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approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-
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1 Introduction 

Severe acute respiratory syndrome-related 
coronavirus 2 (SARS-CoV-2) that causes 
coronavirus disease 2019 (COVID-19) has become 
a great challenge for not only separate populations 
but also the whole mankind[1]. This new pathogen 
has almost conquered the world due to the lack 
of knowledge of COVID-19 pathogenesis and the 
absence of any vaccines or approved therapy[2].

The use of models enables the possibility to 
learn more about SARS-CoV-2 and infection-
related conditions and to screen drugs and vaccines 
efficiently. Unfortunately, the number of approved 
models is limited, and researchers have to mainly 
rely on the past experience related to other viruses 
(SARS-CoV, Middle East respiratory syndrome 
coronavirus [MERS-CoV], influenza A virus 
[IAV], etc.) to develop new relevant models. 

Models based on susceptible animals (ferrets[3,4], 
rhesus and cynomolgus macaques[5,6], transgenic 
mice[7], etc.) are highly demanded in investigations 
to study SARS-CoV-2 pathogenesis as well as 
clinical signs, and test drugs and vaccines as a part 
of the trials. However, high costs, virus species 
specificity, and ethical issues do not allow their 
use as a routine model. Hence, cell-based models 
can be a good option for screening and precise 
analysis of molecular pathways of COVID-19 
pathogenesis. However, 2D cultures cannot provide 
biomimetic environment that can significantly 
influence virus spreading, infectivity, and drug 
efficiency. Therefore, 3D tissue models are of 
particular interest. To date, there is only one 3D 
model which is presented by organoids and used for 
studying SARS-CoV-2 infection[8]. Due to the past 
experience, its combination with 3D bioprinting 
and microfluidics, and fabrication of a multi-tissue 
integrated platform can help create a responsive and 
efficient immune-competent organism-like system 
tailored for SARS-CoV-2 infection (Figure 1).

Thus, this review aims to describe the 
background of previously used models for viral 
studies and an approach to design an “ideal” tissue 
model to study SARS-CoV-2 infection.

The main advantages of each technique and 
thus, their combination can allow the fabrication 

of a highly responsive immune-competent 
organism-like platform which is tailored for 
SARS-CoV-2 infection and enable real-time and 
high-throughput screening.

2 Modeling viral infections

2.1 Humans

Nowadays, humans are not a typical object to 
model viral infections that is mainly caused by 
ethical issues. However, there is a pool of studies 
describing controlled human infection (CHI) 
trials on influenza viruses, respiratory syncytial 
virus (RSV), etc. For instance, the CHI model 
was used to assess susceptibility and resistance 
to Norwalk virus infection[9]. DeVincenzo et al. 
experimentally infected adult volunteers with 
wild-type RSV (it usually infects children) and 
showed that viral load can significantly influence 
the disease manifestation and its variation 
permit achieving the manifestation similar to 
natural infection[10]. Such controllable adult RSV 
infection model was claimed to be useful for 
proof-of-concept trials of antivirals candidates. 
Human challenge model provided valuable data 
on immune response to influenza infection[11-14]. 
Particularly, Huang et al.[14] revealed that antibody-
secreting cells are virus-specific and can be the 
earliest marker of new influenza infection. In the 
case of especially dangerous infections (Ebola 
virus, Zika virus, yellow fever virus, etc.), CHI 
trials are significantly limited and almost cannot 
be performed. The significant efforts have been 
carried out to develop a dengue human infection 
model which has minimum harm and represents 
wild-type infection[15]. Hence, if such infection 
occurs naturally, blood, mucosa, urine, stool, tissue 
biopsies, etc., can serve as appropriate materials 
for studying lifecycle, entry, and pathogenesis of 
virus, and drug efficacy.

Usually, humans are involved in clinical trials 
of actively developed vaccines and phage-based 
drugs. Particularly, a novel dengue vaccine was 
tested using the DEN2Δ30 model[16]. Moreover, 
CHI models have enabled the development of the 
first vaccines against the influenza virus[17] and the 
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first anti-influenza drug, amantadine[18], and other 
antivirals[19-23]. Phage-based drugs are particularly 
interesting as a therapeutic agent to treat multidrug-
resistant bacteria, such as Staphylococcus 
aureus or Pseudomonas aeruginosa[24,25], and to 
modify microbiota to decrease specific microbial 
populations[26].

