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ABSTRACT: We applied coherence analysis�used by engineers to identify linear interactions in
stochastic systems�to molecular dynamics simulations of crambin, a thionin storage protein found
in Abyssinian cabbage. A key advantage of coherence over other analyses is that it is robust,
independent of the properties, or even the existence of probability distributions often relied on in
statistical mechanics. For frequencies between 0.391 and 5.08 GHz (corresponding reciprocally to
times of 2.56 and 0.197 ns), the displacements of oxygen and nitrogen atoms across α-helix H-bonds
are strongly correlated, with a coherence greater than 0.9; the secondary structure causes the H-
bonds to effectively act as a spring. Similar coherence behavior is observed for covalent bonds and
other noncovalent interactions including H-bonds in β-sheets and salt bridges. In contrast, arbitrary
pairs of atoms that are physically distant have uncorrelated motions and negligible coherence. These
results suggest that coherence may be used to objectively identify atomic interactions without
subjective thresholds such as H-bond lengths angles and angles. Strong coherence is also observed
between the average position of adjacent leaves (groups of atoms) in an α-helix, suggesting that the
harmonic analysis of classical molecular dynamics can successfully describe the propagation of allosteric interactions through the
structure.

■ INTRODUCTION
Molecular dynamics (MD) simulations of proteins and other
biological macromolecules describe the motions of their atoms
in far greater detail than could be imagined by the founders of
molecular biology and biophysics. Large improvements in the
resolution and reliability of static structures have been
combined with exponential increases in computing power to
produce enormous amounts of simulation results. These data
are a treasure trove for scientists but are also, as treasures often
are, a weighty burden. The exhaustive detail in MD trajectories
easily overwhelms our ability to understand how the motion
drives biological function.
The analysis of biomolecular MD trajectories typically

combines visualization, data science, and traditional concepts
from physical chemistry. Interpretation often starts with
watching movies of cartoons that are reduced models of
structure. General methods of data science such as clustering
and dimensionality reduction are needed because the details of
atomic trajectories can hide the simplicity of reduced models.
These methods are widely used to categorize configurations
and define important motions seen in visualizations.
Exploratory data analysis is often followed by more careful
computation of thermodynamic properties such as expectation
values and free energy differences between different con-
formations or kinetic properties of their transitions (see some
newer studies,3−6 but earlier references can be found).
However, reduced models are difficult to identify and construct
with certainty.
Fortunately, stochastic analysis7 provides the coherence

function, which allows the identification of a certain type of

reduced model without any assumptions about the distribution
or statistical properties of atomic motion. If the coherence
function (defined below in eq 3) is 1, then the input and
output of a stochastic process are related by a linear system,
such as a spring. Use of the coherence function is well
established in engineering. Estimators of coherence are
described in classic literature7,8 and are used with little change
in modern literature.9−13 One of us (Eisenberg) has used these
methods in physiology to analyze the electrical structure of
cells and tissues,14,15 as has been reviewed.16−19

This work is far from the first to apply methods of stochastic
analysis to MD trajectories. The time series of atomic positions
in MD simulations are nearly as wild as the white noise signals
used in engineering; trajectories follow wildly irregular paths of
thermal motion that can be described as chaotic or stochastic
or both,20 with the caveat that the motion is conditioned by
the structures in which they occur. Dynamical properties of
stochastic processes such as autocorrelation functions have
been extensively investigated4,5 and are available in programs
including TRAVIS.6,21,22 However, to our knowledge, joint
coherent thermal motions of atoms in proteins have not
previously been studied in this engineering tradition.
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Although we did not have high expectations that it would
work, we decided that a good starting point would be to
evaluate the coherence between pairs of atoms. Our expect-
ations were tempered by several factors. First, all atoms in a
protein interact with many other atoms, not only a single
neighbor. Thus, predicting the motion of any single atom (the
output) could require the positions of multiple atoms (the
inputs). Second, conformational changes in proteins occur on
all time scales from femtoseconds to seconds, which could
disrupt coherence at any time scale. Finally, protein conforma-
tional changes show no visual signs of linearity, at least as we
looked at them. Hence, we only really expected to find high
coherence between pairs of atoms in covalent bonds.
Nonetheless, we decided that it was straightforward enough
to calculate pairwise coherence for other types of interactions.
We decided to start with a specific case important in the

history of molecular biology: the H-bond that links nitrogen
and oxygen within an α-helix of a protein, as discovered and
defined by Pauling.23 As an initial system, we selected crambin,
a small protein used for thionin storage by Abyssinian cabbage.
Crambin has been a favored object of study by structural and
molecular biologists for nearly 50 years as described in an
extensive literature sampled in refs.24−27 We chose crambin
because we knew it to be rigid and expected it to have
particularly well-defined H-bonds. We thought that would be
rigid because it is a small protein with three disulfide bonds24

and has an especially high-resolution structure in X-ray and
neutron diffraction experiments (Protein Data Bank identifier
1CRN27).
We wanted to select a rigid protein because we thought that

atom pairs in rigid structures are more likely to have high
coherence than in flexible proteins. Solids, an extreme case of
rigidity, may have coherence over long distances. The best
examples are in semiconductors, in which the entire quantum
mechanical band structure arises from macroscopic perio-
dicity28 and of course in metal conductors, in which quantum
states are delocalized over the entire length of a wire, even
many kilometers. Moreover, starting from Einstein’s 1907
theory for the specific heat of crystalline solids, which arguably
gave birth to solid-state physics,29 there is a long history of
treating solids as a lattice of harmonic oscillators. Thus, we
thought that a rigid protein, crambin, would be one of the
proteins most likely to exhibit some coherence.
To our delight, we found that that H-bonds in the main α-

helix of crambin are nearly a linear system! The nitrogen and
oxygen atoms across the H-bond share the same power�i.e.,
their power spectra are indistinguishable�and are well
correlated, with a coherence function greater than 0.9 from
0.391 to 5.08 GHz (corresponding reciprocally to real-time
averages over 2.56 and 0.197 ns). Moreover, the corresponding
frequency function shows no sign of damping and appears to
be that of a rigid body (i.e., rigid bond). We repeat that this
conclusion makes no assumptions concerning the existence let
alone other properties of the distributions of atomic
trajectories, as even nonparametric methods must assume.30

Evidently, nonlinear forces and multiple interactions do not
corrupt the linear system connecting the nitrogen and oxygen
atoms of this H-bond and the other interactions we study here
(salt bridges, covalent bonds, and the leaves�groups of
atoms�of the main α-helix itself).
The rest of this paper follows the following plan. The

