WO3-600, WO3-800, WO3-NPs, and WO3-600 after the treatment with light. (I) In situ DRIFT spectra recorded
during the photocatalytic N2 fixation over WO3-600. Reproduced from Hou et al. (2019) with permission from the John Wiley and Sons. (J)
Schematic illustration of the generation of Mo doped h-WO3 crystalline nanowires. Reproduced from Mao et al. (2020) with permission from the
John Wiley and Sons. (K) Schematic illustration of the electronic band structures of W18O49 and 1 mol% Mo-doped W18O49 ultrathin nanowires.
Optimized adsorption configurations of N2 molecules and their corresponding charge distribution on the surface of (L)W18O49 and (M) Mo-doped
W18O49. (N) Scheme for photocatalytic N2 reduction over Mo-doped W18O49. (O) Photocatalytic ammonia production rates by W18O49, MWO-0.5,
MWO-1, MWO-2, and MWO-4 UTNWs in the first 2 h. Reproduced from Ning Zhang et al. (2018) with permission from American Chemical Society.
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wherein nanoporous WO3-600 was composed of connected

grains rather than a single grain, containing abundant grain

boundaries (GBs) (Figures 5A–C). Impressively, WO3-

600 showed excellent performance for photocatalytic NRR

with an NH3 yield rate as high as 230 µmol gcat.
−1 h−1 without

any sacrificial agents at room temperature, 17 times higher than

that for WO3 nanoparticles (WO3-NPs) without GBs

(Figure 5D). Moreover, almost 100% of initial activity was

maintained even after ten successive reaction rounds over

WO3-600 (Figure 5E). Quasi in situ XPS and in situ electron

spin resonance (ESR) measurements have been employed to

verify the pivotal role of GBs in inducing a large number of

operando OVs under light irradiation (Figures 5F,G). These

operando OVs served as highly active sites for efficient

adsorption and activation of N2, which have been confirmed

by temperature-programmed desorption of N2 (N2-TPD)

(Figure 5H), directly contributing to easier delivery of

photoexcited electrons to adsorbates through metal-oxygen

covalency. Then N2H* intermediates coupled with protons

were observed by in situ diffuse reflectance infrared Fourier

transform (DRIFT) (Figure 5I). As shown in Figure 5J, sub-5-

nm-sized nanowires of hexagonal tungsten oxide (h-W O 3) via a

dopant replacement-driven molten salt method also turned out

to be excellent photocatalysts with a high NH3 production rate of

370 μmol g−1 h−1, benefiting from unique features of the Mo-

doped ultrathin hexagonal structure, thus facilitating carrier

separation and dissociation of N2 molecules (Mao et al.,

2020). Tailoring the morphology of WO3 is not only a

rational route to investigate the relationship between the

microstructure and photocatalytic performances, but also a

feasible approach for fabricating highly photoactive

nanomaterials.

Since the lattice of WO3 withstands a considerable loss of

oxygen content, the resulting nonstoichiometric tungsten

suboxides (WO3–x) compositions such as W20O58, W18O49

and W24O68, have suitable bandgap energy, and tunable

electronic band structure, charge redistribution, as well as

existence of mixed-valence W ions benefiting different degrees

of oxygen deficiency in their structures (Song et al., 2015; Sun

et al., 2019; Yin and Asakura, 2019; Meng Yang et al., 2020). To

accommodate the large energy band of N2, Zhang et al.

(Congmin Zhang et al., 2018) used a solvothermal method to

fabricate defect-rich W18O49 ultrathin nanowires doped with

Mo, where Mo dopants shifted defect-band center up toward the

Fermi level (EF), thereby harvesting more photon energy to

provide adequate energetic electrons for N2 reduction

(Figure 5K). Moreover, the Mo–O covalent bond facilitated

the separation and transfer of photogenerated charges from

coordinatively unsaturated Mo sites to N2 adsorbates, while

the formation of the Mo−W bond can effectively enhance the

molecular polarization of chemisorbed N2 as a reactive dual-

active center, resulting in better activation (Figures 5L, N). The

as-prepared 1 mol% Mo-doped W18O49 sample showed

enhanced photocatalytic performance with an NH3 generation

rate of 195.5 μmol g−1 h−1 and STA efficiency of 0.028% under

simulated sunlight (Figure 5O). Analogously, Mn2+ ions were

introduced to replace W sites in the W18O49 lattice, which not

only acted as chemisorption and activation centers for N2 and

H2O molecules, but also facilitated the separation and migration

of photogenerated charges (Ying et al., 2019). Tailoring surface

oxygen vacancies and doping of tungsten oxides with

heteroatoms are effective strategies to increase the number of

active sites for N2 chemisorption (Mingli Zhang et al., 2020).

3.1.2 Molybdenum trioxides
Molybdenum in the same transition metal group with

tungsten shares some similar chemical properties, where a

non-stoichiometric form MoO3–x, analogous to WO3–x,

exhibits prodigious potential for solar-driven photocatalysis

due to its strong OVs-induced localized surface plasmon

resonance (LSPR) absorption in visible-near infrared (vis-NIR)

region (Yehuan Li et al., 2019; ZhengWang et al., 2019; Qiu et al.,

2021; Li et al., 2022b). Bai et al. (Bai et al., 2022) synthesized

Schottky-barrier-free MoO3−x spheres via a facile aerosol-spray

method for plasmon-driven photochemical N2 fixation to NH3,

which features metal-like free charge carriers with the Fermi level

above the bottom of the defect band and the defect band located

closely to the conduction band (Figures 6A,B). The MoO3−x

spheres treated at 350 °C delivered an NH3 production rate of

435.57 μmol h−1 g−1 in 20 vol% methanol aqueous solution under

full-spectrum Xe lamp illumination, with an AQE of 1.24% at

808 nm and 1.12% at 1,064 nm and a STA efficiency of 0.057% in

pure water under simulated sunlight (Figures 6C,D). Both the

measured AQEs and the corresponding wavelengths under NIR

region are among the highest values to date. Specifically, the OVs

enable a perfect functional combination of rich active sites for N2

absorption with broad-spectrum plasmon-induced hot electrons

and empty states in the defect band within the MoO3−x spheres,

which facilitates the multi-electron reduction-oxidation (red-ox)

reactions involved in photocatalytic N2 reduction. With the

Schottky-barrier-free characteristic, the hot electrons moved

freely in the defect-induced electronic states and the

conduction band reduced those adsorbed and activated N2

molecules trapped at the OVs to produce NH3, as illustrated

in Figure 6B. The defective MoO3−x has been exploited as matrix

support to valorize rare earth La single-atom catalysts (SACs) via

simple Lewis acid-base interactions due to their well-defined

surface structure and high degree of anisotropy (Liu et al., 2022).

