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Abstract
Fisher’s logseries is widely used to characterize species abundance pattern, and some 
previous studies used it to predict species richness. However, this model, derived from 
the negative binomial model, degenerates at the zero-abundance point (i.e., its probabil-
ity mass fully concentrates at zero abundance, leading to an odd situation that no species 
can occur in the studied sample). Moreover, it is not directly related to the sampling area 
size. In this sense, the original Fisher’s alpha (correspondingly, species richness) is incom-
parable among ecological communities with varying area sizes. To overcome these limi-
tations, we developed a novel area-based logseries model that can account for the 
compounding effect of the sampling area. The new model can be used to conduct area-
based rarefaction and extrapolation of species richness, with the advantage of accurately 
predicting species richness in a large region that has an area size being hundreds or thou-
sands of times larger than that of a locally observed sample, provided that data follow 
the proposed model. The power of our proposed model has been validated by extensive 
numerical simulations and empirically tested through tree species richness extrapolation 
and interpolation in Brazilian Atlantic forests. Our parametric model is data parsimonious 
as it is still applicable when only the information on species number, community size, or 
the numbers of singleton and doubleton species in the local sample is available. Notably, 
in comparison with the original Fisher’s method, our area-based model can provide as-
ymptotically unbiased variance estimation (therefore correct 95% confidence interval) 
for species richness. In conclusion, the proposed area-based Fisher’s logseries model can 
be of broad applications with clear and proper statistical background. Particularly, it is 
very suitable for being applied to hyperdiverse ecological assemblages in which nonpara-
metric richness estimators were found to greatly underestimate species richness.

K E Y W O R D S

area dependency, biodiversity comparison, richness estimation, sampling effect, statistical 
ecology

1  | INTRODUCTION

Fisher’s logseries and its key element, Fisher’s alpha index (Fisher 
et al. 1943), originally developed by the founder of biostatistics 

R.A. Fisher, are widely used in ecological studies (Kempton & Taylor 
1974; Rice & Demarais 1996). In particular, they have been broadly 
applied to estimate species richness (Harte et al. 2008; Harte & 
Kitzes 2015; Slik et al. 2015; ter Steege et al. 2017) and accordingly 
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the extinction of species (Gilbert et al. 2006; Halley & Iwasa 2011; 
Kitzes & Harte 2015). However, the application on richness esti-
mation has generated some controversy (Chao & Chiu 2016), par-
tially because many parametric models could fit the same empirical 
data equally well (McGill 2003, 2006), and partially because of the 
overestimation risk of species richness using parametric estimators 
(Xu et al. 2012; ter Steege et al. 2017). Therefore, nonparametric 
richness estimators (Chao 1984; Colwell et al. 2012; Chao & Chiu 
2016; Hsieh et al. 2016), instead, have gained much more attention 
in empirical applications.

However, the biggest challenge confronted by most nonparamet-
ric richness estimators is that they can only provide lower bounds of 
species richness (Chao & Lin 2012; Chiu et al. 2014), greatly under-
estimating regional species richness (Chao et al. 2016). For example, 
two recent empirical studies (Slik et al. 2015; ter Steege et al. 2017) 
showed that no popular nonparametric estimators could predict a 
reasonable number of tropical tree species, as all of them predicted 
richness values that were too small and largely deviated from ecolo-
gists’ estimation. Other similar works (Chiarucci et al. 2003; Xu et al. 
2012) reached a similar conclusion that nonparametric methods are 
not suitable to estimate species richness in highly diverse ecological 
communities.

