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Abstract

This manuscript presents an inventory of the carbonate system from the main water

masses comprising the marine current system on Brazil’s northeast coast (South Atlan-

tic Ocean). For this purpose, four transects were conducted with an approximate length

of 357 km (each one) through the platform and continental slope of the Sergipe–Alagoas

sedimentary basin. Water samples were then collected in vertical profiles measuring

from 5 to 1,799 meters depth, totaling 34 stations. Total alkalinity, calcium, and total

boron were obtained analytically from these samples and by relationships with salinity.

Speciation and concentration of the carbonate system were obtained by means of ther-

modynamic modeling. The results revealed that the empirical models used to calculate

the concentrations of TA, calcium and total boron showed relevant variation when com-

pared to the analytical values (TA: 5.0–6.5%; Ca: 0.4–4.8%; BT: 7.0–18.9%). However,

the speciation and concentration of the carbonate system (CA, DIC, CO2�

3
, CO2(aq),

ΩCalc, and ΩArag) obtained from the empirical values of TA, calcium and total boron did

not differ significantly from those obtained analytically (0.0–6.1%). On the other hand,

the parameters of pH, HCO�
3
, CO2�

3ðaqÞ, CO2(aq), ρCO2, ΩCalc, and ΩArag varied significantly

within the different water masses (p < 0.05). This study supports and encourages acidifi-

cation monitoring projects in the South Atlantic Ocean, based on modeling the carbon-

ate system parameters generated in real-time.
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Introduction

Carbon dioxide (CO2) sources, transport mechanisms, and transformations are an important

matter in oceanography field studies [1]. CO2 can exhibit significant spatial and temporal vari-

ability within the same water mass since the ocean content is dependent on processes such as

the atmospheric exchange through sea surface and the degradation of organic matter (both

autochthonous and allochthonous derived) [2]. Increasing CO2 content will lead to both

reduction in both carbonate content and pH (CO2�

3
þH2Oþ CO2 ¼ 2HCO�

3
); this process is

called ocean acidification (OA) [3]. It is known that OA can reduce the capacity of marine

organisms (e.g., coccolithophorids, corals, foraminifera, and bony fishes) because of the

increased concentration of H+ ions in seawater [4]. Understanding the acidification process is

necessary for predicting future climate changes and responses from marine biota [5–7].

Efforts have been made to implement coordinated monitoring programs and increase

understanding of OA [8, 9]. The main actions required for the implementation of these pro-

grams consist of (1) creating a database of the carbonate system of coastal ecosystems (spatial

and temporal), (2) standardization in pH and TA determinations, and (3) transparency in pre-

cision of the polynomials responsible for generating the data of the carbonate system [8–12].

An OA monitoring network requires constant maintenance of the records of the main

chemical parameters, for example pH and total alkalinity, which allows the determination of

the saturation state of the aragonite (OArag) and a complete description of the carbonate system

[9]. The parameters suitable for this purpose may be defined by the balance of few reactions

(Eqs 1, 2, 3, 4, and 5) that occur when CO2 dissolves in sea water [13–15] as shown below:

CO2ðgÞ ¼ CO2ðaqÞ; ð1Þ

CO2ðaqÞ þH2OðlÞ ¼ H2CO3ðaqÞ; ð2Þ

H2CO3ðaqÞ ¼ H
þ

ðaqÞ þHCO
�

3ðaqÞ; ð3Þ

HCO�
3ðaqÞ ¼ H

þ

ðaqÞ þ CO
2�

3ðaqÞ; ð4Þ

CO2�

3ðaqÞ þ Ca
2þ

ðaqÞ ¼ CaCO3ðsÞ; ð5Þ

Ocean acidification data (pH, TA, ½HCO�
3
� [H2CO3(aq)] [CO2(aq)] ρCO2, OCalc, and OArag)

are also indispensable for validating CO2 modeling tests on both a global and regional scale.

Studies on water masses in northeastern Brazil are scarce, but some previous studies in the

South Atlantic indeed covered the surface (0–200 m), intermediate (200–1000 m), and deep

(below 1000 m depth) waters. Reid [16], estimated the general circulation pattern of the South

Atlantic from the characteristics of the geostrophic shear, reporting contributions from North

Atlantic waters. Some authors [16–21] investigated the physical-chemical characteristics (tem-

perature, salinity, and oxygen) of the different water masses in the South Atlantic, disregarding

the chemistry of the carbonate system. Apart from these works are those by Silveira [20], Cam-

pos et al. [22], and Silva [19] in the southeastern region of Brazil, but these works did not deal

with the carbonate system. By contrast, Bates [23], studied the distribution of carbonate chem-

istry in samples collected from many water masses in the Southeast Pacific as part of the US

GEOTRACES project, compared with the carbonate chemistry from samples collected 20

years earlier in the same area. Also, several recent studies with the carbonate system have been

carried out in coastal waters on the Brazilian continental shelf in northeast-south-southeast

regions [1, 13, 14, 22–26].