Theory section is intended to introduce stochastic methods
from linear systems analysis to a biomolecular simulation

audience; a reader familiar with coherence analysis may skip
the section without loss of continuity. The section starts with
definitions of a linear system, frequency response function, and
coherence function. The coherence function is contrasted with
the Pearson correlation coefficient. We then describe statistical
estimators that robustly estimate coherence. Finally, we
describe analytical results for a driven damped spring.
Following the Theory section, we include a Methods section
with enough details so that our simulations and estimates may
be readily reproduced. Subsequently, results of the calculations
are presented along with controls that test the validity of this
novel approach. We recognize that MD is usually performed
with periodic boundary conditions that are generally not
present in the real world, even in crystals�as discussed by
many authors including p 35−38 of ref 31�and that digital
and discrete stochastic analysis can be seriously corrupted by
artifactual periodicities.7,8,32−34 A wide variety of controls have
been performed to ensure that our conclusions are robust.
Next, we present a discussion about the meaning of the linear
systems that we have identified and how coherence analysis
could be extended to other systems, even to sets of atoms in a
“coherence field theory.” Finally, we summarize our con-
clusions.

■ THEORY
Linear Systems. The phrase linear system is defined in

innumerable engineering textbooks. Following the MIT
tradition, we cite Guillemin5 and Bush6 and use the term to
describe a system with the following relationship between
input and output:
(1) if two inputs are applied, output is the sum of the

response to each individual input;
(2) if an input is multiplied by a constant k, then the output

is multiplied by the same constant.
Figure 1 shows a schematic of a linear system.

In this paper, we will focus on single input−output systems.
A single input−output description is natural for a chemical
bond, which is classically defined as a structure between a pair
of atoms.35 We do not deal with the mathematical36 and
chemical difficulties37 in defining a two-body property like an
ionic bond for a large three-dimensional system of charges,
periodic or not, in which the system extends “to infinity,” with
unavoidable consequences.18,38 We hope that a two-body
analysis will be as successful in our chemical context as two-
body (input−output) analysis has been of engineering devices.

Figure 1. Schematic of a linear system; xi(t) are inputs, Hi( f) are
frequency response functions, and y(t) is the output.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00181
ACS Omega 2023, 8, 13920−13934

13921

https://pubs.acs.org/doi/10.1021/acsomega.3c00181?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00181?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00181?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00181?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Chemical bonds are not isolated structures, particularly in
biological contexts, but neither are engineering devices. Atoms
in molecules are usually connected to more than one atom, but
engineered devices also feature multiple connections. As in
biological systems, some engineering devices are embedded in
large three-dimensional systems. Some of these, such as
computer memory, are even periodic in structure.
Frequency Response Function. For a causal linear

system with a single input x(t), the output y(t) is given by
the convolution of the input with the impulse response h(t). A
causal system39 is a system where the output depends on past
and current inputs but not on future inputs�i.e., the output
y(t0) depends only on the input x(t) for values of t ≤ t0. The
convolution is

y t h x t( ) ( ) ( )d
0

=
(1)

This convolution is discussed at length in Chapter 2 of Bendat
and Piersol.7

A linear system converts a sinusoidal input to a sinusoidal
output of the same frequency (after it settles down and
transients disappear) but with an amplitude and phase that
depend on frequency. The frequency response function H( f) is
defined based on the Fourier transform of eq 1. We refer here
to a one-sided Fourier transform (i.e., Laplace transform) since
signals start at some definite time. The frequency response
function relates X( f), the Fourier transform of the input x(t),
to the Y( f), the Fourier transform of the output, y(t), and is the
Fourier transform of the impulse response h(t)

H f
Y f
X f

( )
( )
( )

=
(2)

The functions X( f), Y( f), and H( f) have complex values with
real and imaginary parts, or equivalently magnitude and phase.
While a sinusoid signal at one frequency can estimate the

properties of the linear system at that frequency, measurements
at all frequencies are needed to define the system. Fortunately,
an input signal of white noise, a Brownian stochastic
process,40−42 enables the simultaneous study of all frequencies.
Measurements over a wide range of frequencies can be made
much more quickly with wide-band stochastic signals. Speed is
of particular importance in biological systems which often
deteriorate in experimental situations.15,17,43,44 In MD
simulations, evaluation of all frequencies at once reduces the
compute time required to perform linear systems analysis.
Although, in principle, correlation functions in the time and

frequency domains provide equivalent information, the
frequency domain is more useful for identifying properties of
linear systems.7,8,11,13,45 Underlying mathematical issues of
working in the time domain are discussed at length in ref 46.
The frequency domain is useful because it is based on the
eigenfunctions of linear systems, namely, sinusoids. Sinusoids
are fundamentally special because they are natural solutions of
the differential equations that describe causal networks.
Chosen properly, sinusoids are orthogonal, with amplitudes
and magnitudes measured at different frequencies independent
of each other (in the asymptotic limit of long-lasting
measurements).
Another benefit of following the engineering tradition of

working in the frequency domain13,46 is the availability of the
extensively validated and documented software including the
Signal Processing Toolbox47 in MATLAB.48 These methods

are discussed at length in Bendat and Piersol7,8 and Otnes and
Enochson.49 Other methods may improve on classical
engineering approaches, but it is unrealistic to expect them
to be available, validated, and documented for some time. In
fact, most recent reviews use classical methods7 in single
input−output systems like ours.10,13 Relevant promising
approaches in two (and three) dimensions are described in
refs.8,11,12,32,45,508,11,12,32,45,50

While not too common in classical MD, there actually is a
long history of using the frequency response function H( f) in
materials science and biochemistry. Measurements of H( f)
have been the basis of much of material science for more than
a century,17,51 as has been carefully explained.52 Electrical
(“impedance”) measurements of the electrical properties of
proteins were once used extensively53 before protein structures
were available but are rarely mentioned nowadays. Impedance
measurements often report the spatial average of properties of
the entire protein and so are not particularly helpful when the
interesting properties arise in a tiny fraction of the protein, like
an enzyme active or binding site, or ion channel.
Both the impulse response h(t) and frequency response

function H( f) depend on the structure and parameters of the
components of a particular system. The damped (Hookean)
spring is the classical archetype of a linear system. For the
damped spring, the mechanical parameters of H( f) are the
damping, mass, and most importantly the spring constant
arranged in a series structure. However, many different
structures have the same frequency response function H( f).54