The density functional theory (DFT) calculations revealed that a

La single atom theoretically tends to occupy terminal OVs and

coordinate with 2-coordinated O site (Mo–O–Mo, O2c) to form

O2c-La-O2c coordination. Moreover, the role of La atoms on

O2c–La–O2c site was further clarified, which pumps energetic

electrons from their unsaturated 5d orbitals into the π * 2p orbital
of the adsorbed N2, boosting N2 adsorption and activation.

Isolated atomically dispersed La atoms anchored on MoO3−x
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support were observed by the aberration-corrected HAADF-

STEM and corresponding rainbow-colored images. The

O2c−La−O2c configuration close to two oxygen coordination

environment was further verified by X-ray absorption fine

structure (XAFS), by which La−La bond cannot be distinctly

observed in La/MoO3−x. La/MoO3−x possess an NH3 production

rate of 209.0 μmol h−1 g−1 without any hole scavenger under

visible light, nearly 10 times that of the support. Enhanced

adsorption of nitrogen and the symmetric alternative pathway

following a side-on bridging adsorption configuration have been

corroborated by in situ FT-IR spectra with the combination of

DFT calculations, thus La single atoms substantially amplify the

activation of N2 toward successive hydrogenation, while lowering

the formation energy barrier for *NNH → *NHNH process.

3.1.3 Mixed valence cobalt oxides
Cobalt, one of the earth-abundant first row transition

metals, has gained tremendous attention for photocatalytic

N2 reduction and conversion due to its eligibility for N2

dissociation and tunable activity (Chu et al., 2019; Gao

et al., 2019), whereas its oxides with mixed-valence states

of Co species have poor photostability due to photo-corrosion

arising from half oxidation reaction. Combination of CoOx

with 2D carbon material supports have been rationally

explored to optimize their electronic structures and tailor

the active site density (Ahmed et al., 2019; Chu et al., 2019;

Zhi-Yuan Wang et al., 2020; Lu et al., 2022). For example, Liu

et al. (Yuxin Liu et al., 2021) fabricated CoOx quantum dots

anchored on porous graphdiyne (GDY) (GDY@CoOxQD) to

construct highly efficient and robust catalysts via a facile in-

situ growth strategy for photocatalytic NRR. The composite

photocatalysts featured with superlative activity and stability

under various conditions as a result of strong quantum effect

and a highly compatible synergistic effect. The three-

dimensional configurations of the self-supported GDY@

CoOxQD nanosheet array and uniformly dispersed

CoOxQD on the porous GDY surface were confirmed by

SEM and HRTEM, respectively. An average NH3 yield rate

of 46 independent experiments over the GDY@CoOxQD in

0.1 M Na2SO4 aqueous solution (pH 7) up to

19,583 μmol g−1 h−1 was attained, exceeding most reported

catalysts. Equally importantly, the six different batches

exhibited long-term stability of 10 h with nearly constant

NH3 yield rates. By comparing the Co XPS results of

CoOxQDs on different supported carbon materials and the

XANES of GDY@CoOxQD before and after the reaction, it

was concluded that the mixed-valence states of Co (Co3+ and

Co2+) played a pivotal role in enhancing the reaction activity.

FIGURE 6
(A) SEM image of theMoO3−x spheres prepared at 350°C. (B) Schematics illustrating the band structures of the plasmonic MoO3−x photocatalyst.
(C) Photocatalytic NH3 production under different conditions and (D) AQE at different wavelengths over the MoO3−x spheres. The light absorption
spectrum is plotted for comparison. Reproduced from Bai et al. (2022) with permission from the John Wiley and Sons.
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As revealed by the DFT calculations, the introduction of GDY

and the coexistence of Co2+/Co3+ could facilitate the electron

transfer to form a strong d-π* (unocc) antibonding orbital

interaction above EF and d-π* (occ) bonding orbital

interaction below EF. This is beneficial for weakening the

bond order and bond strength of N≡N bond.

Lu et al. (2022) also reported that different cobalt oxide

species were responsible for innate active properties,

resulting in a synergistic effect on the two half reactions

with reduction and oxidation spatially separated at CoO and

Co3O4, respectively. The CoO-Co3O4 mixed-oxide (CoO

dominated) composites on reduced graphene oxide (RGO)

manifested a remarkable NH3 formation efficiency of

89.1 μmol g−1 h−1, over 14 times that of each single

component. Furthermore, the photoreaction-induced

cation oxidation (CoO to Co3O4) was reduceable/

recyclable by photo-reactivating the non-active Co3O4 back

to the active CoO at room temperature, thus leading to well-

maintained NRR activity after six cycles of operation. As

indicated by XANES, XPS, and HRTEM measurements, the

compositions were completely transformed into Co3O4

during the 8 h of NRR and converted back to dominant

CoO after the reactivation. The component CoO in the

composite entailed deep-red-light absorbing defect states,

which hindered carrier recombination. The band structure

of CoO/Co3O4 formed a direct Z-scheme heterojunction, in

FIGURE 7
(A) Schematic of g-C3N4/ZrO2 composite synthesis. (B) NH3 yields of pure ZrO2, g-C3N4 and g-C3N4/ZrO2 composites with different ZrO2

contents. (C) Photoluminescence (PL) spectroscopy and (D) time-resolved PL (TRPL) decay spectra. (E) Schematic of mechanism for photocatalytic
N2 fixation over g-C3N4/ZrO2 composites. Reproduced from Mou et al. (2019) with permission from American Chemical Society. (F) Schematic of
NRR on Au-NPs/Nb-SrTiO3/Zr/ZrOx photoelectrode. (G) Energy-level diagram of the plasmon-induced NH3 synthesis device. U: redox
potential. (H) NH3 formation rate over Au-NPs/Nb-SrTiO3/Zr/ZrOx and Au-NPs/Nb-SrTiO3/Ru. Reproduced from Oshikiri et al. (2016) with
permission from the John Wiley and Sons.
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which the electrons at the CB of CoO reduced N2 molecules

and the holes at the VB and defect energy levels of Co3O4

oxidized H2O molecules.