2.2 Animals

Animals are widely applied to study viral infections 
and antivirals. Among them, rodent models are 
the most common, especially used in studies to 
reveal features of respiratory diseases caused by 
IAV and RSV[27,28]. Their advantages include the 
possibility to use standardized animals that allow 
comparison and analysis of data obtained from 
different experiments. They are well-characterized 
and can be easily modified to delete particular 
genes or transfer them from other species that 

enables the extrapolation of results and detection 
of virus targets and pathogenesis. For instance, 
type-I interferon receptor-deficient mice were 
engineered and used to study the Zika virus entry 
process[29]. Moreover, handling rodents are easy 
and low-cost; they reproduce rapidly, have small 
sizes, can accustom to standard diet, and do not 
require much space. However, their use is limited 
because of species-determined differences in 
anatomy, pathophysiology, immune response[27], 
and host-determined virus infectivity[28].

Another well-established animal model is 
ferrets, which are susceptible to most human 
respiratory viruses[3,4,28,30]. Their respiratory tract 
is very similar to human’s, and they manifest 
a wide range of clinical signs[31]. Therefore, 
they have become a good model to test antiviral 
drugs. Particularly, using them, the efficacy of 
lopinavir-ritonavir, hydroxychloroquine sulfate, 
and emtricitabine-tenofovir was proven for 

Figure 1. Bioprinting, microfluidics, and organoids as tools to defeat coronavirus disease 2019.



Shpichka, et al. 

 International Journal of Bioprinting (2020)–Volume 6, Issue 4 13

SARS-CoV-2 treatment[3]. Nevertheless, ferret 
models have many limitations which include the 
lack of standardized strains, detailed molecular 
profiling, and higher handling and housing costs.

Interestingly, there is a pool of studies describing 
domestic animals, such as cats and dogs, as a viral 
model. For instance, a recent study has shown that 
cats are susceptible to human SARS-CoV-2[4]. 
Such findings provide novel insights into virus 
targets and its lifecycle. However, cat and dog 
models have similar issues as ferret ones as well 
as ethical concerns. 

Cattle, sheep, and pigs are also used to study 
human viruses. Particularly, sheep and cattle are 
susceptible to RSV and have human-like virus 
spreading due to similar sizes[27]. The application 
of such models is limited by high handling and 
housing costs and biosafety considerations (e.g., 
pigs can be a reservoir for the reassortment and 
transgenic shift of influenza viruses).

The animal model closest to humans is, 
undoubtedly, primates that have similar genetic, 
anatomical, and physiological features. For 
instance, RSV infection of chimpanzees has all 
symptoms and complications (inflammation, 
acute respiratory distress syndrome, lung edema, 
etc.) that are typical in humans[32,33]. Primates 
are perfect candidates for preclinical studies 
of vaccines[27]. Despite all of the mentioned 
advantages, they cannot be treated as a routine 
viral model due to extensive economic, ethical, 
and logistical burdens. 

However, in general, virus strains are highly 
selective and host-specific; therefore, only a 
subset of data can be extrapolated to humans. 
Phylogenetically close viruses often have 
different hosts and targets, and these viruses 
also cause different pathophysiologic conditions. 
Some drugs, whose efficacy was confirmed using 
animal models, failed in clinical trials[34]. One 
of the approaches to overcome these issues is 
humanization. Humanized animals (usually mice) 
have specific human expression profiles and are 
immunodeficient due to the mutation caused by 
severe combined immunodeficiency. They are 
widely used to model human immunodeficiency 
viruses (HIV), herpesviruses, cytomegaloviruses, 

dengue virus, Epstein-Barr virus, and Ebola virus 
infections[35,36]. However, such models require 
expensive specific handling and housing and are 
not flexible to study different viral infections. 

2.3 Tissue models

Compared to the above-mentioned models, tissue 
models can be considered as the most flexible and 
ethically humane tools to study viral infections. 
While designing such models, a researcher can use 
different cell types, biomaterials, and fabrication 
methods (including bioprinting) that can work with 
a wide range of host-specific viruses. Studying 
viruses in vitro under controllable conditions allow 
better understanding of host-pathogen interactions 
and high-throughput screening of drug candidates. 