PLOS ONE Inventory of water masses and carbonate system from Brazilian’s northeast coast

PLOS ONE | https://doi.org/10.1371/journal.pone.0271875 July 26, 2022 2 / 18

carbonate system from Brazilian’s northeast coast:

monitoring ocean acidification". figshare. Dataset.

https://doi.org/10.6084/m9.figshare.14208572.v3.

Funding: This study and the MARSEAL Project

were supported logistically and financially by

PETROBRAS/CENPES. The funders had no role in

study design, data collection and analysis, dicision

to publish, or preparation of the manuscript.

Competing interests: The authors have read the

journal’s policy and declare the following

competing interests: This study and the MARSEAL

Project were supported logistically and financially

by PETROBRAS/CENPES. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0271875
https://doi.org/10.6084/m9.figshare.14208572.v3


The present study aimed to compile, in an unprecedented way, an inventory of the carbon-

ate system in water masses of the northeast margin of Brazil (Tropical Water, South Atlantic

Central Water, Antarctic Intermediate Water, and Upper North Atlantic Deep Water) and to

elucidate the physical-chemicals processes governing these concentrations and speciation. In

addition, to verify the dynamics of the carbonate system parameters through the program

Marine Chemical Analysis (AQM). This experiment provides information and encourages

ocean acidification monitoring projects.

Materials and method

Study area

The study area is located on the northeastern continental margin of Brazil, in the sedimentary

Sergipe/Alagoas (SEAL) basin. The SEAL basin is divided between terrestrial and maritime

domains, comprising an oil province in an advanced exploratory stage that gives economic

and environmental importance to the vicinity [25]. The terrestrial domain of the basin com-

prises the states of Sergipe and Alagoas, which are separated by the course of the São Francisco

River (Fig 1). The maritime part of the SEAL occurs along the continental shelf, which is 20 to

50 km long, and the platform slope, which occurs between 40 and 80 m deep [25]. In this con-

text, the present study covered an extension of 350 km from the coastline, where the Tropical

Water and Coastal Water are the predominant water masses [26].

Fig 1. Reference map of the study site. Northeastern continental margin of Brazil, within the Sergipe–Alagoas

sedimentary basin. Blue shades, local depth; yellow lines, sampling transects A, B, C, and D; blue line, São Francisco

river; dark green filled shape, Brazilian states that are adjacent to transects.

https://doi.org/10.1371/journal.pone.0271875.g001
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Data acquisition

The samples were collected between May 10 and 21, 2014, which is the beginning of the rainy

season (127 mm3/month) [27]. The sampling effort took place onboard the R/V Seward John-

son during a cruise through the SEAL basin, which was made possible by financial resources

and logistical support provided by the MARSEAL Project (PETROBRAS/CENPES). Collection

of the samples was conducted through a CTD (conductivity, temperature, and depth sampler)

coupled to a Rosette with capacity for 24 oceanic bottles of the Niskin and Go-Flo type (Gen-

eral Oceanics brand).

The collections were conducted along four transects (A, B, C, and D, Fig 1), arranged latitu-

dinally. In each transect, eight to nine stations were established, totaling 34 profiles, with a

maximum distance of 365 km from the shoreline (Table 1).

Sampling depths were established from six isobaths, i.e., 5, 20, 250, 700, 1250, and 1650 m,

that correspond to the current water mass’s system in the South Atlantic (TW, Tropical Water;

SACW, South Atlantic Central Water; AAIW, Antarctic Intermediate Water; and UNADW,

Upper North Atlantic Deep Water), according to Silveira [20]. The boundaries within each

water layer were determined from the CTD data (Table 2), which were also used to conduct

the T-S (temperature–salinity) diagram.

For each collection station, different sampling depths were defined according to the CTD

information (T-S diagram), allowing for the identification of the interfaces between the differ-

ent water masses (Fig 2); further information can be found on the S1 Table.

Table 1. Profiling stations by transect A, B, C, and D. Station: Identification number; Dist: Distance from the shoreline to each station (km).