3.1.4 Other transition metal oxides
Non-noble metal oxides have gained tremendous

expectations as promising alternative NRR catalysts primarily

owing to their high chemical stability, ease of synthesis, and

minimization of noble metals consumption (Liang Yang et al.,

2020; Gao et al., 2022; Zhen Zhao et al., 2022). Only a few metal

oxides such as VO2 (Haiguang Zhang et al., 2019), Ta2O5 (Fu

et al., 2019), Nb2O5 (Han et al., 2018; Kong et al., 2019), NbO2

(Huang et al., 2019), and ZrO2 (Xu et al., 2020) have been

reported for electrocatalytic NRR, However, these metal

oxides suffer from large band gap, poor light absorption

capacity toward visible light, low quantum efficiency, and fast

recombination rate of photogenerated excitons, restricting their

applications in photocatalytic NRR. The insulating material ZrO2

with a band gap of ~5.0 eV (Xu and Schoonen, 2000) can absorb

ultrahigh UV light (Gaggero et al., 2021). In addition, it possesses

high mechanical strength, non-toxicity, and corrosion resistance.

Intensive research has been concentrated on engineering and

visible photosensitization of high band gap oxides based on Zr

elements of the fourth subgroup (Oshikiri et al., 2016; Caiting

Feng et al., 2022). Theoretical calculations revealed that the

adsorption energy of N (ΔN*) is much lower than that of H

on the ZrO2 surface in the aqueous photocatalytic NRR process.

This suggests that ZrO2 preferentially adsorbs N atoms and

baffles the reduction of H2O to H2 (Skúlason et al., 2012; Tao

et al., 2019). Mou et al. (Mou et al., 2019) demonstrated

photocatalytic NRR to NH3 based on amorphous ZrO2 in

association with g-C3N4 as a visible light harvester. The

g-C3N4/ZrO2 lamellar composites were constructed by a

simple one-step pyrolysis of the deep eutectic solvent

ZrOCl2·8H2O/urea (Figure 7A). The composites imparted an

optimal NH3 yield rate of 1,446 μmol L−1 h−1 under visible light

illumination, noticeably outperforming each individual

counterpart (Figure 7B). The introduction of amorphous ZrO2

restrained the hydrogen generation and facilitated N2 reduction.

A synergy between amorphous ZrO2 and g-C3N4 was created

contributing to the rapid photoproduced electron–hole pair

separation and transfer (Figures 7C–E). 15N isotope analysis

verified the contamination-free N2 photofixation in this work.

Similarly, Oshikiri and co-workers designed a multi-component

photocatalytic system of Au-NPs/Nb-SrTiO3/Zr/ZrOx. The

composite was shown to have high affinity to NH3.

Plasmonic-induced charge separation happened at the Au/

SrTiO3 interface, thereby allowing occurrence of oxidation

reactions on gold nanocrystals and N2 reduction on the

ZrOx@Zr coating (Figures 7F,G). Figure 7H shows the large

interface of ZrOx@Zr and Nb-SrTiO3 affording high selectivity

and efficiency for NH3 synthesis owing to the advantage of a

stronger binding of ZrOx@Zr to N atoms relative to H atoms

compared to Ru.

3.2 Oxometallate-based photocatalysts

3.2.1 Bismuth-based oxometallates
Among various polyoxometalates, bismuth-based compounds

such as Bi2WO6, Bi2MoO6 of Aurivillius structure, and BiVO4 of

Scheelite structure, are another class of oxides of interest because of

their considerable chemical stability, up-shifted VB resulting from

hybridization between Bi 6s andO 2p states and narrow band gaps,

FIGURE 8
(A) The relative current densities (Δj = jAr – jN2) measured at 0.6 V vs. saturated calomel electrode (SCE) of different samples. (B) Multicycle
photocatalytic NH3 generation from air of different samples under simulated sunlight irradiation. Reproduced from Zhao et al., 2016 with permission
from the John Wiley and Sons.
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together with their similar layered crystal structures

complimentary for charge separation and transfer (Zhang et al.,

2011; Hao et al., 2020; Wenjie Liu et al., 2020; Utomo et al., 2022).

Besides, the hybridization of Bi 6s and O 2p levels accounts for

their largely dispersed VB, benefiting the migration of

photoinduced holes and thus improving the oxidative reactions

(Huang et al., 2020). Bi2WO6 consists of accumulated layers of

discontinuous [Bi2O2]
2+ and octahedral [WO4]

2− sheets, and

Bi2MoO6 is composed of [MoO2]
2+ layers and [Bi2O2]

2+ layers,

while BiVO4 features with a monoclinic crystal system comprising

BiO8 and VO4 groups (Cooper et al., 2014; Dai et al., 2016; Zhu

et al., 2022). Nevertheless, the potentially high NRR activities are

profoundly impeded by their intrinsic shortcomings, such as the

photo-corrosion susceptibility for Bi2WO6, the limited light

absorption in the ultraviolet region for Bi2MoO6, the poor

water oxidation kinetics and slow mobility of photo-excited

charge carriers for BiVO4 (Girish Kumar and Koteswara Rao,

2015; Xin Liu et al., 2020). Also, they suffer from limited

interaction with nitrogen and weak reducing ability as the CB

is not sufficiently negative (Hao et al., 2020). To alleviate these

problems, heteroatom doping (Meng et al., 2019; Lin Liu et al.,

2021), control of facet exposure (Zhang et al., 2021), defect

engineering (Haitao Li et al., 2021; Libo Wang et al., 2021; Cai

Feng et al., 2022; Guoan Wang et al., 2022), heterostructure

construction (Fei et al., 2019; Shende et al., 2019; Xue et al.,

2019; Vesali-Kermani et al., 2020a; Chao Liu et al., 2020;

Xuerui Zhang et al., 2022), morphology modification (Ning

Zhang et al., 2018; Zhou et al., 2019; Sun et al., 2020; Bao

et al., 2021), and regulation of internal electric fields (Lv et al.,

2018) have been employed to improve the photocatalytic efficiency

of N2-to-NH3 conversion.

Hao et al. (2016) doped Bi2WO6 with different ratios of Mo,

combined with exposed edge unsaturated Mo atoms as the active

center for N2 adsorption, activation and photocatalytic reduction

(Figure 8A). Benefiting from exposed active sites, narrower

bandgap, and ultrasmall subunits in Bi2MoO6 system

(H-Bi2MoO6), N2 molecules from air were transformed into

NH3 with an NH3 evolution rate of 1.3 mmol g−1 h−1 under

simulated sunlight illumination, ≈9.5 times higher than bare

Bi2MoO6 (Figure 8B). In another work, Wang et al.