All tissue models can be divided into three 
types with ten subtypes: 2D models (monolayer 
culture of cell lines and primary cells), 2.5D 
models (suspension culture using microcarriers 
and simple air-liquid biointerfaces), and 3D 
models (explants, organoids/spheroids, embedded 
cells, cell-seeded scaffolds, bioprinted constructs, 
and combined systems [organ-on-a chip]).

Monolayer (2D) cultures are the oldest and the 
most widely used model. Cell lines are usually 
applied to isolate viruses, develop new serological 
assays, and produce diagnostic reagents or 
vaccines. The current “gold-standard” cell line 
is Vero, an interferon-deficient aneuploid line of 
kidney epithelial cells[37,38]. A549 and Madin–
Darby canine kidney cell lines are mostly applied 
for influenza viruses[39].The most common cell 
line for the foot-and-mouth disease virus is the 
mammalian baby hamster kidney cells[40] which 
have been used since 1964[41]. Compared to cell 
lines, primary cell cultures have some advantages. 
For instance, cells isolated from ovine pulmonary 
adenocarcinoma are a unique platform to reveal 
mechanisms of epithelial transformation in a 
case of the lung cancer caused by the retrovirus 
infection[42]. Despite of the availability of cell 
variety and easy handling and scaling, 2D cultures 
are not capable of recapitulating fully cell-cell and 
cell-matrix interactions.

Suspension culture is also the oldest model 
for viral infections and very common for the 
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industrial production of diagnostic reagents, 
vaccines, etc., due to a simple scaling procedure[40] 
V. However, it was significantly improved by 
adding microcarriers – small particles of a cell 
adhesive substrate (e.g., Cytodex 3). Such method 
modification was approved for the production 
of a RSV vaccine[43] and research on virus-host 
interactions[44]. 

Compared to 2D ones, 3D models are highly 
attractive because they are more relevant to the 
conditions in vivo (Figure 2). Such models can be 
fabricated through various approaches and were 
approved for different viruses (Table 1). The most 
common technique to form 3D tissue models is cell 
or spheroid/organoid encapsulation (embedding). 

Organoids and spheroids can establish cell-cell 
and cell-matrix interactions and are genotypically 
and phenotypically stable[45]. They were shown 
to be an efficient model to study virus infectivity 
and host-pathogen interaction[46-48]. For instance, 
using intestinal organoids, Zhou et al. confirmed 
that MERS-CoV might infect the gastrointestinal 
tract[49].

Explant cultures can also be used in studying 
viral infections. Their main advantage is that 

they are native tissues with relevant morphology. 
However, their application is significantly limited 
because of low availability and shortage of donor 
materials, short viability, and rapid necrosis[50].

Scaffold- and hydrogel-based models can 
provide a 3D microenvironment that mimics 
conditions in vivo for cells. Biomaterials that 
ensure necessary cell-matrix interactions and 
appropriate spatiotemporal surrounding cells are 
used to form a structure of such models. It was 
shown that they could ensure physiologically 
relevant cell responses to virus infection and 
drugs[39,51]. For instance, Bhowmick et al.[39] 
revealed that compared to monolayer culture, the 
3D chitosan-collagen-based cell model had the 
native airway epithelium-like morphology and 
high expression and release of pro-inflammatory 
cytokines and chemokines after IAV infection. 
The virus expression in such conditions has 
been shown to be higher. Particularly, Archer 
et al.[42] found out that compared to monolayer 
cultures, cultures of tumor-derived alveolar type 
II cells on a surface coated with fibronectin and 
collagen type I or Matrigel exhibited efficient 
maintenance of reverse transcriptase activity and 
stable expression of Jaagsiekte sheep retrovirus. 
Moreover, biomaterials have been shown to 
significantly influence virus spreading ability 
and even determine its mode. For instance, Imle 
et al.[52] revealed that cell-laden collagen gel 
significantly limited the transmission of cell-free 
HIV and shifted it to cell-associated transmission. 
To fabricate complex tissue-like constructs, 
bioprinting is a good option[53], and bioprinted 
models were shown not only to be susceptible to 
viruses but also to recapitulate virus-associated 
morphological patterns similar to in vivo[54,55]. 

