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Summary

The issue of standardization in synthetic biology is a
recurring one. As a discipline that incorporates engi-
neering principles into biological designs, synthetic
biology needs effective ways to communicate results
and allow different researchers (both academic and
industrial) to build upon previous results and
improve on existing designs. An aspect that is left
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out of the discussions, especially when they happen
at the level of academic and industrial consortia or
policymaking, is whether or not standards are appli-
cable or even useful in everyday research practice.
In this caucus article, we examine this particular
issue with the hope of including it in the standardiza-
tion discussions agenda and provide insights into a
topic that synthetic biology researchers experience
daily.

Introduction

Synthetic biology, a nascent discipline that aspires to
engineer biological systems, is facing a marked stan-
dardization challenge. The community recognizes the
shortage of universally accepted standards as a prob-
lem, with many publications proposing the adoption of
specific practices in different areas across the commu-
nity (Arkin, 2008; Muller and Arndt, 2012; Hillson et al.,
2016; de Lorenzo and Schmidt, 2018; Hecht et al., 2018;
Beal et al., 2020). While most of the discussion focuses
on standards in reporting research outcomes or designs,
standards can apply to several aspects of the field
(Fig. 1). The debate remains timely, as several ongoing
initiatives such as BioRoboost (http://standardsinsynbio.e
u/), the Joint Institute for Metrology in Biology (jimb.stanf
ord.edu/sbsc/) and SynbioLEAP (synbioleap.org), have
emerged to address the insufficient implementation of
standards and provide recommendations to narrow the
existing gaps.

Standards are commonplace in many industries,
where they facilitate the successful integration, commer-
cialization and scaling up of the serial creation of prod-
ucts or services (Lorenz et al, 2019). They help
engineers quickly determine whether the behaviour of a
device will meet specified requirements. Employing stan-
dard practices would open way to better predictions for
experimental procedures. In particular relevance to
biotechnology, standards allow for accountability and
conformity to regulations (such as biosafety and environ-
mental considerations). Consequently, a set of well-
established common standards within synthetic biology
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Fig. 1. An overview of some of the aspects of synthetic biology where standards could apply.

can accelerate knowledge transfer and facilitate innova-
tion.

The discussions and initiatives on synthetic biology
standardization often emphasize high-level communica-
tion, and reporting between organizations and within the
synthetic biology community. However, we think that an
essential aspect of standardization, which is the applica-
bility in everyday research, is being overlooked. Can we
introduce and embrace a standardized way to perform
everyday research tasks? In this article, we examine this
question by providing three specific research practices
where standards can be adopted, and we discuss the
difficulties and drawbacks of introducing standards.

Standards in everyday research practice

Obviously, not every aspect of research can be stan-
dardized, as each research question requires different
methodology and adaptability. However, some particular
practices lend themselves well to uniformity, allowing for
better reproducibility and inter-laboratory communication.
We present here three such examples: in vitro and
in vivo experimental set-ups, synthetic biology toolbox
generation and computational research.

Case 1: In vitro and in vivo experiments

Consistency and shared understanding in synthetic biol-
ogy can be accomplished for both in vitro and in vivo
applications by agreeing on measurement units, tools,

protocols, parts, devices and organisms. This standard-
ization will make experimental results more comparable,
despite being obtained in different locations by different
researchers.

The Kelly standard (Kelly et al, 2009) and poly-
merases per second (PoPS) (Canton et al, 2008)
approaches are initial attempts towards unit standardiza-
tion. Other initiatives followed these. For example, the
standardization of promoter expressions with the relative
promoter unit (RPU) standard aims to normalize pro-
moter strength (Nielsen et al.,, 2016) and FlowCal (Cas-
tillo-Hair et al, 2016) came to standardize flow
cytometry arbitrary units. However, a practical, universal
and comprehensive system of measurement units is still
needed. Ideally, standard units should be applicable for
or convertible between different chassis organisms with-
out requiring cumbersome experimentation.