FIGURE 9
(A)N2 adsorption/desorption isotherms for the KNbO3@TMU-5 composite and its components. (B)Core-level XPS scans of Nb atoms of KNbO3

and KNbO3@TMU-5. (C) NH3 concentration versus cycling test on KNbO3@TMU-5. Reproduced from Chamack et al. (2022) with permission from
American Chemical Society.
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demonstrated creation of enriched surface OVs via surface-layer

Br doping into Bi2MoO6 (BMO) which boosted photocatalytic

NRR activity owing to enhanced chemisorption of N2 molecules,

enlarged surface area, improved photogenerated charge

separation and transfer efficiencies (Lin Wang et al., 2022).

The as-made hierarchical BMO microspheres comprised small

nanosheets, in which two Br replaced one MoO4
2− with OH

coordination balancing the crystal structure. DFT simulation

indicated that Br doping promoted the formation of surface OVs

at adjacent Bi, thus inducing the fabrication of the surface/

internal homojunction to enhance the photogenerated charge

separation. Addition of methanol as an electron donor

(eliminating holes) further accelerated the generation of NH3

with a rate of 4.77 μmol h−1. The BMO showed no decrease in

photocatalytic activity after five consecutive runs, manifesting its

high stability, while the low stability of BMO80 in pure water

indicates photogenerated hole oxidation induced by Br loss and

OV reduction. Exposing different crystal facets provides

enhanced spatial separation of photogenerated electrons and

holes between different crystal facets. For instance, Zhang

et al. (Zhang et al., 2021) controlled the growth of (040) and

(110) facets of single-crystal BiVO4 by adjusting pH, and studied

the correlation of facet ratios of BiVO4 crystals with

photocatalytic NRR performance. They found that the activity

was linearly dependent on the ratio of exposed S(040)/S(110).

Separation of space charges was boosted by in-situ photo-

deposition of Ag NPs and MnOx selectively loaded on the

respective (040) and (110) planes. This enabled creation of a

built-in electric field (BIEF) between (040)/(110) facets. Based on

the results of active sites and DFT calculations, the cycle of

oxygen vacancy-V4+/V5+ in the (040) facets was inferred to be the

exact active site for photocatalytic NH3 synthesis. V4+ was

proposed to enhance chemisorption of N2 while V5+ behaved

as an electron transfer bridge, and the photogenerated electrons

trapped in OVs provided driving force for NRR.

3.2.2 Polymetallic oxides
Most ternary metal oxides first used for photocatalytic

nitrogen fixation are titanate or Bi-based oxide systems (Chen

et al., 2018; Huang et al., 2020). Higher conversion efficiency for

mingled transition metal composite oxides such as Sb2MoO6

(Mousavi et al., 2022), SrMoO4 (Luo et al., 2019), LaCoO3

(Haiguang Zhang et al., 2019), CoFe2O4 (Zheng et al., 2020),

Ni3V2O8 (Vesali-Kermani et al., 2020b), KNbO3 (Xing et al.,

2019; Xing et al., 2020; Chamack et al., 2022), LiNbO3 (Xiazhang

Li et al., 2020), have been reported compared to corresponding

monometallic oxides. Most mixed metal oxides are perovskite

oxide compounds with wide bandgaps (ZejianWang et al., 2021).

To overcome the large band gap issue, exotic element doping,

noble metal loading, and coupling with other semiconductors

can be applied to broaden the light absorption range. For

instance, doping of SrMoO4 with Fe simultaneously

introduced defect states and Fe–Mo–O active centers acting as

the active sites for N2 adsorption, which minimized bandgaps to

extend the absorption edge (Luo et al., 2019). As the doping

concentration increased, the intrinsic bandgap became

narrowed, enabling utilization of visible light. However, the

excess doped heteroatoms could act as recombination sites for

photoproduced charge carriers, as reflected that the normalized

photocurrent transient decreased with that of NH3 yield at higher

doping concentrations.

Niobates have emerged as a research hotspot because of their

sufficiently negative CB potential endowing photogenerated

electrons with strong reducibility and their spontaneous

polarization nature promoting surface charge separation

(Chen et al., 2019; Chao Liu et al., 2020; Nunes et al., 2020).

Chen et al. (2021a) demonstrated the synergy effect between

Bi2S3 and KTa0.75Nb0.25O3 (KTN) under simulated sunlight

irradiation and the simultaneous action of light and ultrasonic

irradiation. The hybrid displayed high piezo-photocatalytic

performance with an NH3 production rate reaching

581 μmol L−1 g−1 h−1. All samples depended on

KTa0.75Nb0.25O3 to provide the photo/piezogenerated electrons

for promoting spatial charge separation, which likely played a

dominant role for nitrogen fixation. A pioneering study that

coupled conventional KNbO3 with photoactive MOFs was

conducted by Chamack et al. (Chamack et al., 2022).

Introduction of ([Zn(OBA) (BPDH)0.5]n·1.5DMF (TMU-5)

enhanced the photocatalytic performance owing to the

porosity, high surface area, and higher density of negative

charges on Nb sites observed by N2 adsorption/desorption

isotherms and XPS scans, respectively (Figures 9A,B). In

addition, KNbO3@TMU-5 also exhibited good stability during

the five-cycle test (Figure 9C).

3.2.3 Polyoxometalates
Polyoxometalates (POMs) are a class of discrete inorganic

polynuclear anionic molecular metal-oxo clusters composed of

cations and polyoxometalate polyanions linked together by

shared oxygen atoms to form closed 3-dimensional

frameworks. Corner-sharing metal oxide polyhedra (MOx, x =

4, 5, and 6) are the basic building blocks, where M usually

represents V, Nb, Mo, W, and Ta in high oxidation states (Yin

et al., 2018; Gu et al., 2021; Horn et al., 2021). Semiconductor-like

POMs or their constituent hybrids are considered as prodigious

photocatalytic materials for NRR due to the following reasons: 1)

the reversible gain or loss of a specific number of electrons and

diverse active sites furnishing the reversible redox capability and

modifiable stability; 2) the preponderance of POMs as an

electron “reservoir”; 3) the well-defined HOMO–LUMO gap

contributing to oxygen (ligand)-to-metal charge transfer; 4)