Microfluidic-based tissue models additionally 
allow mimicking air and fluid flows typical to in vivo 
conditions. Organ-on-a-chip systems consisting of 
various cell types, perfusion chambers, air-liquid 
interfaces, etc., mimic and create physiological 
conditions relevant to viral infection of native 
tissues. Microfluidic-based tissue models have many 
advantages. Particularly, microfluidics enables 
liquid handling at a microscale through a system of 
microchannels; therefore, the total consumption of 

Figure 2. Viral infection: 2D versus 3D tissue 
models.
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reagents is relatively low that makes high-throughput 
screening easier and cheaper[56]. Such models 
are flexible to be automated[57,58], providing the 
possibility for real-time monitoring[59,60]. Moreover, 
they allow culturing cells in physiologically relevant 
dynamic conditions and controlling them[61]. 
Particularly, such system was tested to study the 
mechanism of the fusion of feline coronavirus with 
host cell membrane[62].

3 In vitro tissue models for modeling an infection 
caused by different viruses

3.1 Respiratory viruses

Tissue models that are used to study respiratory 
viral infections vary and include both monolayer 
cultures and functional airway organoids, enabling 
to obtain reliable data on virus infectivity, targets, 
and drug efficacy. Coronaviruses, a group of 
respiratory viruses, mostly infect epithelial cells 
that are used in designing relevant 3D models. The 
recent studies are based on organoids as a tissue 
model. For instance, Monteil et al.[8] revealed 
the efficacy of human recombinant soluble 
angiotensin-converting enzyme 2 against SARS-
CoV-2 using infected blood vessel and kidney 
organoids. Moreover, intestinal organoids were 
used to prove that the intestine is a target organ 
for MERS-CoV[49]. Study of IAV using monolayer 
cultures fails to recapitulate the natural clustered 
pattern of disease transmission, but bioprinted 
3D model was shown to be more relevant[54]. 
Using bioprinting, it was revealed that even 
geometrical position can significantly influence 
cell susceptibility to the virus[55]. Screening of 
drugs against RSV infection and detecting its 
pathogenesis was also successfully performed 
using airway and lung bud organoids[46,47]. 

3.2 Hepatotropic viruses

The hepatotropic viruses include different types 
and hepatitis A, B, C, D, and E viruses, which 
are the most common causes of viral hepatitis 
leading to liver failure worldwide[63]. Hepatitis 
B virus (HBV) and hepatitis C virus (HCV) 
induce chronic liver inflammation that results in 
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cirrhosis and hepatocellular carcinoma[64]. Cell 
polarity and micro-environmental complexity 
and interactions are absent in 2D culture systems. 
Due to the drawbacks of 2D model systems, 
researchers are looking for alternative 3D models. 
The establishment of 3D models including 
spheroids, organoids with multi-cellular structures, 
and their specific extracellular matrix (ECM), 
was shown to exhibit higher tissue-specific 
environmental complexity, more mature cells, 
and better physiological functionality compared 
to simple 2D counterparts. For instance, several 
studies established liver spheroid models to study 
the hepatotrophic virus lifecycle in liver tissue. 
Chong et al. generated primary human hepatocyte 
spheroids from uninfected liver resections and 
inoculated the spheroids with HCV-positive 
serum[65]. Data showed that spheroids have 
differentiated phenotype and expressed putative 
HCV receptors; the HCV RNA was detected 
in the cells as well as supernatant of culture 
media[65]. Moreover, Nie et al. used a coculture 
system of human induced pluripotent stem cell 
(hiPSC)-derived endoderm, human umbilical 
vein endothelial cells, and mesenchymal stem 
cells in a 3D microwells to assess the potential 
of liver organoids for HBV infection and virus-
host interactions[66]. The cells self-organized and 
differentiated into the functional liver organoids. 
Then, organoids were infected with the HBV 
genome. The liver organoids exhibited more 
functionality and higher susceptibility to HBV 
infection compared to human iPSC-derived 2D 
hepatic-like cells. These organoids could sustain 
HBV propagation and produce infectious virus up to 
20 days. HBV infection decreased the expression of 
hepatic-specific genes and increased the expression 
of early biomarkers for acute liver failure, alanine 
aminotransferase, and lactate dehydrogenase in the 
supernatant of infected organoids. The advantage 
of hiPSC-derived 3D liver organoids was that 
they provided HBV infection models for precision 
medicine[66]. In addition, other cell culture models 
including, specific scaffold embedded cells and 
single-channel microfluidic devices are promising 
platforms in vitro models to study hepatotropic 
viruses[63]. 