In addition to measurement units, experimental proto-
cols themselves can be standardized (i.e. riffyn.com).
Standardized protocols enable the comparison of results,
especially when applying automation, robotics and artifi-
cial intelligence in everyday laboratory practice. The
introduction of minimum-reporting standards (Hecht
et al., 2018) and the adoption of common best practices
become increasingly important.

Most standardization efforts thus far have focused on
genetic parts, which are used to assemble genetic cir-
cuits that operate differently in varied experimental con-
ditions. Easy access to DNA synthesis will continue to
increase our capacity to build genetic constructs, and in
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turn, the number of parts available, all of which require
categorization, naming and standardized reporting. The
number of parts and availability of new devices will likely
be overwhelming unless the community takes proactive
steps to ensure coordinated research, availability, open-
ness and standardized reporting.

Lastly, model organisms are extensively studied
organisms with the following common characteristics:
easy and relatively inexpensive to gather, transport,
maintain and manipulate experimentally (Ankeny and
Leonelli, 2011). Although synthetic biology should not
restrict itself and forego the breadth and advantages of
using a variety of host organisms (Adams, 2016), model
species are easier to implement in a standardized set-
up. The transition from ‘model’ to ‘standard’ organism is
not automatic. Yet, up to now, notable progress has
been accomplished with model organisms — there is
recent momentum for the cases of E. coli, P. putida,
yeast, photosynthetic microorganisms and for plant syn-
thetic biology (openplant.org) — by standardizing commu-
nity databases, experimental protocols, and stock and
strain centres to be in place.

Case 2: Synthetic biology toolbox generation and
adoption

The concept of a toolbox should include every single bio-
logical material that is needed in synthetic biology, from
DNA fragments themselves to the chassis organisms.
This is probably one of the most obvious candidates for
standardization, as the tools developed for a particular
research approach can benefit the whole community.

Standards are required for the collection and distribu-
tion of tools. Cataloguing, depositing and distributing
tools under the same platform give access to the
detailed history of the tool, while encouraging tool com-
parison and sharing. Initial attempts of standardizing
tools’ structure and distribution have a brief but promis-
ing history:

Biobricks as a platform for democratizing synthetic
biology (parts.igem.org/Help:An_Introduction_to_BioBric
ks), AddGene as a distribution channel (addgene.org/),
SEVA collection as a standard vector collection (seva.c
nb.csic.es; Silva-Rocha et al, 2013), OpenMTA for
material exchange and transfer agreements (Kahl et al.,
2018) and a universal Golden Gate standard for photo-
synthetic organisms (Patron et al., 2015; Vavitsas et al.,
2019) are steps towards standardized cloning practices,
making parts developed for different organisms inter-
changeable.

All the aforementioned examples were the first steps
to initiate changes towards the standardization of tools in
synthetic biology. However, there is still room for
improvement concerning part characterizations and

predictable outputs, the completion of which could help
to achieve more predictable research outcomes.

Case 3: Computational standards

Computational biologists face significant standardization
challenges due to the incompatibility of computational
tools and inconsistent nomenclature (e.g. different
names and abbreviations being used for the same
metabolite or enzymatic reaction). As one of the pur-
poses of computational work is to enhance the under-
standing of complex systems, to consider multivariable
problems, and to enable automated design, the ability to
build upon each other's work and communicate between
different users is crucial.