definite particle sizes and dimensions together with the

maintenance of structural intactness (Xiao-Hong Li et al.,

2019; Xin Wang et al., 2020; Gu et al., 2021; Horn et al.,

2021; Yuan Feng et al., 2022). Xiao et al. (Xiao et al., 2018)

successfully covalently bonded the polyacid cluster
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[H4SiO40W12] (SiW12) to KOH-modified carbonitride graphite

nanosheets through a phosphate bridging strategy. This allowed a

rapid transfer of photogenerated electrons. The polyacid anion in

POMs was suggested to function as an effective binder and

electron transport chain, enhancing the interaction with the

carrier and electron transport. Cyclic voltammograms of 30-

SiW12/K-C3N4 showed that a reversible two-electron redox

reaction occurred at −0.06 V and −0.36 V, implying that 30-

SiW12/K-C3N4 could act as good containers of electrons and

protons to provide protons for the N2 reduction. Integration of

porous zeolitic imidazolate framework-67 (ZIF-67) (to enhance

N2 adsorption) with various TM-substituted POMs (PMo12−xVx,

x = 1, 2, 3, 8) (to supply multiple electrons), was investigated by Li

et al. (Xiao-Hong Li et al., 2020). The light absorption of POMs

was intensified to red shift by introducing V into POMs caused

by the difference in the number of V hyperchromic effects

(Figure 10A). The photocatalytic N2 reduction activity

increased with increasing the number of V atoms with

stronger redox ability than Mo (Figure 10B). The ZIF-67/

POM composites attained higher catalytic performance than

that of ZIF and POMs alone with the highest N2 fixation

efficiency reaching 149.0 μmol L−1 h−1 and a STA efficiency of

up to 0.032% for ZIF-67@PMo4V8. POMs not only improved the

utilization of light energy but also easily excited electrons under

light conditions to participate in the catalytic process

(Figure 10C). Reduced POMs could be regenerated to form

oxidized POMs in the presence of oxidants (such as O2),

enabling a complete self-healing and circulatory system

(Figure 10D).

Given the solubility of POM, there are recycling problems

with environmental pollution. To overcome this issue, some

strategies have been developed to reinforce its stability during

NRR, including adhesive (Tianyu Wang et al., 2020), coupling

with MOFs (Tianyu Wang et al., 2021), and interfacial

interaction (Yuan Feng et al., 2022). For example, Su et al.

(2022) fabricated SiW12 encapsulated Cr-MOFs (MIL-101(Cr))

hybrids, which were applied to N2 photocatalysis affording an

NH3 yield rate of 75.56 μmol h−1 g−1, about 10 times that of

Na4SiW12O40. SiW12 of polyoxometalates was supposed to be the

active center, which could be regulated to locate in different

cavities of MIL-101(Cr) by controlling the synthesis method.

This enhanced the separation efficiency of photoexcited electron-

hole pairs. The N2 reduction activity and photocatalyst structure

did not change much after 5 cycles. The cooperative effect

between the porous MIL-101(Cr) and SiW12 was hypothesized

to boost the nitrogen fixation efficiency.

FIGURE 10
(A) UV/Vis absorption spectra of various V-substituted POMs. (B) NH3 yield as a function of reaction time on various ZIF-67/POMs hybrids. (C)
Energy levels and (D) electron-transfer mechanism for ZIF-67/POMs hybrids. Reproduced from Hongda Li et al. (2020) with permission from the
John Wiley and Sons.
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3.3 Transition metal chalcogenides

Transition metal chalcogenides (TMDs) have attracted

heightened research interest for photocatalytic NRR primarily

owing to their outstanding optical properties (wide spectral

response range), relative nontoxicity, liquid media stability,

superior electronic mobility, and intrinsic catalytic activity

(Sun et al., 2018; Lei et al., 2020; Shen et al., 2020; Shen et al.,

2021). Sun et al. (2017) presented the trion-induced NRR on

ultrathin sulfur-vacancies (SVs)-rich 2D MoS2, where

photoexcited electron-hole pairs combined the doping-induced

charges to form trions, bound multiple electrons and located

around the Mo sites in MoS2, which lowered thermodynamic

barriers and favored the simultaneous six-electron transfer to

produce NH3. N2 molecules were prone to be absorbed at the SV

sites and activated by the electron-rich species to form NH3 over

the SV-tuned ultrathin MoS2. A quasi-stable NH3 evolution rate

of 325 μmol g−1 h−1 was attained without using any sacrificial

agent or cocatalyst. Qin and coworkers employed a simple one-

step hydrothermal method to prepare ultrathin alloyed

Mo1–xWxS2 nanosheets with tunable hexagonal (2H)/trigonal

(1T) phase ratios using Na2MoO4·2H2O, Na2WO4·2H2O, and

thiourea as Mo, W, and S precursors, respectively. Phase

engineering and appropriate W doping markedly boosted the

N2 photoreduction efficiency. As shown in Figures 11A, the

alloys maintained a layer structure during the hydrothermal

process, and the 1T, 2H, and polymorph structural domains

were also observed in the alloyed Mo1–xWxS2 nanosheets. The

alloyed Mo1–xWxS2 nanosheets with a 1T phase concentration of

33.6% and Mo/W of 0.68:0.32 (MWS-2) were found to reach the

maximal N2 fixation rate of about 111 μmol g−1 h−1 under visible

light, 3.7 (or 3)-fold higher than that of pristine MoS2 (or WS2).

DFT calculations revealed that N2 had the highest negative

adsorption energy on 1T Mo1–xWxS2 compared to that on 1T

MoS2, 2HMoS2, and 2HMo1–xWxS2 (Figure 11B). Meanwhile, in

situ N2 absorption XANES techniques interpreted the energy

shift on the peaks of the Mo K-edge as the ascending valence

states of Mo, and that of W L-edge as a higher electron density

state in W 5d orbitals, resulting in the migration of many

electrons from Mo to W. Based on theoretical calculations

and photochemical experiments, W doping and the 2H/1T

structure were supposed to synergistically enhance the N2

adsorption. Binary and ternary metal sulfide-based composites

were shown to facilitate photocatalytic NH3 synthesis via

intimate heterointerfaces to diminish charge recombination

(Dong Liu et al., 2021). Reported systems in this regard

include MoS2/C-ZnO (Xing et al., 2018), C3N4/MoS2/Mn3O4

(Gui Li et al., 2021), WS2@TiO2 (Shi et al., 2020b), and MoS2/

MgIn2S4 (Swain et al., 2020).