Thus, the topology of the network and the values of its
parameters cannot be determined without additional informa-
tion. As has been reviewed,14,15,18,44 structural (i.e., anatomical
and histological) information has been used to determine
circuit structures for many biological systems (skeletal muscle,
cardiac muscle, epithelia, lens of the eye, syncytia in general,
etc.14,19,44,55).
Coherence Function. A system can be determined to be

linear based on the coherence function.17−29 The coherence
function is defined in terms of power and cross-power spectral
densities, Gxx( f) and Gxy( f), respectively, as

C f
G f

G f G f
( )

( )

( ) ( )xy
xy

xx yy

2

=
| |

(3)

Suppose that the input function is truncated such that xT(t) =
x(t) if |t| < T/2; and 0 otherwise. Its Fourier transform is
XT( f). The power spectral density is given by the real function

G f
T

X f X f( ) 2 lim
1

( ) ( )xx
T

T T=
(4)

where the angular brackets indicate an expectation of the
stochastic process. Gyy( f) is defined similarly. On the other
hand, the cross-power spectral density Gxy( f) is a complex
function defined by

G f
T

X f Y f( ) 2 lim
1

( ) ( )xy
T

T T=
(5)

By relating the spectral densities to the Fourier transform of
the autocorrelation function, it can be shown7 that for a linear
system, Gyy( f) = |H( f)|2Gxx( f) and Gxy( f) = H( f)Gxx( f) (see
eqs 9 and 10). We have then the coherence theorem.
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C f
H f G

G f H f G
H f

Y f
X f

( )
( )

( ) ( )
1 when ( )

( )
( )xy

xx

xx xx

2

2=
| |

| |
= =

(6)

The coherence theorem shows that the coherence function
Cxy( f) gives the fraction of the output signal power Gyy( f)

that is linearly related to the input signal power Gxx( f). If other
signals contribute to the output, the coherence function is less
than 1. If and only if the coherence function is unity, the
output is entirely determined by the input. Then, but only
then, is the frequency function independent of anything else.
The coherence function is 1 only if the output and input share
power: all of the power in the output comes from the power in
the input. In more precise mathematical language, “comes
from” means “is the result of a linear system H( f) acting on
Gxx( f).” If the coherence function is much less than 1, then the
frequency function can be estimated but is not meaningful.
These results do not depend on the existence or properties of
any distributions of the trajectories.
These results depend only on the existence of the Fourier
transforms involved. The Fourier transforms (etc.) in fact can
be defined and computed for a wide range of stochastic
processes, many much more irregular than the continuous
trajectories of Brownian stochastic processes. Brownian
trajectories in actual applications have compact support
(because the duration of recording is finite) and so
convergence issues as t → ∞ do not arise, in contrast to
their importance in pure mathematics with its focus on
unlimited domains. Jumps are permitted in trajectories,
provided they are not too dense. They must not include too
much area (i.e., power), to speak informally. These issues are
discussed in standard textbooks of stochastic processes40 as
well as the powerful emerging methods41,42,56,57 exploiting the
KH (Kurzweil−Henstock) integral to define stochastic differ-
ential equations and their integral transforms like the Fourier
and Laplace transforms.42,57

Coherence Function versus the Pearson Correlation
Coefficient. The coherence function has similarities to the
Pearson correlation coefficient r, or Pearson ρ, as it is named
when computed from a sample. The Pearson correlation
coefficient is a common statistic widely used to measure the
linear correlation between two variables. Indeed, the coherence
can be thought of as the Pearson r in the frequency domain.58

For both statistics, an absolute value of 1 indicates a linear
relationship between the variables. While it does not
specifically require time series data, the Pearson ρ can be
computed between an input signal and an output signal with a
delay. In contrast to the coherence function, however,
Pearson’s ρ is not robust; it is sensitive to outliers and
depends on assumptions about the underlying distribution of
the data. Hence, for stochastic time series data, it is preferable
to estimate the coherence function.
Estimation of the Frequency Response and Coher-

ence Function. In general, the frequency response and
coherence function are unknown and must be estimated from
time series data. In this paper, we will use a hat accent ̂ to
denote the estimator of a quantity such that Â( f) is an
estimator of A( f). Estimates of quantities from samples have
different properties from the underlying distribution. For
example, the variance of an estimate depends on the number of
samples, but the variance of the distribution does not. The
expectation value of an estimate of a variable may not the same
as the value of that variable in the underlying distribution, in

which case the estimate is biased. The variance and bias of the
estimate interact, and one is often improved at the expense of
the other.7,34,59

Estimates of the frequency response H( f) and coherence
function Cxy( f) are particularly sensitive to the details of the
estimation procedure. The frequency response and coherence
function should be estimated based on the ratio of estimated
power and cross-power spectral densities. Specifically, the
frequency response function should be estimated by

H f
G f

G f
( )

( )

( )
xy

xx
=

(7)

and the coherence function by

C f
G f

G f G f
( )

( )

( ) ( )xy
xy

xx yy

2

=
| |

(8)

While it may seem reasonable to estimate the frequency
function using Y( f)/X( f) instead of the ratio of powers shown
in eq 7, such estimators are known to produce serious artifacts;
they are known to be so sensitive to contaminating noise that
even the roundoff error of modern floating-point arithmetic
can produce significant problems; see Ch. 6, particularly
Section 6.14 of ref 7 and more recent references.11,13 These
artifacts may be difficult to diagnose. For example, as observed
in earlier work,14,15,44,60 the variance of the incorrect estimates
can be independent of contaminating noise while the mean of
the incorrect estimates can depend on the contaminating noise.
Hence, the estimates starting with Y( f)/X( f) should not be
used, and estimates of Ĝxx( f) and Ĝyy( f), and Ĝxy( f), should be
computed individually before executing the division in the
definitions of the estimates Ĉxy( f) and Ĥ( f).
How should the power and cross-power spectral densities be

estimated? Consider a system with the Fourier transform of the
input X( f), output Y( f), and transfer function H( f). All might
be complex functions with real and imaginary parts, or
equivalently magnitude and phase. The power spectral density
of the input x(t) is estimated by the real function

E

E

G f
T

X f T X f T

T
X f T X f T

( ) 2 lim
1

( , ) ( , )