3.3 Herpesviruses

Epithelial tissue is the initial site of infection for 
most herpesviruses. Although they cause latent 
infection mainly in neurons, they are still able to 
infect other cells. Therefore, there are numerous 
tissue models available, which include various 
cell types to study this virus group. For example, 
Tajpara et al. developed a model based on the 
microneedle-pretreated human abdominal skin 
explant to test antivirals and their combinations 
against human simplex virus (HSV-1) infection[67]. 
Zhu et al. fabricated 3D air-liquid interface 
culture consisting of human normal vaginal 
epithelial cells to describe viral transmission of 
HSV-2 and related pathological changes[68]. To 
study viral effects on neural tissue and acyclovir 
efficacy, D’Aiuto et al. proposed a scaffold-free 
3D hiPSC-based neuronal model and showed 
that the IC50 of acyclovir in 2D cell cultures was 
lower than that in 3D culture[69]. Sison et al. also 
used iPSCs to fabricate cortical organoids to study 
human cytomegalovirus infection and revealed 
the organoid structure disruption and alterations 
in specific markers expression[70].

3.4 HIV 

HIV infection is one the most difficult infections 
to study due to high selectivity and host specificity. 
HIV mainly infects immune cells, and the recent 
study has offered a novel efficient 3D model based 
on CD4+ T-lymphocytes[52]. By varying density of 
collagen gel embedding cells, Imle et al. evaluated 
the virus transmission and revealed that it can be 
significantly influenced by 3D environment.

4 Designing an “ideal” tissue model to study 
SARS-CoV-2 infection

4.1 Models and their limitations

To date, there is only a limited number of models 
available to study the SARS-CoV-2 infection. 
The most susceptible animals to this coronavirus 
are ferrets[3,4], cats[4], and rhesus and cynomolgus 
macaques[5,6]. The latter is considered to be a 
rapidly established SARS-CoV-2 model without 
any additional modifications[6]. Rhesus macaques 
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were successfully applied to test siRNA to treat 
and prevent SARS-CoV infection[79]. Moreover, 
transgenic mice expressing human ACE2 can 
become a great option as ACE2 is one of the main 
SARS-CoV-2 targets[7]. Nevertheless, almost all 
animal models are expensive and do not allow 
researchers to fully overcome species specificity 
for such host-specific virus as well as their use is 
limited because of ethical issues.

Cell-based models are a good alternative 
to animal models. Particularly, Vero cell line 
cultured in 2D conditions was used for anti-
SARS-CoV-2 drug screening[80]. However, the 
main limitation of such cell lines is the deficiency 
of interferon, which is an important regulator 
of binding proteins involved in SARS-CoV-2 
infection[81]. This requires the use of other cell 
types and biofabrication methods that would 
better recapitulate in vivo conditions, including 
3D environment, flows dynamics, and immune 
response. Moreover, blood vessel and human 
kidney organoids are still the only 3D models used 
to study SARS-CoV-2 infection[8]. 

4.2 Specific targets

Despite SARS-CoV-2 is a novel virus infecting 
humans, understanding of its possible entry 
mechanisms was already pre-defined because 
of earlier studies on other coronaviruses, for 
example, SARS-CoV[82-85]. Therefore, after its 
appearance, most research teams have been 
focusing on SARS-CoV receptor ACE2 and other 
related enzymes. Particularly, Hoffmann et al.[86] 
proved that the entry of SARS-CoV-2 into a cell 
occurs due to binding of the viral surface spike 
glycoprotein (S protein) to ACE2 and its priming 
by the transmembrane protease serine protease 
2 (TMPRSS2). Zang et al. also revealed that the 
transmembrane protease serine protease 4 plays 
a crucial role in virus entry using human small 
intestinal enteroids as a model[87]. 

Actually, the entry mechanisms are considered 
the main targets for designing drugs treating and 
preventing COVID-19. Hence, their inhibition 
can block the infection that was proven to be true 
in several studies. For instance, Monteil et al. 

showed that human recombinant ACE2 prevented 
the virus entry into cells that form blood vessel 
and kidney organoids[8]. Hoffmann et al. revealed 
that Camostat mesylate, a serine protease inhibitor, 
blocked SARS-CoV-2 infection in lung cell line 
Calu-3[86].