Sparked by the nitrogenase MoFe-based protein, the

reduction of N2 on Fe single-atom-modified MoS2 nanosheet

photocatalyst was first theoretically predicted by Azofra et al.

FIGURE 11
(A) HRTEM image of MWS-2 nanosheets. The red and blue squares represent the 2H and 1T structures, respectively; (B) Different adsorption
energies of N2molecules on 1TMoS2, 1TMo1−xWxS2, 2HMoS2, and 2HMo1−xWxS2. Reproduced fromQin et al. (2021) with permission fromAmerican
Chemical Society. (C) Proposed NRR reaction schemes on Ru-SV-CoS/CN. Reproduced from Yuan et al. (2020) with permission from the JohnWiley
and Sons.
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(Azofra et al., 2017). Following this, various photocatalyst

systems entailing Fe supported on MoS2 have emerged. As an

example, Zheng et al. (Zheng et al., 2021) developed Fe-decorated

2D MoS2 photocatalysts [Fe-S2-Mo] mimicking FeMoco in

nature for NH3 synthesis. A solar-to-NH3 energy-conversion

efficiency of 0.24% at 270°C was achieved, representing the

highest efficiency among all reported photocatalytic systems

thus far. The HAADF-STEM images and simulation results

jointly supported that Fe atoms were favorably situated on the

atop sites of Mo rather than substituted Mo sites to form

inorganic Fe-S2-Mo motifs analogous [Fe–S2–Mo] unit in

FeMoco. Theoretical calculations suggested that the HOMO

and LUMO orbitals were concentrated on the edge of single-

layered MoS2 (sMoS2) with relatively low electron delocalization,

indicating the active edge sites of sMoS2. Fe doping distinctly

improved their LUMO orbital delocalization degree. Further in

situ attenuated total reflection FTIR and the energy plots revealed

that the NRR on Fe1 over [Fe–S2–Mo] followed an alternating

pathway, showing similarity for both non-biological and

biological processes regarding NRR mechanism. Excited

electrons could be transferred from the VB to the CB of

sMoS2 via the conductive Fe–S2–Mo motifs and reside on the

Fe atom during the photoexcitation process to enter into the anti-

bonding orbital of an adsorbed N2 molecule, which thus

facilitated the hydrogenation reaction of N2 for ammonia

production. Similarly, a biomimetic “MoFe cofactor” (the

Fe3+/Fe2+ and Mo6+/Mo4+ redox couples) was introduced in

MoTe2 nanosheets to facilitate the transport and separation of

photo-generated charge carriers by one-electron and two-

electron redox reactions with 15 times longer photocarrier

lifetime after Fe doping and about 11 times higher NH3

production rate of Fe-doped MoTe2 than that of pure MoTe2
(Hongda Li et al., 2020). An enzymatic-analogous N2-fixation

mechanism was also demonstrated on a bimetallic Ru–Co center

at Ru/CoSx interface on g-C3N4 sheets by Ru deposition near

CoSx induced by S vacancies (Figure 11C). The side-on bridging

of N2 on under-coordinated Ru–Co center at Ru/CoSx interface

led to high polarization and strong activation of N2, resulting in

an AQE of 1.28% at 400 nm and a STA efficiency of 0.042% for

NH3 production in pure water.

3.4 Biomimetic photocatalysts

Biological nitrogen fixation has advantages of low energy

consumption and high NH3 yield, while multiple adenosine 5′-
triphosphate (ATP) hydrolysis electron transfer steps are

required per reduced N2 molecule, resulting in modest overall

reaction kinetics and slow NH3 synthesis rate. Under such

circumstance, exploration of biomimetic systems of molecular

analogs to simulate and optimize this process has gained a

tremendous interest in scientific community (Meng et al.,

2021). Taking advantage of iron molybdenum sulfide

chalcogels, Kanatzidis et al. (Banerjee et al., 2015) proposed a

nitrogen-fixing biomimetic system by replacing MoFe-based

proteins, which is the active site of nitrogenase, with

Fe2Mo6S8 chalcogel interconnected through [Sn2S6]
4− ligands

(Figure 12A). Featuring strong visible-light-absorbing, high

spatial density of active sites, and multielectron

transformations, the chalcogel-based amorphous framework

could effectively convert N2 to NH3 in aqueous media under

light illumination. Although its turnover number (TON) was not

appealing, this study proved that cluster compounds analogous

to nitrogenase can confer cogent catalysis and better stability

than nitrogenase. Brown et al. (Brown et al., 2016) employed CdS

to photosensitize MoFe proteins by harvesting light energy to

replace ATP hydrolysis to drive the enzymatic N2 fixation, with

peak NH3 production rates of 315 ± 55 nmol NH3 mg(MoFe

protein)
−1 min−1 at a TOF of 75 min−1 (Figures 12B,C). N2

reduction persisted for up to 5 h under constant illumination

with a TON of 1.1 × 104 mol NH3 mol(MoFe protein)
−1. This study

indicates that bio-nanocomposites can function as photocatalysts

for solar-powered generation of NH3 with TOF comparable to

nitrogenase. Inspired by the above works, Liu et al. (Liu et al.,

2016) designed a redox-active FeMoS–FeS–SnS chalcogel system

consisting of Fe2Mo6S8(SPh)3 and Fe3S4 biomimetic clusters

linked by Sn2S6 to reduce N2 to NH3 (Figure 12D). All

FeMoS–M–SnS chalcogels constructed by replacing Fe4S4
clusters with redox-inert ions Sb3+, Sn4+, Zn2+, exhibited

effective NRR performance. FeMoS with FeS clusters was

observed to strengthen NH3 production over FeMoS alone

and Fe4S4-only chalcogel (FeS–SnS) and provided higher

efficiency than that of [Mo2Fe6S8(SPh)3]-containing

chalcogels. Therefore, Fe was believed to be more conducive

than Mo for N2 binding (Figure 12E). The active sites in the Fe-

containing sulfide clusters were considered to differ (i.e., based

mainly on Fe) from that in the nitrogenase enzymes (based on

both Mo and Fe). Quantitative isotope labeling and in situ

DRIFTS corroborated the origin of detected NH3 from N2

(Figure 12F).