2 lim
1

( , ) ( , )

xx
T

k k

T
k k

2

= { }

= {| | }
(9)

where * indicates the complex conjugate, E is the expectation
of any stochastic process including X̂( f,T), and k indexes the
components of a set of discrete (digital) Fourier transforms X̂k
(f,T) of the time series x̂(t). k also serves as the index for the
set of time series ŷk(t). Ĝyy( f) is similarly defined. Ĝxx( f) and
Ĝyy( f) are real functions with zero imaginary part and zero
phase. The cross-power Ĝxy( f) is a complex function estimated
by

EG f
T

X f T Y f T( ) 2 lim
1

( , ) ( , )xy
T

k k= { }
(10)

Note that

(1) The expectations in eqs 9 and 10 use sums over
independent records, taking the sums individually, one
by one. Each is determined separately without term by
term “cancellation”;

(2) The expectations are asymptotes determined as T → ∞.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00181
ACS Omega 2023, 8, 13920−13934

13923

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The DFT analysis (discrete or digital or finite Fourier
transform analysis) necessary for eqs 9 and 10 should also
account for the fact that measurement data are often small,
discrete, and truncated. Molecular dynamics trajectories are
not an exception. While they may include a large amount of
data, they are discretized because they use a finite time step
and configurations are typically stored at regular periods. They
are truncated because they are performed for a finite duration.
The procedures defined in classical references to deal with
these issues are rather scattered and hard to locate and
integrate;7,8,32−34 Sections 6.12 and 6.13 and p 128, 176, and
180 of ref 7. Fortunately, they are implemented in software
including the Signal Processing Toolbox59 package of
MATLAB.48 To highlight the importance of using validated
software and because DFT issues are not well known to the
molecular simulation community, we will describe these issues
in more detail below. However, the reader uninterested in the
underlying mathematical issues can move to the next section
without loss of continuity.
In other applications, including most simulations, computers

allow good approximation to continuous functions. Truncation
and sampling errors can be unimportant because the density
(and number) of discrete data points can be so very large. In
other words, many types of errors can be “diluted out” (as the
chemists say) by the large numbers of samples. However, DFT
is usually based on a small number of samples, on the order of
2048 in many cases, and is often as small as (the recommended
default value of) 256 in the software we use. In that case,
artifacts produced by the limited number of samples can be
very serious, both discretization artifacts and truncation
artifacts.61 Choices for the number of DFT points depend
on the desired frequency resolution: [number of DFT points]
equals [sampling rate] multiplied by [frequency resolution].
The choice of frequency resolution is a trade-off between noisy
and biased estimation. Further discussion on the statistics of
estimation is available in Section 9.2 of Bendat and Piersol.7

Measurements are discrete. Measurements made at a finite
rate with finite separation intervals form a finite set that cannot
contain all of the information of a continuous signal.
Diffraction phenomena arise from interactions of the
separation interval of the samples and frequency components
of the signal. These aliasing phenomena imply that a single set
of samples could come from many different signals of different
frequencies. The different frequencies of so-called “aliased
signals” produce the same result after sampling even though
they are different before sampling. One frequency becomes the
alias of another after they are sampled. The different sampled
signals are aliases of each other although the original
Unsampled signals are independent, and not aliases of each
other at all. The aliases do not resemble each other, even
qualitatively, and so studying the aliases can be highly
misleading if their existence is not understood, or their
importance is discounted.
Because measurements are of finite duration, the sampling

process is truncated in time. Truncation produces disconti-
nuities in functions and their time derivatives that create errors
beyond the simple limitations in resolution produced by the
finite time of measurement (the Gibbs phenomenon
rediscovered by and named after the 19th century Connecticut
(USA) physical chemist J.W. Gibbs). These wide-ranging
errors arise because the Gibbs phenomena produce nonuni-
form convergence in the various integrals that estimate
frequency domain functions. Windowing methods are required

by the mathematics of truncation (and nonuniform con-
vergence) to avoid serious artifacts throughout the frequency
domain. An optimal solution to these issues is known,62 but
nonoptimal trade-offs between overshoot and accuracy are
often adopted when they are well suited to particular
applications.
Driven Damped Spring. To demonstrate the estimation

of the coherence and frequency response function, we consider
a system in which we can determine these functions
analytically: an object with mass m (right-hand side) attached
to a piston (left-hand side) by a damped spring (Figure 2).

The object is subjected to a driving force that prevents it from
coming to rest. In this case, the frequency response function is
well known in the physics and engineering literature and is
reproduced here to introduce notation and for completeness.
Let us focus on the situation where the force F(t) is a result

of driving the position of the piston. The position of the piston
is the input x(t), applying a force F(t) = kx(t) onto the mass.
The Fourier transform of the input is X( f). The output is the
location of the mass, y(t) or Y( f). We also define the
displacement z = y − x. The driven damped oscillator is
described in many sources including Chapter 5.5 of Taylor,63

which we depend on for definitions, analysis, and discussion,
except that Taylor uses a different coordinate system and does
not specify the piston as the source of the driving force. Taylor
is particularly helpful in explaining the frequency domain in
physical language with minimal mathematics and no use of
Laplace transforms. The classical Laplace transform approach
is found throughout the engineering literature, for example, in
the digital context in ref 61.
The equation of motion for a system with mass m and

damping b(dy/dt) and damping constant b driven by forcing
function F(t) is derived from Newton’s law to be

m
y

t
b

y
t

ky F t
d
d

d
d

( )
2

2 + + =
(11)

It is customary to use reduced variables, one set of which are

k
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(12)

b
m
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=
(13)

f t
F t
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The standard form is then
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d
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d
d
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2

2 0
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Figure 2. Schematic of a damped spring with spring constant k in N
m−1, mass m in kg, and damping b in N S m−1, driven by the force
F(t) (N).
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This system is customarily analyzed with a time-dependent
sinusoidal force with angular frequency ω that drives the mass
described by either f(t) or F(t)

f t f t( ) cos( )0= (16)

or F(t) = mf 0 cos(ωt). Note that f 0 is not a function of time.
The steady-state response (after transients damp into

nothing) is

y t f t( ) cos( )0= (17)

with amplitude A(ω)

A
f

( ) 4
0

0
2 2 2 2 2

=
+ (18)

and phase angle δ(ω)

arctan
2

0
2 2=

(19)

Taylor63 (Section 5.8) has a useful discussion of the time
domain response of the system and its connection with the
frequency functions.