A B C D

Station Dist Station Dist Station Dist Station Dist

1 8 38 4 39 6 75 12

2 21 37 8 40 14 74 19

3 25 36 12 41 25 73 23

4 30 35 19 42 29 72 30

8 83 33 34 43 36 68 68

10 127 29 86 47 81 66 97

14 247 27 116 49 111 62 216

18 365 23 219 53 230 58 335

19 340 57 349

https://doi.org/10.1371/journal.pone.0271875.t001

Table 2. Fieldwork recognition of the water masses (Wm). Thermohaline limits, sampling depths, and referential depths [20].

Wm Temperature (˚C) Salinity (g/kg) Sampling depth (m) Wm depths (m) [31]

MW1 27.91 35.56 4.3 –

TW2 27.37–28.26 36.44–37.55 4–21 0–142

SACW3 13.33–15.59 35.41–35.78 202–299 142–567

AAIW4 4.12–5.59 34.53–34.93 598–1250 567–1060

AAIW/UNADW 3.89–4.37 34.70–35.13 999–1650 1060–1300

UNADW5 3.56–4.28 35.09–35.13 1398–1899 1300–3260

1Mixture Water.
2Tropical Water.
3South Atlantic Central Water.
4Antarctic Intermediate Water.
5Upper North Atlantic Deep Water.

https://doi.org/10.1371/journal.pone.0271875.t002
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Thermodynamic modeling

The modeling and the procedural calibrations described in this manuscript were performed with

the Marine Chemical Analysis (AQM) program [1]. The AQM is a package of thermodynamic

equations, executed via MS Excel, which can predict the complex composition of the marine car-

bonate system based on measurements that can be made relatively inexpensively such as pH, tem-

perature, and alkalinity reducing the overall costs of ocean acidification monitoring programs.

The AQM program is available upon request to the corresponding author’s email.

Statistical procedure

Data normality was verified using the Shapiro-Wilks test, and based on this result, the non-

parametric Kruskal Wallis test was chosen for comparisons between groups. All statistical tests

were performed using the Statistica 7.0 software (TIBCO) with a significance level set at

p<0.05.

Analytical procedure

The analytical method was based on international procedures for studies involving the chemis-

try of inorganic carbon dioxide in marine waters [11, 28–32] with the necessary adaptations

(S2 Table).

Fig 2. T-S diagram indicating the distinct water masses from the studied area (maritime sedimentary SEAL

basin).

https://doi.org/10.1371/journal.pone.0271875.g002
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T-S diagram

Temperature and salinity data from CTD profiling were utilized to make the profiles and verti-

cal sections of temperature, salinity, and potential density of the stations using the T-S dia-

gram. The water masses were aimed to be determined by mapping their interfaces,

characterizing their core, and isopycnals. The optimal multiparametric analysis was utilized to

provide data on the interface limits and at the average core depth of each water mass. This

allowed locating each layer in the T-S diagram parameterized by the depth range associated

with its typical values of temperature, salinity, and potential density [33, 34]. The density of the

water masses was displayed as isopycnals on the T-S diagram.

Absolute salinity (SA). The SA (g/kg) was calculated from the electrical conductivity mea-

sured in situ (CTD) and the thermodynamic equation of seawater [35]. Absolute salinity is the

most accurate parameter established to estimate the real salinity of the environment. Unlike

other scales (for example, conductivity and practical salinity), SA also considers the non-elec-

trolytic salts through algorithms extracted from the data on the water’s chemical composition

in a given region [35].

TA. For the determination of TA, water samples were collected and filtered in a Nalgene

filtration system through GF/F filters before being transferred to BOD type flasks (300 mL,

from the Kimble brand) and immediately analyzed [28].

The potentiometric determination was conducted with duplicate samples in an open

thermostated glass cell, where 3 mL (to obtain v1) and 10 mL (to obtain v2) of HCl 0.1 M were

added to each 100 mL sample [36]. The method consists in determining the slope of the line

by obtaining two points for the function of Gran (F): F (1) defined by v1 and F (2) defined by

v2 [36]. A Thermo Scientific Orion Star potentiometer coupled to the Orion glass reference

electrode cell, model 8102BNUWP was used for potentiometric determinations. The pH elec-

trode was calibrated daily with "Tris" buffer (0.04 m) for sample readings (maximum 15 sam-

ples per day). Due to the reduced number of samples per day, the short period of the

oceanographic cruise, and the constant working conditions (electricity source, solutions, and

equipment), we chose to verify the electrode performance at the beginning and the end of the

oceanographic cruise. The electrode’s percent efficiency ranged between 99.49% and 99.54%

concerning the theoretical Nernst value (59 mV). More details are available in hydrogen

potential (pH).