3.5 Metal-organic frameworks (MOFs)

MOFs are micro-mesoporous hybrid materials composed of

metal ion nodes connected with organic linkers together or

clusters and organic frameworks. Similar excitation

characteristics of electron-hole pairs endow MOFs and their

derivatives with intriguing semiconductor-like properties in

various photochemical reactions (Hu et al., 2022). High

microporosity and diverse functionalities enable the

introduction of defined and highly exposed metal nodes onto

the larger surfaces to promote or catalyze targeted reactions (Hao

et al., 2021; Lin Wang et al., 2022). Especially, these exposed

coordinatively unsaturated metal sites not only contribute to

higher catalytic activities, but also behave as Lewis acid sites to

Frontiers in Chemistry frontiersin.org17

Hui et al. 10.3389/fchem.2022.978078

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.978078


withdraw p electrons from N2 molecules and weaken the N≡N
triple-bonds, accounting for photochemical N2 reduction (Fu

et al., 2022). Chen et al. (2021b) exploited gas-permeable MOF

substrates (i.e., UiO-66) to not only serve as a stable matrix to

confine the surface-clean gold nanoparticles (AuNPs) with high

dispersity, but also ensure the accessibility of these AuNPs to

both N2 molecules and (hydrated) protons (Figure 13A),

enabling direct plasmonic NRR with high efficiency. The

porosity of the MOF matrix facilitated mass transport of

reactants and products, promoting the total reaction rate

(Chen et al., 2022; Guanhua Zhang et al., 2022). Accordingly,

the NH3 evolution rates on porous Au@MOFs particles were

superior to those of nonporous particles at the specially designed

gas–membrane–solution (GMS) reaction interface, and the GMS

system was better than the powder-in-solution (PiS) system

(Figure 13B). In another work, Guo et al. (Guo et al., 2022)

investigated the [Zr6O6] cluster effect and the leading role of

photoelectrons over the protonation of nitrogen by using an

N-free dehydrated Zr-based MOF, UiO-66(SH)2 (Figure 13C).

The UV/Vis diffuse reflectance spectrum combined with theory

studies suggested that the introduction of thiol groups (–SH)

caused an absorption edge of UiO-66(SH)2 deep into the visible

region. The hopping process of the photoelectron from VB to the

unoccupied Zr-4days is dominated by the ligand-to-metal charge

transfer (LMCT) (Figure 13D). The dehydration opened a “gate”

for the entry of N2 molecules into the [Zr6O6] cluster, of which

three active cage modes strongly bound with N2 molecules and

drive the cleavage of N≡N bond by the photoelectrons

(Figure 13E). However, most MOF-related photocatalysts

focused either on the coordination environment around the

metal nodes, or the role of photosensitive ligands or single

transition metals (Hu et al., 2022). Gao and co-authors

presented photo-excited cluster defects and linker defects to

revamp the photocatalytic NRR performance of UiO-66 (Gao

et al., 2021). They shows the performance under alternate UV-

Vis and visible light irradiation and after subsequent post-

FIGURE 12
(A) Schematic of synthesis of Mo2Fe6S8–Sn2S6 biomimetic chalcogel (FeMoS-chalcogel) (Mo in blue; Fe in red; S in yellow; Sn in black).
Reproduced from Banerjee et al. (2015) with permission from American Chemical Society. (B) Reaction scheme for photocatalytic NRR to NH3 by
nitrogenase (top) and the CdS:MoFe protein biohybrids (below). (C) Photocatalytic NRR to NH3 on CdS:MoFe protein biohybrids under a 100% N2

atmosphere, 10% of either H2, CO, or C2H2 in a bulk phase of 90% N2. Reproduced from Brown et al. (2016) with permission from American
Association for the Advancement of Science. (D)Model structures of the FeMo cofactor and P cluster, and the synthetic routes towards the assembly
of different chalcogels. (E) Comparisons of photocatalytic NRR performance for different biomimetic chalcogels. (F) Isotope labeling experiment
results detected by NMR. Reproduced from Liu et al. (2016) with permission from National Academy of Sciences of the United States of America.
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synthetic ligand exchange (PSE) process. Compared to UV-

Vis light, the performance of the second test under visible

light did not improve. After the PSE process that repaired

linker defects instead of cluster defects, activity was restored

under UV-Vis light. This demonstrated that photo-induced

defects can only be created by UV light, where linker defects

played a critical role in improving the performance due to the

Zr nodes with unsaturated coordination induced by linker

defects being more conducive to photo-driven NH3

synthesis.

Designing and constructing photocatalysts with bimetallic

active centers is an effective way for nitrogen photofixation

(Zhen Zhao et al., 2022). An et al. (An et al., 2021) designed a

series of modularized UiO-66-based MOFs, U(Zr-Hf)-X, with

bimetallic Zr-Hf nodes and functionalized ligands, and

demonstrated a tandem ligand-to-metal-to-metal electron

transfer (LMMET) pathway. By independently manipulating

the Zr/Hf molar ratio and substituent group of TPA, the

optimal U (0.5Hf)-2SH (metal nodes: 0.5Zr: 0.5Hf; linkers:

TPA-2SH) yielded an NH3 production rate up to

116.1 μmol h−1 g−1 under visible light. This was attributed to

the broadening of the absorption spectrum to visible light by

–2SH modification according to combined experiment-theory

results. Although these results suggested that the synergistic

effect of bimetallic Zr-Hf nodes was favorable for NRR

performance, it is uncertain whether the TPA-2SH ligand

contributed to charger transfer mechanism. The proposed

NRR pathway of U (0.5Hf)-2SH was explored. The one-step

two-photon excitation path strides across the uphill process of

the electron transfer from TPA-2SH ligands to metal nodes in

UiO-66. The Hf species served as an electron buffer tank to

optimize the electron transfer, while the Zr species acted as the

catalytic active site due to the difference in electrode potentials

between Zr–O and Hf–O clusters. Meanwhile, Zr-dominated π-
backbonding mechanism weakened the N≡N bond in absorbed

N2 molecules via the electron transfer synergy to generate NH3.

Nonetheless, research on photocatalytic NRR using MOFs is

relatively rare, the existing MOF-based photocatalysts have still

FIGURE 13
(A) Schematic illustration for direct NRR on Au encapsulated in UiO-66matrix. (B)NH3 yield on powder (in the PiS system) andmembrane (in the
GMS system) catalysts consisting of Au@UiO-66, Au/SiO2, and Au/ZrO2. Reproduced from Chen et al. (2021b) with permission from American
Chemical Society. (C) Schematic evolution of the partial structure of UiO66, UiO-66(SH)2 and the dehydrated UiO-66(SH)2. (D) The calculated band
orbitals for VBM and CBM of UiO-66(SH)2 at Γ point. (E) The three active modes (mod 1–3) with each centerpiece configuration of the [Zr6O6]
cluster encaging N2 molecule and their corresponding formation energy diagrams. Reproduced from Guo et al. (2022) with permission from the
John Wiley and Sons.
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an exemplary significance regarding constructing other visible-

light-driven MOF-based NRR photocatalysts.