■ METHODS
MD Simulation. We used code developed in the Minh

group (https://github.com/swillow/pdb2amber) to prepare a
model of the system. A crystallographic structure of crambin
(Protein Data Bank 1CRN) was protonated using PROPKA64

at pH 7. The protonated protein was inserted into a cubic box
of water with 0.1 M NaCl. The AMBER ff14SB force field65

was used for the protein, OPC3 parameters66 for water, and
Joung and Cheatam TIP4P/EW parameters for ions.67 The
length of each side of the water box was 75 Å, much larger than
crambin. Preliminary calculations with a smaller box of 45 Å
showed that crossing the boundary affects the coherence. To
avoid the ambiguity of unwrapping, we only report results from
the system in the larger box in which the crambin molecule
never crossed the periodic boundary.
MD simulation was performed with OpenMM version

7.4.2.68 First, the system was minimized. Isothermal MD was
performed using the Langevin integrator at temperature T =
300 K with a time step of 2 fs for 100 ns. (Shorter simulations

performed with the deterministic Verlet integrator gave
indistinguishable results.) Samples were stored every 0.01 ns
(equivalent to a rate of 100 GHz).
Estimation. One technical issue with linear systems

analysis of molecular configurations is that atoms are specified
in three dimensions but the methods are designed for one
dimension. In our analyses of MD simulations, we circum-
vented this issue by reducing the dimensionality of the signals.
For the input and output signals, we used the mean-normalized
displacement of the atom or the mean position of the atom
group

d t x t y t z t

x t y t z t

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

= + +

+ + (20)

where x(t), y(t), and z(t) are the coordinates of the atom
(group) and the brackets denote an average over the time
series.
For signals from each atom pair, we used the classical Welch

periodogram method to estimate the energy at each
frequency.8 The pwelch method described on p 6−21 of the
MATLAB Signal Processing Toolkit User’s Manual1 was used
to calculate Ĝxx( f) and Ĝyy( f). For most trajectories analyzed,
32 disjoint Hann(ing) windows were used. The number of
DFT points was the highest power of 2 less than the ratio of
the total number of samples and number of disjoint windows.
In pseudocode, this is

number of DFT points 2FLOOR(log
number of time steps

32 )2=

. The percent overlap between windows was always kept to
50%. The bias-variance trade-offs from percentage overlap and
number of disjoint windows have been discussed in detail
elsewhere.7,8 Similar parameter estimation in the cpsd1 (p 6−
28 of the User’s Manual1) gives us Ĝxy( f). Frequency response
and coherence functions were calculated from power spectra
using eqs 7 and 8.

■ RESULTS
Frequency Response and Coherence Function Can

Be Accurately Estimated for the Driven Damped
Spring. We performed simulations of the driven damped
spring and used the time series of inputs and outputs to

Figure 3. Magnitude of the frequency response (left) and coherence function (right) for the driven damped harmonic oscillator. The analytical
amplitude A(ω) is from eq 18. Simulations were performed using the “lsim” command2 in MATLAB. 65536 samples were collected at a rate of 2
Hz. Power spectra are shown in Figure 4 and computed as described in the corresponding caption. The estimated magnitude of the frequency
response function Â( f) = |Ĥ( f)| and coherence function was based on the ratio of power spectra Ĝxx( f) and Ĝyy( f) and cross-power Ĝxy( f) of the
frequency function, eq 7.
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estimate the frequency response and coherence function
(Figure 3). The estimated coherence is indistinguishable
from 1. Thus, coherence analysis of the input and output time
series correctly shows that the system is linear. Moreover, for
the two sets of parameters that were tested, the estimated
frequency response function is indistinguishable from the
analytical expression, eq 18. These results demonstrate that the
methods we have used can accurately estimate the coherence
and frequency response function without significant systematic
error.
In contrast to the smooth estimate of the frequency response

and coherence function, the power spectra appear to be
remarkably noisy (Figure 4). The apparent “noisiness” of
signals derived from stochastic time series (like x(t) and y(t))
can be misleading. It is a sensitive function of the number of
points that happen to be shown in the figure. The number of
points that happen to be used in Figure 4 is 256. Explicit
formulas for variance, bias, and confidence limits are given by
Bendat and Piersol7 and also Table S1.
H-Bonds in the α-Helices of Crambin Are Linear

Systems. After performing a linear systems analysis of a
damped spring, we moved on to analyzing molecular dynamics
simulations of crambin. We first considered atoms interacting
via H-bonds in the α helices (Figure 5).
For all of the H-bonds in α-helices of crambin, the

coherence for frequencies below 10 GHz (about 0.1 ns) is

close to 1 (Figure 6). For the main α helix, the mean
coherence for all frequencies between 0.391 and 5.08 GHz
(corresponding to reciprocal times of 2.6 and 0.2 ns,
respectively), is 0.94 or above for all but one pair (Table 1);
the mean coherence between LEU18N and VAL15O is slightly
lower, 0.919. Comparable results are seen for the small α helix
(Table 1). Thus, nearly all of the low-frequency motion of the
oxygen on one end of the H-bond is determined by the motion
of the nitrogen on the other end.
In several cases, we have also verified through swapping

input and output functions what is known through
mathematical analysis: the coherence Cxy( f) between x and y
is equal to the coherence Cyx( f) between y and x. The
frequency functions Hxy( f) and Hyx( f) are also equivalent.
Therefore, the statement about the motion of the atom pair
may be reversed: nearly all of the low-frequency motion of
nitrogen in the H-bond is determined by the motion of oxygen
on the other end of the H-bond and vice versa. Thus, when
averaged over at least 0.1 ns, the H-bonds move like springs.
On the other hand, for higher frequencies (shorter times),

the coherence function is significantly smaller than 1. For these
frequencies, the H-bonds do not appear to be a linear system;
motion of the atoms over a time scale less than 0.1 ns cannot
be accurately described with a harmonic oscillator model. It is
possible that nonlinearity reduces the value of coherence.
Another possibility is that the atoms have significantly different

Figure 4. Power spectra used for estimating the frequency and coherence functions in Figure 3. Power spectra were calculated using Welch’s
method implemented in the MATLAB Signal Processing Toolbox1 as “pwelch”, with a Hanning window size of 16 points and 50% overlap between
windows. Cross-power was computed using “cpsd” with the same parameters.