The analytical precision and accuracy were calculated from five replicates of the reference

material (Dickson–CRM, for oceanic CO2 measurements, batch 104) [37], which obtained a

95% recovery rate from the expected value (Table 3). The calculated TA was obtained by the

AQM program through the equation (TA (μmol/kg) = 660 + 47.6S) defined by Hunter [38] for

waters of the Atlantic and Pacific oceans by the GEOSECS Program. The normalized total

alkalinity (NTA) was obtained by the AQM program using the equation (NTA (μmol/kg) =

TA (μmol/kg)x35/Salinity (g/kg), 35 was assumed to be the representative salinity of the water

masses.

Hydrogen potential (pH). The total pH of the water samples collected during the cruise

was determined in the R/V Seward Johnson "wet laboratory" as follows: pHT (= -log([H+] +

[(HSO4
-]/co), where co is the thermodynamic concentration (1 mol/kg-soln).

Table 3. Total alkalinity measured from 5 replicates of the certified reference material (Dickson, oceanic CO2 measurements, batch 134).

Expected value Measured value Accuracy Precision Sample volume

Average (n = 5) Absolute error Relative error Variation coefficient mL

Total alkalinity 2222.6 μmol/kg 2108.0 μmol/kg −115.0 −5.0 1.66% 50

https://doi.org/10.1371/journal.pone.0271875.t003
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The internal solution of the combined pH electrode was filled up with 0.7 m NaCl to reduce

the potential liquid junction. The electromotive force (emf) of the electrode was related to the

molar concentration of the proton [H+], as shown in Eq 6.

E ¼ Eo �
RT
F

� �

ln½Hþ�; ð6Þ

where E˚ is the standard electrode potential, which was determined by titrating a 0.7 m NaCl

solution with 0.179 M HCl [29]. The pHT (total scale) values were measured immediately after

each collection at a constant temperature of 25˚C in a thermostatic cell connected to a micro-

processed thermostatic bath with external circulation (Qimis) to avoid temperature bias [39].

The determinations were made by the Thermo Scientific Orion Star potentiometer coupled to

the Orion glass reference electrode with a 0.7 m NaCl outer chamber filling solution, model

8102BNUWP. The analytical slope for the electrode was within ± 0.13 mV (teoretical Nersnt

value at 25˚C). The electrode was calibrated with a "Tris" buffer (0.04 m) prepared in the labo-

ratory [40], where pH values were assigned by spectrophotometry (m-cresol method) [14, 28,

41]. The "Tris" buffer allows accuracy of 0.001 pH units [40, 42]. Subsequently, using the AQM

program, the pH results were corrected for the temperature recorded at the sampling moment

(pHt = pH25 + A + Bt + Ct2) [43].

Calcium (Ca) and total boron (BT). The determination of Ca and BT was conducted using

a MIP OES (microwave-induced plasma optical emission spectrometer, 4200 MP-AES, Agilent

brand). The external analytical curves were made with monoelementary standards (1000 mg/L,

VHG1) with concentrations in the range of 0.1 to 10 mg/L, in an ultrapure water matrix. A

matrix influence test was conducted in which it was found that both the boron and calcium signals

did not show any significant difference between the ultrapure water matrices and the 500 mg/L

NaCl solution. The calculated calcium and boric acid were also obtained using the equations

described by Millero, respectively [44, 45]; [Ca2+]T = 2.938x10-4xS, [B]T = 0.000416x(S/35).

CO2 inorganic system. All parameters from the inorganic CO2 system (CO2, CO2�

3
,

HCO�
3

, DIC, ρCO2,ΩCalc, andΩArag) were calculated using the carbonate system dissociation

constant K [46] defined as follows:

• lnk�B [37]

• lnk�Si [45]

• lnk�
1

(H3PO4) [47]

• lnk�
2

(H2PO
�

4
) [47]

• lnk�
3

(HPO2�

4
) [47], and

• lnk�
2

(CO2�

3
) [48].

The aqueous concentrations (CO2(aq)) and the partial pressure (ρCO2) were calculated from

the variables of temperature, salinity, pH, and TA and by using the thermodynamic and stoi-

chiometric constant K (pko
1
, pko

2
, pk�

1
, and pk�

2
) [10, 49]. The AQM was also used in this phase,

aiding the calculations.

Results and discussion

T-S diagram

The identification of water masses was conducted via the T-S diagram (Fig 2) methodology,

which uses the temperature and salinity data [50] to obtain the depth boundaries of water masses.
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In this way, an existing variation in our temperature and salinity values could be perceived

with those of the other authors mentioned in Table 4. Furthermore, the Upper Circumpolar

Deep Water was not addressed in this work because of the complexity of its definition, such as

the oxygen and nutrients concentrations, to differentiate this water mass with the overlying

(AAIW) and underlying (UNADW) masses [20].