These target enzymes, i.e., ACE2 and TMPR
SS2, are widely expressed by tissues in human 
organisms. ACE2 is a monocarboxypeptidase 
that regulates the peptide cleavage in the renin-
angiotensin system, and high levels of its expression 
could be found in alveolar epithelial type II cells, 
esophagus keratinocytes, small intestine, ileum 
and rectum enterocytes, stomach epithelial cells, 
colon colonocytes, liver cholangiocyte, arterial 
and venous endothelial cells, arterial smooth 
muscle cells, myocardial cells, sustentacular cells 
of the olfactory epithelium, spermatogonia and 
Leydig and Sertoli cells, prostate epithelial cells, 
bladder urothelial cells, and kidney proximal 
tubules cells[88-94]. TMPRSS2 regulating viral 
uptake by S protein priming is highly expressed 
by sustentacular cells of the olfactory epithelium, 
small intestine enterocytes, bronchial transient 
secretory cells, prostate epithelial cells, nasal 
goblet and ciliated cells, etc.[87,89,95-97].

4.3 Key points for the rational design

Our lack of knowledge in the COVID-19 
pathogenesis and the absence of its adequate 
and licensed therapy[2] have led to the need to 
create novel in vitro platforms that mimic in vivo 
conditions and are specifically tailored for the 
SARS-CoV-2 infection. There is no doubt that 3D 
tissue models are more suitable than 2D models 
to study any viral infections because they share 
the similarity to the native tissue, organ structure, 
and physiological functionality, and this is also 
applicable to COVID-19.

3D tissue-like constructs can be fabricated by 
a huge variety of methods that can be divided 
into two main groups: Scaffold-based and 
scaffold-free. However, scaffold-free techniques 
such as bioprinting and cell self-organization 
(spheroidogenesis and organoidogenesis) and 
their combinations are considered to be the most 
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promising ones as they allow precise reproduction 
of tissue morphological and functional properties.

Bioprinting is a complex technique that, 
particularly, enables tissue fabrication using 
spheroids or organoids (microtissues) as building 
blocks. Hence, the appropriate spatiotemporal 
status and cell-cell and cell-matrix contacts may 
be achieved[98]. In bioprinting, cells distributed 
in a hydrogel system (“bioink”) are usually 
deposited by a bioprinter, which can be based on 
different technologies such as extrusion[99], ink 
jet[100], laser-induced forward transfer (LIFT)[101], 
stereolithography[102]. Extrusion-based bioprinting 
is the most widely used technique[103]; however, 
only LIFT bioprinter can enable precise deposition 
at high speed and resolution and is considered to 
be the best option to print minor cell populations 
within complex 3D tissue-like structures[101]. 
Regarding bioinks, the most promising cell 
components are spheroids or organoids establish 
intercellular junctions and newly synthetized ECM 
compared to a single cell suspension and maintain 
cell phenotype[22,104-106]; the biomaterial component 
– hydrogel system – is usually presented by natural 
and synthetic polymers, including their conjugates 
such as acellularized ECM, alginate, gelatin, 
fibrin, hyaluronic acid, cellulose, polyethylene 
glycol, and Pluronic-F127.[101,107-109].

As specific targets for SARS-CoV-2 are ACE2 
and TMPRSS2, it is rational to include those 
tissues whose cells express these enzymes in 
the COVID-19 test tissue platform. Particularly, 
there should be 3D models of the nasal mucosa 
(including the olfactory neuroepithelium), lungs 
(particularly, the alveoli), blood vessels, heart, 
kidney, and intestine (Figure 3). To date, scientists 
have accumulated data on their fabrication 
through bioprinting, and this experience is shortly 
described further.

The nose is one of the main ports of SARS-
CoV-2 infection, and the nasal mucosa is the 
first barrier tissue for the virus[81]. Among the 
existing models mimicking the nasal mucosa, 
none of them was fabricated through bioprinting. 
They are mainly presented by monolayers, air-
fluid single or multilayered biointerfaces, and 
scaffold-based and explant-based cultures[110]. 