Figure 5. H-bonds in the main α-helix of crambin. A high-resolution view of a single H-bond (left) and medium-resolution view of all of the H-
bonds in the main α-helix (right). The right panel also shows the secondary structure of the smaller α-helix.
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inputs of power from other atoms and structures. The
coherence function shows the length of time that needs to
be averaged over for a linear system to accurately model the
MD.
The frequency response function is consistent with this H-

bond behaving approximately as a spring with no noticeable
damping. At low frequencies, the magnitude is flat and near 1.
For a spring, a flat magnitude near 1 is observed at frequencies
significantly smaller than the natural frequency. Moreover, the
phase is near zero at low frequencies. A phase of zero is

expected in a spring without damping. The behavior at higher
frequencies is less clear; both the magnitude and phase of the
frequency function appear to be noisier. Because the coherence
is lower and the system is not linear at these frequencies, the
estimated frequency response function is no longer meaningful
and not interpretable in terms of an analytical model like the
spring.
Noninteracting Atoms Have Negligible Coherence.

As a baseline for comparison, we also consider the coherence
of atom pairs that are not expected to interact. Figure 7 shows
the coherence for atoms that are physically distant and
separated by the length of many covalent bonds. In contrast to
the H-bonds, the coherence is near zero. We have checked
many such pairs and they all give similar results. Unrelated
atoms do not share power. Their motions are uncorrelated. A
frequency function between them is meaningless and so it is
not shown. The low coherence observed in the noninteracting
pair suggests that the high coherence observed in the α helices
is not simply an artifact of the estimation procedure.
Coherence Is Insensitive to Translation and Rotation.

As additional controls, we evaluated the effect of translating
and rotating the system. Although the following results were
obtained for PHE13N and ALA9O, we observed comparable
results for all tested atom pairs.
First, we tested translation. We performed 100 calculations

in which we selected a random displacement between −200
and 200 Å and applied it to every atom in every frame of the
simulation. Estimated coherence functions for every translation
are shown in Figure S1. We observe that at low frequencies,
translation leads to very small differences between the

Figure 6. Estimated coherence and frequency response functions for H-bonds in the main α-helix of crambin.

Table 1. Coherence and Frequency Response Function for
the α-Helices, Averaged Over Frequencies between 0.391
and 5.08 GHz

donor
(input)

acceptor
(output)

mean
coherence

mean
magnitude

mean
phase

Main α-Helix
SER11N ILE7O 0.959 1.038 −0.001
ASN12N VAL8O 0.957 0.992 −0.004
PHE13N ALA9O 0.953 0.955 0.006
ASN14N ARG10O 0.947 0.966 0.010
VAL15N SER11O 0.944 0.964 0.010
CYS16N ASN12O 0.948 0.920 0.008
ARG17N PHE13O 0.950 0.884 0.012
LEU18N VAL15O 0.919 0.964 0.001

Small α-Helix
ALA27N GLU23O 0.938 1.000 −0.006
THR28N ALA24O 0.915 1.012 −0.016
TYR29N ILE25O 0.937 0.970 −0.007
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estimated coherence values (Figure S1). Translations do not
affect the result that the coherence at these frequencies is
greater than 0.9. Over the 100 translations, the mean
coherence between 0.39 and 5.09 GHz has an average value
near 0.95 and a standard deviation of only 4.69 × 10−3 (Figure
S2)! At higher frequencies, in contrast, the mean coherence
itself is lower and there are larger variations in the estimated
coherence function across the different translations.
We also tested rotation. The coherence before and after

applying a random rotation is indistinguishable (Figure S3).
Coherence Is Sensitive to Wrapping. Historically, MD

became feasible in atomic detail69 when it adopted periodic
boundary conditions that dramatically decreased the amount
of computation required. However, as discussed by many
authors including p 31, 35−38 of ref 31, periodic systems are
not the same as nonperiodic systems; a price was paid for
feasibility. One cost is that when atoms leave one side of the
box, they enter on the other, producing an artificial
discontinuity. The actual continuous paths of atoms are
artifactually wrapped by the periodic boundary conditions of
MD into discontinuous paths. The discontinuity in paths
produces artificial correlations and may introduce significant
errors.7,8,32−34,70,71

We observed that the coherence function for atoms that
have a discontinuous path due to periodic boundary conditions
is greater than 0.99. In other words, wrapped trajectories had

artificially large coherence. We did not use these calculations to
produce the figures and tables in this work.
We thought of and tried two ways to address the issue of

discontinuous paths:

(1) Unwrapping trajectories. We used PBCTools in the
VMD72 software package to partially remove the artifacts
of wrapping.70,71 Any trajectory that became discontin-
uous due to some part of the protein crossing the
boundary was made continuous.

(2) Performing simulations in a box and under conditions so
that crambin does not reach an edge of the box and so
has continuous trajectories.

We first used unwrapping. Out of an abundance of caution,
we also repeated the calculations with a larger box and
confirmed that crambin does not cross a box edge. Fortunately,
although theory suggests that the unwrapping procedure is
inexact,70 in the cases we tried the standard unwrapping
procedure gave similar results as the large box. This suggests
that is it reasonable to estimate coherence for trajectories that
have been made continuous by the standard unwrapping
procedure.
Other Atom Pairs Have High Coherence. In addition to

H-bonds in the α-helices, we also calculated the coherence of
other atom pairs that we thought could have high coherence:
covalent bonds, H-bonds in the β-sheet, and salt bridges.

Figure 7. Coherence function between two unrelated atoms, OG1 on THR21 and OD1 on ASP43 (left). These atoms were not expected to have
any interaction because their separation is about 24 Å, and they are not part of the same secondary structure (right).

Figure 8. Coherence function for atoms across covalent bonds in crambin for α and carboxyl carbons (left) and carbon and nitrogen atoms across
peptide bonds (right). Note the range on the y axis.
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For covalent bonds, coherence is expected to be high one
because the molecular mechanics force field specifically
includes a harmonic potential between the atoms. The
coherence may be reduced by the contribution of energy
terms and other atoms. Indeed, we find high coherence
between atoms connected by covalent bonds. For majority of
pairs involving the α and its neighboring carboxyl carbon, the
coherence is near 1 at low frequencies and 0.9 or above for
even the highest frequencies (Figure 8). For peptide bonds, the
coherence is higher than for H-bonds, but not quite as high as
between α and carboxyl carbons.
It seemed worthwhile to investigate the coherence of the

other H-bonds in crambin, particularly those in the β-sheet
portion of the protein. Table 2 identifies the residues analyzed

(residues 1−4 and 32−35) and shows that the H-bonds of β-
sheets and α-helices are much the same; we obtain similar
results to that of the α-helices documented in Table 1.
We also investigated the coherence in a salt bridge,24,26

imagining that the estimated coherence might be useful in
evaluating putative salt bridges in less well-defined systems.
The salt bridge studied was between ASN46 OXT···ARG10
NE and ASN46 O···ARG10 NH2 as defined in ref 26. The
mean coherences between the two were 0.906 and 0.931,
respectively, with frequency function estimates being like
previously shown estimates.
High Coherence Is Observed between Atom Groups.