The salinity from the superficial layer (4.3 m deep) of station 36 was lower than the expected

value (>36.37 g/kg) for a TW mass [20]. A continental freshwater input may explain this dif-

ference; thus, this sample was called “Mixture Water” (MW).

Measured versus predicted values

Calcium and total boron. The values analyzed and calculated in the different water masses

varied below 5% for calcium (Ca2+) and between 7.03% and 18.94% for total boron (BT)

(Table 5).

In this validation step, the calculated (AQM) concentrations for calcium and boron empha-

sized that these values may be recommended instead of those obtained analytically to investigate

Table 4. Temperature (˚C) and salinity (g/kg) for each water mass (Wm). Comparison with previously published results.

Wm Temperature (˚C) Salinity (g/kg) Reference

TW 27.37–28.36 36.44–37.55 The present study

>20.00 >36.17 [51]

>20.00 >36.37 [20]

>18.00 >36.17 [19]

20.00–27.00 – [52]

SACW 13.33–15.59 35.42–35.78 The present study

5. 00–20.00 34.46–36.17 [52]

8.72–20.00 34.82–36.37 [20]

6.00–20.00 34.76–36.17 [53]

10.00–20.00 35.16–36.17 [51]

– 34.81–36.17 [54]

5.95–18.35 34.68–36.57 [19]

AAIW 4.12–5.59 34.53–34.93 The present study

3.46–8.72 34.58–34.82 [20]

4.92–5.90 34.64–34.94 [19]

NADW 3.56–4.37 35.09–35.13 The present study

3.00–4.00 34.76–35.16 [53]

2.04–3.31 34.75–35.03 [20]

https://doi.org/10.1371/journal.pone.0271875.t004

Table 5. Calcium and total boron concentrations (μmol/kg; mean ± standard deviation) in water samples from 34 stations. Analytically obtained levels: microwave-

induced plasma atomic emission spectrometry. Predicted concentrations: calculated using the AQM program using the absolute salinity scale (g/kg). When calculating the

relative error (RE%), the expected value is the analyzed value.

Wm Sample Sizes Ca2+
analyzed Ca2+

calculated RE (%) BT analyzed BT calculated RE (%)

MW �n = 1 10180 10664 4.75 357 410 14.91

TW �n = 63 11168 ± 199 11210 ± 63 0.38 383 ± 23 410 ± 0.04 7.03

SACW �n = 24 10570 ± 221 10716 ± 33 1.39 362 ± 26 412 ± 0.08 13.77

AAIW �n = 22 10203 ± 163 10417 ± 26 2.10 347 ± 26 412 ± 0.02 18.94

AAIW/UNADW �n = 18 10287 ± 154 10540 ± 28 2.46 353 ± 36 412 ± 0.02 16.86

UNADW �n = 15 10303 ± 227 10587 ± 3 2.76 352 ± 36 412 ± 0.01 16.99

RE = relative error.

https://doi.org/10.1371/journal.pone.0271875.t005
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the carbonate system involving the same water masses. Calcium concentration is important for

the equations that determine the saturation state of calcite. The concentration of boron allows

obtaining, through equations, the concentrations of carbonate alkalinity [CO2], [CO2�

3
], [HCO�

3
],

and DIC [10, 28]. The variation presented for Ca (analyzed and calculated) did not show relevant

interference in the predicted values for the carbonate system (Table 6). Regarding the total esti-

mated boron, despite having a variation of 18.94%, relative to the analyzed value, we also recom-

mend its application for studies of the carbonate system in these water masses, since the

concentrations obtained through the calculated BT showed tiny variation (<1%) (Table 6).

Practical versus absolute salinity. The SA (g/kg) has been considered the most accurate

measure to estimate the real salinity of the environment [35]. However, practical salinity unit

(psu) has been widely used by researchers to generate carbonate system values [1, 6, 14, 15,

55]. Thus, the AQM program was fed with both the psu and g/kg salinity scales to test the exis-

tence of relevant interference when predicting the carbonate system fractions (obtained from

the analytical TA) from the studied water masses (Table 7).