As the olfactory neuroepithelium located in 
the nasal mucosa is involved in virus entry and 
smell dysfunction[89,111], the rational model should 
contain sustentacular cells expressing high levels 
of ACE2 and TMPRSS2 and olfactory receptor 
neurons expressing these enzymes at lower 
levels. There are numerous efficient protocols to 
form olfactory neurospheres and to differentiate 
olfactory neuroepithelial cells[112-115]; therefore, 
these cells and their self-aggregates can be a 
perfect cell component for a bioink to print a 
“smell-sensitive” nasal mucosa construct.

The lungs, particularly the alveoli, are the main 
target for the SARS-CoV-2 infection and remain 
technically challenging. Only a limited number of 
studies achieved success in the 3D reconstruction 
of alveolar epithelial-endothelial barrier, and most 
scientists attempt to model only the air-cell and 
fluid-cell biointerfaces. For instance, Horvath 
et al.[116] bioprinted the epithelial/endothelial 
cell barrier system on a porous membrane and 
showed that it is possible to create reproducible 
thin homogenous cell layers. To date, the most 
complex lung-like structure was fabricated 
by Grigoryan et al. using a stereolithographic 
bioprinter[117]. To reproduce the alveoli scale and 
morphology, particularly their epithelial side, 
Lewis et al. created hollow epithelial cysts using 
the microsphere-based approach[118]. Such cysts 
as a cell component of a bioink can be easily 
hierarchically structured through bioprinting to 
achieve lung-like constructs.

Blood vessels containing ACE-expressing 
endothelial cells are a common object for bioprinting 
because they ensure the proper survivability and 
engraftment of tissue-engineered constructs. 
Different approaches varying in fabrication 
method and bioink blends were offered and can 
be classified as follows: Sacrificial and core/shell 
techniques. The choice depends on the required 
shape and sizes; vessels with bigger diameter can 
be fabricated using an extrusion-based bioprinter, 
vessels with smaller diameter using a laser-assisted 
bioprinter, and multibranched vessels using 
stereolithographic bioprinter[101,117,119,120]. 

Another target organ for COVID-19 that 
should be included in an integrated platform is 
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the heart. Engineering cardiac tissues requires 
the restoration of their functionality. To date, 
there is a number of successful studies that can 
be used as a base. Particularly, Maiullari et al. 
bioprinted a cardiac vascularized construct from 
hiPSC-derived cardiomyocytes and umbilical 
vein endothelial cells. This construct had native 
tissue-like morphology and successfully grafted 
with host tissues and vasculature[121]. Zhang 
et al. showed a complex approach to fabricate a 
vascularized-myocardium-on-a-chip, which was 
able to contract, using the combination of both 
bioprinting and microfluidics[122].

The kidneys play a crucial role in 
COVID-19[123,124], but its biofabrication remains an 
appealing goal. For sure, scientists have achieved 

particular success which is mostly related to 
engineering miniaturized kidney models[125-129]. 
Particularly, Homan et al. bioprinted renal 
proximal tubules placed into a microfluidic chip 
and showed that such model had the typical 
epithelial morphology and was sensitive to 
cyclosporine A[127]. King et al. fabricated an in vitro 
multicellular model consisting of renal fibroblasts, 
endothelial cells, and proximal tubule epithelial 
cells and revealed its susceptibility to cisplatin in a 
dose-dependent manner and response to TGFβ[130].

The liver is also challenging for bioprinting 
mainly because of its complex structure that 
includes microvasculature and innervation[131]. 
However, there is a number of studies achieved 
good results in the restoration of the liver 

Figure 3. Designing an “ideal” tissue model to study severe acute respiratory syndrome-related coronavirus 
2 infection. BME – basement memebrane extract; BP – bioprinting; BV – blood vessel; ECM – extracellular 
matrix; GelMA – gelatin methacrylated; GMHA – glycidyl methacrylated hyaluronic acid; MC – microfluidic 
chamber (chip); PEG – polyethylene glycol; PEGMA – polyethylene glycol monoacrylate; SARS-CoV-2 – 
severe acute respiratory syndrome-related coronavirus 2; SIS – small intestinal submucosa.
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morphology and functionality. For instance, 
Yanagi et al. developed an approach to fabricate 
liver-like tissues based on the fusion of the 
bioprinted spheroids[132]. In addition, Bhise et al. 
designed a bioprinted liver-on-a-chip and showed 
its full functionality for 30 days and sensitivity to 
acetaminophen-induced toxicity[133].