We thought it would be interesting to explore whether there is
coherence between groups of atoms. We performed a
preliminary analysis based on leaves of the main α-helix,
which consists of residues 7−19 (Figure 9). We defined a leaf
as the first α carbon to the third α carbon (exclusive) with all
backbone atoms in between. Other definitions of leaves are
possible and may be superior. We calculated the coherence
between adjacent leaves. The trajectories of the eight atoms in
each leaf were averaged to define the position of each leaf. The

average displacement of the leaves was used as input and
output.
Interactions between leaves have similar behavior to the

interactions between atoms in the H-bond. Each leaf has high
coherence and appears to interact as a linear system with the
next leaf (Table 3). The frequency response function has a

magnitude near 1 and phase near zero. These preliminary
results suggest that coherence can help identify groups of
atoms that move together as a protein changes conformation
and interact as linear systems.

■ DISCUSSION
Linear Systems Analysis Has a Broad Scope. We have

used classical methods developed to analyze stochastic time
series4 in engineering to analyze MD trajectories. The methods
do not depend on the properties of, or the existence of a
statistical probability distribution, e.g., the Boltzmann dis-
tribution. In this way, they are even more robust than
nonparametric methods.30 They do not require models of the
interactions other than the force field inherent in MD itself.
The analysis only depends on the locations of atoms computed
in MD simulations. It only requires the existence of the Fourier
transforms of the atomic motion and has no other
assumptions.
One potential implication of the broad scope of linear

systems analysis is the application to MD of systems out of
equilibrium. While MD of biomolecules is usually performed
under assumptions of equilibrium, many biomolecules�
including ion channels, transporters, and many enzymes�
can be thought of as devices that primarily operate out of
equilibrium. In the same way that electromechanical devices
use a power supply to transform an input signal or multiple
input signals into an output signal, these biomolecular systems
use concentration gradients, voltages, and high-energy
molecules to drive the flows of ions and the production of
chemical species. The distribution of configurations and
kinetics of transitions between them are likely to be altered
by changes to input signals and flows of ions, substrates, and
products. Hence, the most functionally relevant MD
simulations may not be of the biomolecules in equilibrium,
but of relaxation processes and nonequilibrium steady states. In
the same way that engineers have turned to linear systems
analysis for the investigation of electromechanical devices, the
biomolecular MD community can employ the approach to
evaluate the most functionally relevant MD simulations of
biological devices.
There Is Precedent for Using Linear Systems Analysis

in MD. We are not the first to apply this class of engineering
methods to MD. The power spectra of individual trajectories in
MD give important information as so well stated in the key
papers that serve as a portal to this literature,5,21 e.g., p 2019 of
ref 21 explains that “Power spectra contain all peaks that can

Table 2. β Strand

donor
(input)

acceptor
(output)

mean
coherence

mean
magnitude

mean
phase

ILE35N THR1O 0.922 0.922 −0.003
ILE33N CYS3O 0.933 0.947 −0.004
CYS3N ILE33O 0.930 0.986 0.004

Figure 9. Leaves in the main α helix of crambin.

Table 3. Coherence of Leaves of the Main α-Helix of
Crambin

input and output mean coherence mean magnitude mean phase

leaf 1 and 2 0.948 0.865 0.002
leaf 2 and 3 0.938 1.044 0.003
leaf 3 and 4 0.929 0.938 0.006
leaf 4 and 5 0.936 1.070 0.010
leaf 5 and 6 0.918 1.058 0.001
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be found in the IR spectrum, and even more�they can be
imagined as the sum of the IR spectrum, the Raman spectrum
and all motions that are neither IR nor Raman active.” We have
extended these powerful results motivated by an analogy
between the motions of two atoms in a “chemical” bond and
the motions of charges at the input and output of electronic
devices, typically a linear system (in the engineering sense
defined previously in this paper) like a resistor, capacitor, or
amplifier.
Many Atom Pairs Are Linear Systems. Specifically, we

have estimated the coherence between the displacement of
atom pairs in plant protein crambin with different types of
interactions�H-bonds, covalent bonds, salt bridges, and no
apparent interactions�to see if they constitute an engineer’s
linear system. If an analysis shows that the motions of two
objects share the same power (i.e., are so correlated that their
coherence is 1), the objects can be described by a linear system
(in the engineering sense defined previously). If they are not so
correlated, no conclusions can be drawn. Indeed, it is
important not to analyze the motions in that case, without
changing the underlying model. To our surprise and delight, in
many cases, we found that many atom pairs are linear systems!
In these cases, most of the (power of the) motions of one atom
are linearly related to the (power of the) motions of the other
atom, and vice versa.
We did not find all pairwise atomic interactions to be linear.

For interactions in which the coherence is not near 1, an
extension of this work may involve exploring multiple-input−
multiple/single-output (MIMO/MISO) systems. This ap-
proach is needed if the power on the two atoms (of the
coherence function) is not shared because components of
power are added to one atom and not the other.
Coherence May Help Simplify Interatomic Potentials.

Identification of atomic interactions as linear systems is a
delight because it describes all of the mechanical motions of
the two atoms that are analyzed. If the motion of one atom is
known, the motion of the other atom is predicted by a simple
spring model with a handful of parameters. These parameters
of the linear system model are robust. They do not change
with conditions. If the system is linear, all its motions (in the
time and frequency domain) are predicted by the model. The
motion of one determines the motion of the other whether the
motion is described in the time or frequency domain.
Moreover, since we found that there is no phase delay, the
interatomic potential for these interactions is accurately
modeled as a simple harmonic oscillator.
One reason that the finding that H-bonds and salt bridges

can be accurately modeled as a simple harmonic oscillator is
surprising because the molecular mechanics force field used to
produce the trajectory represents their interactions with more
complex functions. The AMBER force field uses the Lennard-
Jones potential for steric and Coulomb potential for electro-
static interactions. However, the structure of the protein forces
these atom pairs to act as if they were connected by a simple
harmonic oscillator.
While it is a delight, the finding of a linear system is also a

challenge because it does not establish how to estimate its
parameters. While there appears to be no damping, the spring
constant cannot be estimated without further assumptions and
analysis. A frequency at which high coherence is observed is
not the natural (characteristic) frequency of the harmonic
oscillator. If a resonance peak were clearly visible in the
frequency response functions, then the spring constant could

potentially be inferred by fitting the analytical model to the
observed function. Unfortunately, the peak is not observed.
There are several other possible routes to spring constants, of
which we will mention two.
One possible route to an approximate spring constant is to

assume that populations are given by the Boltzmann
distribution and that the spring is the only force (i.e., that it
is the only term in the potential force fields of MD)
experienced by the two atoms. In this case, the energy as a
function of the distance z is given by U z k z z( ) ( )1