A thorough investigation of relevant statistical properties of 
a parametric method, like the Fisher’s alpha index, is necessary 
when ecologists want to correctly apply it in the empirical setting. 
However, the derivation of Fisher’s alpha index from the negative 
binomial model (NBD) (Fisher et al. 1943) is statistically formidable, 
and consequently, it is not a standard probability mass function. 
Further, application of the ordinary NBD in developing the alpha 
index in Fisher’s original work implies that this index does not ex-
plicitly take into account the compounding effect of sampling areas, 
although the sampling area size is indirectly related to the commu-
nity size. In such a context, it is inappropriate to directly compare 
species richness predicted by the alpha diversity index between dif-
ferent ecological assemblages sampled from areas of varying sizes, 
as larger areas would always tend to have higher species diversity 
(Hurlbert 1971; Gotelli & Colwell 2001; Hubbell 2015; Slik et al. 
2015). Last but not least, previous empirical studies (Schulte et al. 
2005; Slik et al. 2015; ter Steege et al. 2017) which applied Fisher’s 
logseries to estimate species richness did not provide 95% confi-
dence interval for the estimated richness. One possibility for this 
is because the variance formula provided in Fisher’s original paper 
(Fisher et al. 1943) is biased and will result in very small variance (and 
accordingly very unreasonably narrow 95% confidence interval) for 
the estimated regional species richness, which will be demonstrated 
in detail later.

To overcome the abovementioned problems and derive a stan-
dard probability function for Fisher’s logseries when applied to 
ecological research, we used a truncated NBD (TNBD) to deduce 
the logseries distribution. This new logseries model is a standard 
probability mass function, explicitly incorporating the area effect 
of the sampling site and thus satisfying the fact that Fisher’s alpha 
index changes when the sampling area varies (Hubbell 2015; Slik 

et al. 2015). Given these virtues of the new model, the standard 
rarefaction and extrapolation processes can be conducted. More 
importantly, in comparison with the original Fisher’s logseries, our 
area-based model can offer an asymptotically unbiased estimation 
of the variance and accordingly the correct 95% confidence inter-
val of the estimated species richness (for either extrapolation or 
rarefaction).

In summary, the central goals of this study were to address the 
following questions: When one has species abundance distribution 
(SAD) data from local sampling sites with varying area sizes and one 
also confirms that they are very likely to follow Fisher’s logseries, 
what would the expected regional species richness be for a given 
larger area under Fisher’s distribution assumption? What are the 
95% confidence intervals (CIs) when conducting rarefaction or ex-
trapolation of species richness using area-dependent Fisher’s alpha? 
How can ecologists determine when Fisher’s logseries could be 
applied?

2  | MATERIALS AND METHODS

2.1 | A review of the original Fisher’s logseries model

Following Fisher et al. (1943)’s annotations, suppose there are S spe-
cies in a community where each species has an abundance, N, follow-
ing an NBD with the probability mass function (pmf) as 

where p > 0 and k > 0 are two parameters, and the latter one is com-
monly called an aggregation parameter. Fisher et al. (1943) took the 
limit of k → 0 of this NBD model (Equation 1) to derive his logseries 
model. However, there is a problem: when k → 0, P(N = 0) → 1 (be-
cause Γ(k) cancels out in the denominator and numerator in the first 
term on the right side in Equation 1) while P(N = n) → 0 (because 
Γ(k)∕Γ(k+n)→0) for any n ≥ 1; see the Supporting Information in 
detail. This means that the probability mass is degenerated or fully 
concentrated at the zero point as k → 0. In other words, the limit for 
k → 0 in Equation (1) makes it impossible for a species to occur in the 
studied sample (i.e., it is unseen in the sample). Consequently, Fisher 
et al. (1943, p. 54) remarked “The limiting value k = 0 cannot occur in 
cases where the frequency at zero is observable, for the distribution 
would then consist wholly of such cases” and thus discarded such a 
way to derive the logseries model.