The intestine is highly susceptible to the SARS-
CoV-2 infection because its epithelial cells express 
ACE2[90] involved in amino acid homeostasis[134]. 
Therefore, it is essential to include it as a target 
organ in the designed tissue model platform. 
There are numerous approaches for fabrication of 
intestinal models, bioprinting is considered to be 
a promising approach[135]. Particularly, Madden 
et al. showed that it is possible to fabricate a two-
layered construct consisting of epithelial cells 
and myofibroblasts through bioprinting[136]. Such 
construct had clear morphology, and cells expressed 
villin, E-cadherin, ZO-1, and enzymes and 
proteins participating in xenobiotics metabolism 
(cytochrome P450 2C9, multidrug resistance 
protein 1, breast cancer resistance protein, etc.)

To mimic air and liquid flow for recapitulating 
the in vivo conditions, microfluidics can be 
used as a tool. Such systems can be fabricated 
using bioprinting[137-139] and have been already 
approved as both single organ (organ-on-a-
chip)[131,140-143] and integrated (body-on-a-chip) 
platforms[144-146]. Multi-organ model systems are 
more physiologically relevant and permits better 
detection of complex virus-host effects than the first 
ones. Particularly, Maschmeyer et al. fabricated 
a four-organ-chip representing the intestine, the 
liver, the skin, and the kidney[144]. Later, Vernetti 
et al. offered a more complex system reproducing 
the microphysiology of coupled intestine, liver, 
kidney proximal tubule, blood–brain barrier, and 
skeletal muscle models[145]. However, there are 
only several platforms which were fabricated 
using bioprinting because the combination of these 
emerging techniques is a relatively new approach. 
For instance, Skardal et al. developed a three-tissue 
system consisting of functional lung, cardiac, and 
liver modules and proved its applicability for 
drug testing[146]. Compared to such 2D models, 
bioprinted models ensure complex cell-cell and 

cell-matrix interactions that are crucial in studying 
COVID-19 pathogenesis. 

The most challenging aspect of designing 
COVID-19 tissue platforms is modeling immune 
response relevant for this disease[2]. Hence, the 
“ideal” system should represent effects of dendritic 
cells and macrophages that secret inflammatory 
cytokines and chemokines (Interleukin [IL]-6, 
IL-8, IL-12, tumor necrosis factor-α, monocyte 
chemoattractant protein-1, Granulocyte-
macrophage colony-stimulating factor, etc.) and 
cytotoxic T cells (CD4+ and CD8+ T cells). Hence, 
two approaches might be applied. The first one 
is designing immune-competent models[147,148] or 
integrated platforms by including lymph node 
models[149,150]. The second approach is based on 
the perfusion of immune cells suspension through 
a chip.

The integrated platform (Figure 3) includes 
six target tissues/organs (nasal tissue, lungs, 
heart, kidney, liver, and intestine), including 
blood vessels. They connect to each other using 
microfluidic channels ensuring virus transmission, 
cell supply with nutrients and oxygen, cell 
migration, etc. Each particular model is 
bioprinted to achieve native-like morphology and 
functionality. Bioink consists of cell (yellow) and 
hydrogel (blue) components and is tissue-specific. 
The best option for a bioink cell component is 
organoids/spheroids as they can perform cell-cell 
and cell-matrix interactions. To model immune 
response, two approaches might be applied: 
Designing immune-competent models/including 
lymph node models into such integrated platform 
and perfusing immune cells suspension through it. 

5 Conclusion

To defeat COVID-19, the mankind should create 
new tools combining the emerging techniques 
such as bioprinting, microfluidics, and organoid 
formation. To date, our understanding of the 
fabrication of tissue models for different viruses 
and tissue engineering is growing, and they can 
be applied in designing an integrated multi-tissue 
bioprinted platform tailored for SARS-CoV-2 
infection. Despite that none has yet tested such 
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complex systems to study this virus and perform 
drug screening, this multidisciplinary approach can 
be a new chapter in antiviral research in view of the 
outstanding achievements described in this review.
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