2
2= ,

where z ̅ is the equilibrium distance. Assuming the Boltzmann
distribution gives the probability density proportional to

z zexp ( )k
k T2

2

B

Ä
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ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ, where kB is the Boltzmann constant and

T is the temperature. Thus, if σ̂ is the estimated standard
deviation of the displacement, k̂̂ = kBT/σ̂2 is an estimate of the
spring constant.
Another way to define spring constants is to minimize the

energy of the system and then compute the second derivative
of the potential energy with respect to the interatomic distance.
Use of the second derivative in this way is analogous to normal
modes analysis,73 where eigenvectors and eigenvalues of the
Hessian matrix with respect to atomic positions are used to
define normal modes and frequencies. However, this approach
has a drawback if there is roughness in the energy landscape:
the second derivative may describe local opposed to global
curvature.
Linear Systems Analysis Has Connections with but

Has Important Distinctions from Normal Modes
Analysis.73,74 A few more words on normal modes analysis
are in order. Normal modes analysis is based on the second
derivative of the potential energy with respect to the
coordinates of every atom. It assumes that the potential
energy surface of the molecule is described by a multidimen-
sional harmonic oscillator. On the other hand, the coherence
analysis in this paper assesses whether the interatomic
potential between a pair of atoms is accurately described by
a spring. Our conjecture is that high coherence is a sufficient
but not necessary condition for structural fluctuations to be
described by normal modes analysis. That is, if there is high
coherence between every pair of atoms in a group, then the
interatomic potential energy functions comprise coupled
harmonic oscillators, as in an elastic network model.75 The
dynamics of such a system can be accurately described by
normal modes. On the other hand, it is possible that in some
systems normal modes may still be a good approximation even
if not all atom pairs in a group are coherent. The connection
between these two techniques should be explored more
thoroughly in future work.
Coherence May Help Define Noncovalent Interac-

tions and Secondary Structure. The finding that coherence
is high for many atom pairs with known interactions but
negligible for others with no apparent interactions suggests
that coherence may be used to define noncovalent interactions
and secondary structure. Purely geometric considerations for
noncovalent interactions involve subjective thresholds, e.g., the
lengths and angles of H-bonds. For this reason, the IUPAC
definition of the H-bond76 notes the existence of “borderline
cases for which the interpretation of the evidence might be
subjective” and that “new criteria for hydrogen bonding could
evolve” with further progress in experimental and theoretical
methods. High coherence may be one of these new criteria.
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High coherence may be an appropriate criterion for defining
not only H-bonds but also salt bridges, hydrophobic
attractions, and van der Waals interactions. Beyond these
known interactions, coherence analysis may help identify
strong interactions in proteins that have not previously been
catalogued. Finally, they could also be helpful in defining
secondary structure.
To be specific, let us consider an example from crambin.

While some visualization software that we tried show LEU18
and PRO19, located at the end of the main α-helix, as part of
the main α-helix, others do not; geometric considerations used
by various software may be ambiguous. However, the fact that
coherence of a H-bond involving LEU18 is quantitatively
lower, at 0.919, suggests that it has less α-helical character than
other parts of the helix.
Coherence May Help Develop Reduced Models,

Helping Define Rigid Bodies and the Interactions
between Them. MD simulations and cryo-electron micros-
copy (cryo-EM) show that protein motion can often be
described as the relative translation and rotation of rigid bodies
connected by flexible linkers. This has inspired one of us
(Minh) to use rigid body simulation methods from robotics to
study biomolecular motion.77 As every pair of atoms within a
rigid body has high coherence, coherence may be applied to an
atomistic MD simulation to identify atoms that are suitable to
group into a rigid body. Specific ways to perform this grouping
will be the subject of future research. Moreover, as hinted in
our analysis of leaves in the main α-helix, the coherence
function may also be useful in investigating interactions
between atom groups including rigid bodies. If pairs of atom
groups interact linearly, then their motion may be described by
constant coefficient linear differential equations. Otherwise,
reduced models78 may require more complex potential energy
functions. For example, it has been suggested that united
residue models require multitorsion terms, e.g., based on self-
consistent cumulant expansions,79 to account for correlation
between virtual-bond dihedral angles along straight-chain
segments.
In either case, reduced models can be tested by experiments

that vary the composition of atom groups or modify their
motion by known interventions such as ligand binding or
altering the composition and concentrations of ions. If the
reduced models help understand such a range of protein
behavior, they will be a remarkable help in linking protein
structure, dynamics, and function.
Coherence Analysis Should Be Applied to More

Systems. Given our intriguing results for crambin, it is
worth applying coherence analysis to MD simulations of other
proteins and other systems. As noted, crambin is particularly
rigid. However, coherence may be especially helpful in the
context of more flexible proteins with larger conformational
variability, where it may be easy to overlook the importance of
correlations imposed by macromolecular structure. Beyond
proteins, the coherence of the oxygen−oxygen H-bond of
liquid water and ice would be an interesting comparison. In the
same way that protein structure stabilizes the H-bonds in α-
helices, we expect that ice provides a macroscopic structure�
scaffold if you wish�that orients the orbitals of oxygen,
hydrogen, and oxygen so that the “internal” chemical energy of
interaction can better compete with entropic randomness,
stabilizing the H-bonds. This structural effect may be evident
from a comparison of the coherence function.

■ CONCLUSIONS
Coherence was used to analyze the motion of pairs of atoms in
molecular dynamics simulations of crambin. High coherence
was observed for low-frequency motion (below 10 GHz)
between many pairs of atoms that we anticipated to have
strong interactions: covalent bonds between backbone atoms,
H-bonds within α helices and β sheets, and salt bridges.
Coherence was lower for lower-frequency motion. It was
negligible for atom pairs that are physically distant and
separated by many covalent bonds. For high-coherence atom
pairs and frequencies, the frequency response function was
indicative of an undamped spring. These results suggest that
coherence could become a useful tool for the analysis of
molecular dynamics simulations, with potential applications in
identifying interactions, developing reduced models, and
investigating allostery.
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