It was not evident in this process that the SA is the most suitable scale for calculations of the

carbonate system, mainly for speciation and concentration of the carbonate, where the effect of

salinity did not generate an error of more than 1% between the different water masses studied,

except for the MW, that presented variations above 4% for NTA (n = 1). Regarding Ca2+ e BT ’s

calculation from the practical and absolute salinity, the RE was between 0.5% and 0% for Ca2+

and BT, respectively. Although SA represents the better estimation of the salinity, it does not influ-

ence the equations that generate Ca2+, BT, and TA (Table 7). The use of practical or absolute salin-

ity in the total boron calculation equation resulted in irrelevant differences in this study. However,

more verification and experimental confirmation are needed for these water masses, mainly in the

MW, where the number of samples was quite small (n = 1). The total average of the BT/Cl ratio

((mg/kg)/Cl/‰) for all water masses was 0.223 (for calculated BT) and 0.199 (for analyzed BT),

being similar to that found (0.232) by Uppström [56]. More water collections in the studied are

necessary to establish a better empirical relationship between BT and S. Kulinski et al. [57] estab-

lished this empirical relationship for the calculations of the carbonate system in the Baltic Sea.

The relative error in Table 8 varies between 5.0 and 6.5% for the analyzed and calculated

TA values. The relationship between TA and salinity is well known, and several researchers

have proposed empirical equations [38, 58, 59]. In this study, the differences between the pre-

dicted values and the measured values are somewhat high compared to those presented by

Jiang et al. [60], but this may be due to applied equation and small sample size (n<65). New

samples were already collected during the dry season and are currently being analyzed. This

Table 6. Variations in the carbonate system parameters as a function of the minimum (a, c) and maximum (b, d) values found for Ca2+ and BT (Table 5). Values

obtained with the AQM program keeping the temperature (25˚C), salinity (35 g/kg), pHT (8.0), and TA (2300 μmol/kg) variables constant at the program entry. The

expected value is the analyzed value.

CA μmol/kg OCalc OArag HCO3
- μmol/kg CO3

2− μmol/kg DIC μmol/kg CO2 μmol/kg

Ca2+
(a) 2173 5.0 3.3 1704 210 1921 12.0

Ca2+
(b) 2173 5.2 3.5 1704 210 1921 12.0

Δ% (b-a) 0.0 4.0 6.1 0.0 0.00 0.0 0.0

BT (c) 2173 5.0 3.3 1704 210 1931 12.0

BT (d) 2160 5.0 3.3 1694 209 1914 12.0

Δ% (d-c) -0.6 0.0 0.0 -0.6 -0.5 −0.86 0.0

(a) 10180 μmol/L (analyzed), (b) 10664 μmol/L (calculated), represent the largest RE (%) in the Table 5. (c) 347 μmol/L (analyzed); (d) 412 μmol/L (calculated).

CA = carbonate alkalinity (TA-SBi; Bi = bases). The analyzed and calculated values were obtained from Table 5, with the highest RE (%).

https://doi.org/10.1371/journal.pone.0271875.t006
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Table 7. Effects of the practical (psu) and absolute salinity (g/kg) scales when generating the carbonate system parameters. Values obtained from calculated total

alkalinity with the AQM program [1, 13–15]. Further information can be found in the methodology section. In calculating the relative error (RE%), the parameters

obtained by the absolute salinity (g/kg) are the expected values.