Computational standards can be categorized into
genetic, protein, metabolic, systems-scale and data-shar-
ing standards. Many of the standards currently used are
derived from the wider biology community. Globally,
most of the standards used for computational research
come from the fields of systems biology and metabolic
engineering (Kohl, 2011), for example genome-scale
metabolic models; the most popular tools and databases
(e.g. COBRA, BiGG) (Becker et al., 2007; King et al.,
2016) provide a framework for the standardization of the
models and modelling practices. For protein and meta-
bolic applications, well-known standardization applica-
tions are UniProt and KEGG (Kanehisa and Goto, 2000;
Apweiler et al., 2004). In the case of computational appli-
cations, the standards available are mostly focused on
the design phase, such as SBOL (Galdzicki et al., 2014)
for genetic design representation, and are applied in dif-
ferent genetic circuit design tools (e.g. iBioSim, Cello)
(Myers et al., 2009; Nielsen et al., 2016). Most current
computational standards do not focus on holistic design,
but rather on the partial representation of biological sys-
tems (e.g. only genes). This reductionism obliges
researchers to use multiple tools — with different and
incompatible standards — when working across different
complexity levels.

This problem expands in the design, test and learn
phases of the synthetic biology cycle. For example, the
analysis of omics data to inform subsequent designs can
be complicated by the plethora of databases and tools
that are not always compatible with each other. Finally,
the sharing standards for computational research have
been improved by different platforms that standardize
data and models sharing.

New standards introduction, adoption and
challenges

Many widely used standards can come from leading
organizations or companies developing products and

© 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial

Biotechnology, 13, 1304-1308


http://openplant.org
http://parts.igem.org/Help:An_Introduction_to_BioBricks
http://parts.igem.org/Help:An_Introduction_to_BioBricks
http://addgene.org/
http://seva.cnb.csic.es
http://seva.cnb.csic.es

practices widely adopted by the community. A popular
example is the TrueType computer font standard devel-
oped in the ’90s by Apple, and adopted by Microsoft,
quickly becoming a standard in the industry. However,
these types of standards are not necessarily the best
ones as they are developed for a defined industrial pro-
duct, but they impose themselves when no other solu-
tions exist.

This brings us to the next question. What are the limits
we should impose on standardization?

There are a few instances where strict standardization
might be of little benefit or even a hindrance. One exam-
ple is the BioBricks standard for genetic assembly, which
was revolutionary when first appeared, but became dis-
used as more efficient cloning methods became avail-
able. Until the 2019 competition, IGEM required the use
of BioBricks format for valid participation. As a result,
teams that made their normal constructs using isother-
mal assembly or Golden Gate faced the extra burden of
making BioBricks-compatible genetic parts solely for tick-
ing off the medal criteria. This is a good example of why
standards should not be something static, but rather
evolve to correspond to the best available practices.
Otherwise, they create unnecessary workload or prevent
out-of-the-box thinking, thus stifling innovation.

Synthetic biology, as an interdisciplinary field, applies
diverse techniques from biology (with its many sub-
fields), chemistry, mathematics, computer science, engi-
neering and physics, and each of these areas comes
with its own researchers, practices and standards (Krohs
and Bedau, 2013). So a major challenge is developing
adaptive standards and frameworks for synthetic biology,
ones that will allow and are capable of harmoniously
integrating components that use external standards.
Standards for systems integration are required to build
complex biological systems, just like integrated systems
design in aerospace enables different parts complying
with different standards to work together efficiently (Mon-
ell and Piland, 2000).

Conclusion

Synthetic biology is handling the transition from a tradi-
tional molecular biology paradigm, to quantifiable, well-
defined, industrialized and production-based scientific
approaches. In this caucus article, we emphasize on
researchers’ daily experiences and the applicability of
standards in everyday laboratory practice. We believe
that yes, standards are applicable in everyday laboratory
practice, and the three cases we address corroborate
this line of thinking. By standardizing, synthetic biology
will gain numerous advantages and will better meet the
industry’s demands of strict predictability. But we need
to apply standardization with a degree of caution and
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use standards as a tool, not as the end goal. The speci-
fication and adoption of standards should take into
account the needs of the community in a comprehensive
and flexible manner. We, the synthetic biology commu-
nity, should be aware that any designs and tools have
limitations. And standards cannot be easily implemented
unless we come up with user-friendly and Internet-
friendly collections and distribution platforms — ideally
maintained by governmental support and dedicated inter-
national grants and consortiums that include the indus-

try.
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