4 Conclusions and future remarks

The photocatalytic NRR is an appealing alternative to the

current industrial thermocatalytic Haber-Bosch process for

NH3 production. It only requires solar energy and water,

rendering the process environmentally friendly and highly

sustainable. With a general awareness of emphasizing on

green chemistry and sustainable development, this field is

bound to have a significant and far-reaching impact on how

humans understand and engage in the nitrogen cycle. Despite

recent progresses that have been achieved in the field of

photocatalytic NH3 synthesis, it is still in its infancy. A

comparable conversion efficiency to the century-old Haber-

Bosch process remains unsolved, especially on how to

accentuate N2 activation and accelerate the kinetics of

electron transfer to N2. Continuous efforts in the design and

development of nontoxic, efficient, stable and low-cost catalysts

minimizing the consumption of noble metals have obtained

some positive advancements. Tungsten and related metal-based

materials have shown enormous accolades as photocatalysts for

NRR. However, there still remain many challenges to be

addressed as follows:

1) The intrinsic mechanism and kinetic control of nitrogen fixation

are still ambiguous and complex, warranting further

investigations. Because of the complex multi-electron

reactions involved and the presence of various intermediate

species, combination of multiple accurate analytical methods

and advanced characterization techniques are required. It is

essential to develop in-situ techniques to study the adsorption

structure of N2 and key intermediates on the surface of catalytic

materials, providing useful information on the catalytic active

center and its dynamic evolution during the reaction process.

2) Various environmental factors (such as cation effect,

electric field effect, pH, hydrophobicity, and actual

active site, etc.) (Zhou et al., 2022) can profoundly affect

the photocatalytic NRR process. It is thus necessary to

explore and clarify the synergistic effect among the

semiconductor photocatalysts and mixed solvent systems

to further reveal the multi-effects of collaborative catalytic

mechanism.

3) Equally importantly, the cooperative mechanisms among

heterostructure, element doping and interaction between

components and role of each individual strategy in N2

photocatalysis remain to be elucidated. It is necessary to

comprehensively use various design and control strategies of

catalysts to combine element doping, defect construction, and

structural design to increase active sites, suppress the

recombination of photogenerated carriers, and enhance the

adsorption and activation of nitrogen molecules in the NRR

process.

4) Efficient utilization of solar energy is the focus of interest in

photocatalysis. However, the utilization of light in the NIR

and the far-infrared region above 1,000 nm for NRR

photocatalysis is poor. To facilitate the practical utilization

of NRR photocatalysis, the design of suitable photocatalysts

for wide-range light harvest from ultraviolet to near-infrared

regions is important. This may be realized by integration with

NIR and even far-infrared responsive materials such as dye

molecules and black phosphorus (Zhang et al., 2017), narrow

band gap NIR harvesters as well as materials having surface

plasmon resonance effect.

5) The extensive use of sacrificial agents leads to additional costs,

which deteriorate the overall affordability of the environment.

Therefore, some cheap sacrificial agents at this stage, such as

starch, biomass, plastics, wastewater, etc., could also be

developed as sacrificial agents to further reduce the cost of

large-scale application of N2 photocatalysis.

6) The attained SCE of N2 photoreduction is still less than 1%,

far below the minimum standard of 10% needed to realize

industrialization, and the stability during the reaction process

is however still much below the requirements for long-term

practical applications.

7) The photostability of semiconductor catalysts is another adverse

issue that deserves much attention. The surfaces of many n-type

and p-type semiconductors (such as sulphides) are susceptible to

decomposition by photogenerated holes or electrons, decreasing

the lifetimes of the photocatalysts. To address this issue,

strategies such as coating with a second phase, surface

passivation and functionalization and incorporation with

cocatalysts can be employed (Sun et al., 2018).

To date, major endeavors in materials engineering toward N2

photocatalysis have beenmade on traditional semiconductors. Some

emerging photocatalytic materials such as MOFs and covalent

organic frameworks (COFs) have not been fully explored for

photocatalytic N2 reduction. Meanwhile, the design of cation

defects and further combined defects and investigation of their

roles in MOFs in N2 reduction are rarely conducted, which deserves

further studies. To synergistically promote N2 photocatalysis,

integration of multiple design strategies (e.g., defect engineering

and other modification strategies such as creation of Z-scheme

heterostructures to separate ammonia production and water

oxidation sites in space) is preferred. Additionally, combination

of material engineering and external fields (e.g., microwaves,

mechanical stress, temperature gradient, electric field, magnetic

field, and coupled fields) is another promising strategy to further

boost photocatalytic N2 reduction reactions.

Current research focuses mainly on the microstructure

design of materials and the improvement of photocatalytic

performance, while less attention was paid on the development

of photocatalytic devices suitable for future applications and reliable
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cost accounting. The bridge between laboratory research and

practical application development is crucial. To better understand

the conditions required to reach practical industrial applications, we

should compare photocatalytic NRR with current industrial Haber-

Bosch reactions from various perspectives, such as reaction

temperature and pressure, ammonia/nitrate output, pollution, etc.

In an actual photoreactor, N2 would be separated from the air using

standard cryogenic separation or membrane processes and would

need to be recovered and recycled for cost reasons. Current

Photocatalytic NRR is more carried out in aqueous solutions,

which means that liquid-phase products can be directly obtained

to produce liquid fertilizers that can be directly used and sold, but the

subsequent separation of catalysts will further increase the energy

cost of the entire process. Even if the final product is anhydrous

ammonia for fuel feedstock, the purification of low concentrations of

NH3 from the N2 stream adds to the energy-consuming

step. Therefore, how to achieve higher product concentrations in

flowing gas setups is an important target of this particular approach.

From another point of view, this idea guides us to no longer pay

attention to the NH3 yield as an indicator, but to focus on the

integration of upstream synthesis and downstream applications to

reduce energy consumption and pollution in the entire production

process, to achieve the final goal of “carbon neutrality” faster.
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