Parameters Water mass

MW TW SACW AAIW AAIW/UNADW UNADW

Ca2+ (psu) 10613 11156 ± 63 10665 ± 33 10365 ± 26 10488 ± 28 10536 ± 3

Ca2+ (g/kg) 10664 11210 ± 63 10716 ± 33 10417 ± 26 10540 ± 28 10587 ± 3

RE (%) -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

BT (psu) 410 410 ± 0.0 412 ± 0.1 412 ± 0.0 412 ± 0.0 412 ± 0.0

BT (g/kg) 410 410 ± 0.0 412 ± 0.1 412 ± 0.0 412 ± 0.0 412 ± 0.0

RE (%) 0.00 0.00 0.00 0.00 0.00 0.00

TA (psu) 2345 2429 ± 9.7 2347 ± 5.4 2298 ± 3.9 2317 ± 4.4 2324 ± 0.4

TA (g/kg) 2352 2437 ± 9.7 2355 ± 5.4 2306 ± 4.0 2325 ± 4.4 2332 ± 0.4

RE (%) -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

NTA (psu) 2242 2194 ± 42 2235 ± 11 2280 ± 9 2263 ± 11 2262 ± 19

NTA (g/kg) 2232 2184 ± 42 2224 ± 11 2269 ± 9 2252 ± 11 2251 ± 19

RE (%) 4.3 0.5 0.5 0.5 0.5 0.5

OCalc (psu) 5.47 5.78 ± 0.27 3.30 ± 0.26 1.95 ± 0.28 1.72 ± 0.16 1.72 ± 0.13

OCalc (g/kg) 5.42 5.81 ± 0.26 3.27 ± 0.26 1.93 ± 0.28 1.71 ± 0.16 1.70 ± 0.12

RE (%) 0.9 -0.5 0.9 1.0 0.6 1.2

OArag (psu) 3.64 3.85 ± 0.18 2.12 ± 0.17 1.23 ± 0.18 1.08 ± 0.10 1.08 ± 0.08

OArag (g/kg) 3.61 3.82 ± 0.18 2.10 ± 0.17 1.22 ± 0.18 1.08 ± 0.10 1.08 ± 0.08

RE (%) 0.8 0.8 1.0 0.8 0.0 0.0

CO3
2- (psu) 231.18 238 ± 11 137 ± 10 81 ± 12 71 ± 6 72 ± 5

CO3
2- (g/kg) 231.69 238 ± 11 136 ± 10 81 ± 12 71 ± 6 72 ± 5

RE (%) −0.2 0.0 0.7 0.0 0.0 0.0

DIC (psu) 1873 1822 ± 43 2019 ± 21 2115 ± 20 2112 ± 18 2109 ± 19

DIC (g/kg) 1883 1813 ± 43 2009 ± 21 2105 ± 20 2102 ± 18 2099 ± 19

RE (%) −0.5 0.5 0.5 0.5 0.5 0.5

CO2 (psu) 10.77 10 ± 1 18 ± 2 31 ± 5 34 ± 3 34 ± 3

CO2 (g/kg) 10.82 10 ± 1 18 ± 2 31 ± 5 34 ± 3 34 ± 3

RE (%) -0.5 0.0 0.0 0.0 0.0 0.0

�n = 1 �n = 63 �n = 24 �n = 22 �n = 18 �n = 15

Concentrations are in μmol/kg; psu = practical salinity unit; g/kg = absolute salinity.

�n = sample size.

https://doi.org/10.1371/journal.pone.0271875.t007

Table 8. Variations in TA (μmol/kg) were obtained analytically and calculated with the AQM program [1, 13–15]. In calculating the relative error (RE%), the values

obtained analytically are the expected values (see item Analytical Procedure: TA and Table 3).

Parameters Water mass

MW TW SACW AAIW AAIW/UNADW UNADW

TA (a) 2232 2289 ± 44 2219 ± 14 2197 ± 10 2205 ± 10 2213 ± 19

TA (b) 2352 2437 ± 10 2355 ± 5 2306 ± 4 2325 ± 4 2332 ± 0.4

RE (%) 5.3 6.5 6.1 5.0 5.4 5.4

�n = 1 �n = 63 �n = 24 �n = 22 �n = 18 �n = 15

(a) = analyzed; (b) = calculated

�n = sample size.

https://doi.org/10.1371/journal.pone.0271875.t008
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will allow the development of specific empirical equations for these water masses with smaller

differences between predicted and measured values.

Inventory and elucidation of physical–chemical processes

Carbonate system composition and speciation (pH, NTA, and DIC). The pH and NTA val-

ues showed significant variations between the different water masses (coefficient of varia-

tion = 1.13% and 1.92%, respectively). In Figs 3 and 4, a drop in pH values can be observed

according to the following sequence: TW > SACW> AAIW > AAIW/UNADW < UNADW.

The lowest pH value was found in the AAIW/UNADW (7.83) and the highest ones in the TW

(8.02). The increase in the content ofHCO�
3

and CO2 at greater depths may be due to the

decomposition of organic matter by respiratory activity [59]. The drop in pH values can be

explained by the release of protons from the reaction (Eq 7) between CO2 and seawater, form-

ing bicarbonate [15] (Fig 3).

CO2 þH2O ¼ HCO
�

3
þHþ ð7Þ

In the present study, the water masses had a buffering capacity (ability to keep the pH stable

while acids are added) well above the minimum capacity, if considering that TA/DIC = 1. The

minimum buffering capacity occurs when the pH value falls close to 7.5 [59], and conse-

quently, the carbonate concentrations are lower.

Fig 3. Temperature, Salinity, pH, and Normalized Total Alkalinity (NTA) of the sampling transects, from the internal platform to the abyssal plain.

https://doi.org/10.1371/journal.pone.0271875.g003
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All pH values presented here were well above 7.8, whereas the NTA concentration of the

five water masses showed values of approximately 2200 μmol/kg. Conversely, DIC amounts in

distinct water masses showed a 7% coefficient variation, ranging between the minimum of

1845 μmol/kg (TW) and a maximum of 2020 μmol/kg (SACW). Moreover, our data showed

raised DIC values for deeper water masses with increasing concentrations ofHCO�
3

and CO2

(r = 0.95; r = 1.00, respectively; p<0.05), Fig 4.

Average concentrations ofHCO�
3

and CO2 showed an increase relative to greater depths in

the following sequence (values are in μmol/kg):

TW ðHCO�
3
¼ 1594; CO2 ¼ 10Þ < SACW ðHCO�

3
¼ 1864; CO2 ¼ 18Þ < AAIW ðHCO�

3
¼ 2037; CO2 ¼ 31Þ

< AAIW=UNADW ðHCO�
3
¼ 2040; CO2 ¼ 34Þ < UNADW ðHCO�

3
¼ 2038; CO2 ¼ 34Þ

:

Fig 4. Aragonite saturation state (S-Aragonite), carbon dioxide, total dissolved carbon (DIC), carbonate, and calcite saturation state (S-Calcite) from

sampling transects: From the internal platform to the abyssal plain.

https://doi.org/10.1371/journal.pone.0271875.g004
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The increase in the content ofHCO�
3

and CO2 at greater depths may be due to the decom-

position of organic matter by respiratory activity [61].

Calcite and aragonite saturation state. The saturation state of calcite (OCalc) and aragonite

(OArag) varied within water masses. The highest values were observed in TW and SACW for

both minerals, respectively: OCalc = 5.8, OArag = 3.9 and OCalc = 3.3, OArag = 2.1. From the

AAIW, the values dropped by almost half (OCalc = 2.0 and OArag = 1.2). The increase in CO2

concentrations is mainly responsible for this scenario since it may raise the carbonic acid con-

tent. The following reaction (Eq 3) characterizes the main buffering capacity of seawater,

where the consumption of H+ and CO2 occurs. As the carbonate is consumed from seawater

by this reaction (Eq 8), it results in a decreased carbonate saturation state [59].

CO2 þ CO
2�

3
þH2O ¼ 2HCO�

3
ð8Þ

Several authors have linked the calcium saturation state (O) with the calcification capacity

of organisms due to a drop in CO2�

3
availability [62–64], Eq 9. Moreover, previous experiments

reported a positive correlation between the calcification rate and O, which may lead to an erro-

neous idea that CO2�

3
governs the calcification rate [65, 66].

O ¼
½Ca2þ�½CO2�

3
�

Kps
ð9Þ

Recent research [4, 67, 68] suggested thatO from seawater does not control the rate of calci-

fication (calcifying fluid). That is, we cannot merely link the availability of carbonate (affected

by the decrease in pH values) to the rate of calcification. Notably, to date, no CO2�

3
transporter

has been found in calcifying organisms (for example, coccolithophorids). Conversely, there is

ample evidence ofHCO�
3

transporters. The bicarbonate within the calcifying fluid provides for

the formation of calcium carbonate, Eq 10.

HCO�
3
þ Ca2þ ¼ Hþ þ CaCO3 ð10Þ

Reactions involving the formation of calcium carbonate are dependent on the electrochem-

ical gradient (H+) between the marine environment and the organisms’ tissue, as well as suit-

able O (higher) in the cytoplasmic fluid. Several gaps still need to be clarified about

calcification of marine organisms [69–71].

From the above, pH is a valuable measure by its participation in various chemical equilib-

rium reactions (proton concentration) [31, 32]. Thus, accurate data on the speciation and

quantification of the carbonate system can be obtained at reduced costs [31, 72].

Conclusions and future perspectives

The present inventory of the carbonate system in the five water masses in the SEAL marine

sedimentary basin showed a well-defined scenario among these masses regarding pH, O,

CO2�

3
, DIC, and CO2. The variation of these parameters over time remains unknown, requir-

ing seasonal sampling efforts to allow comparisons between water masses. Through a robust

and updated database, these parameters can be used to monitor the marine acidification of the

studied area at a reduced cost and effort.

More experiments are needed in the studied area to establish more precise empirical rela-

tionships between the different parameters of the carbonate system, such as BT vs. S, Ca vs. S

and TA vs. S. These relationships may be suitable for future studies of the carbonate system of

these and other water masses. This tool may one day replace the laboratory determinations of
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TA, calcium, and boron since the carbonate system presents slight variation between the calcu-

lated and analyzed values, making the whole process more agile and reducing costs.
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son de Araújo Rocha.

Methodology: Carlos Augusto Ramos e Silva, Nicole Silva Caliman Monteiro, Luciana

Miranda Cavalcante, Waldemar Tavares Junior, Flavo Elano Soares de Souza, Carlos Alex-

andre Borges Garcia, Raimundo Nonato Damasceno, Anderson de Araújo Rocha.
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