To avoid this unseen species problem and as ecologists are only 
concerned with species that can be seen or observed in a studied 
sample, Fisher et al. (1943) let 1∕Γ(k) be a finite constant α when 
k → 0, then Fisher et al. (1943) proposed that, as k → 0 and by ig-
noring the zero abundance case, a logseries distribution has a form 
as follows:

where x=p∕(1+p), and the parameter α was named “alpha” diversity. 
These parameters can, respectively, be estimated using the equalities 

(1)P(N=n)=
Γ(k+n)

Γ(k)Γ(n+1)

pn

(1+p)
k+n

, n=0,1,2… ;

(2)α
xn

n
, n=1,2, ...;
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S0 = − α ln (1 − x) and M0=α∕(1−x) (Fisher et al. 1943). Here, S0 rep-
resents the number of species and M0 the total number of individuals 
observed in the studied sample.

2.2 | The proposed area-based Fisher’s logseries  
model

Suppose one has a finite studied region, and its area size is denoted 
by A; then, a TNBD instead of the ordinary NBD in Equation (1) is 
employed to account for all species necessarily being present in the 
targeted region A, and its pmf is as follows:

where C=
(
1−

(
ω

ω+A

)k
)−1

. Note that the pmf (Equation 3) can be de-
rived from a gamma-Poisson mixture model and specifically be calcu-
lated from 

By excluding the zero abundance of species in the studied region, 
this truncated model avoids the odd situation at n = 0 when k → 0 
encountered in the NBD used by Fisher et al. (1943). Using this model 
with k → 0, the limiting distribution can be derived by: 

where xA=A∕(ω+A) and αA= [ ln (1+A∕ω)]−1 are defined so as to 
correspond to x and α in the original Fisher’s logseries distribution 
(Equation 2). Obviously, one can see that the regional area, A, can be 
part of both parameters (xA and αA); this is the reason that we call our 
model an area-based Fisher’s model. Note that Engen (1978) also gave 
a zero-truncated logseries distribution that differs from the variant in 
Equation (4) taking the area size A into consideration.

Because Equation (4) is a standard probability mass function (i.e., 
∑∞

n=1
ϕ(n�A, ω)=1), αA in our study is in a range of 0–1 and thus differs 

from the original Fisher’s alpha (which is directly related to species 
richness). Therefore, we renamed our αA as the normalized Fisher’s 
alpha index. As xA is a function of αA, our model can be further sim-
plified to contain only one unknown parameter, αA, resulting in the 
following form:

the mean and variance of which are, respectively, given by αA(e1∕αA −1) 

and αA
(
e1∕αA −1

) [
(1−αA)e

1∕αA +αA

]
 

We can extend our model to a local sampling area that is a part of re-
gion A, as conducting a comprehensive census over the entire region 
A is unrealistic. In comparison, surveying a local area with a size a from 
region A is practical and less labor-intensive in the field. To do this, we 
defined the number of individuals of each species observed in a local 

sample of area a as Na; then, the probability function Na can be derived 
from the TNBD in Equation (3) as

As a result, the limiting distribution of Na as k → 0 can be derived 
from Equation (6), and its probability function is as follows:

Detailed derivation of the above limiting distribution when k → 0 
is provided in the Supporting Information. Note that the probability 
function in Equation (7) can theoretically converge to the probabil-
ity function in (5) as ϕ

(
0 ||αA,αa

)
=0 when a = A, which is equivalent 

to conducting a census over the entire studied region. This conver-
gent behavior is also in response to why we employed a TNBD in 
Equation (3), as the unseen probability of a species in the studied re-
gion (e.g., the entire surface of the Earth) has to vanish if it can be com-
prehensively censused (ignoring time-consuming speciation events 
during the census period).

2.3 | Parameter estimation

Let fk be the number of species with k individuals observed in the sam-
ple and f0 be the number of species unseen in sample a but present in 
the studied region A. Note that only fk, k ≥ 1 (frequency counts) can be 
observed in the sample. As a result, the likelihood function, based on 
frequency counts, is given by

where Ma=
∑τ

n=1
nfn and τ = max{k:fk, k ≥ 1}. Sa and Ma, respectively, 

represent the number of species and number of total individuals ob-
served in local area a, containing all information for estimating un-
known parameters. They are the so-called sufficient statistics by 
Ronald A. Fisher. As a result, the maximum-likelihood estimates (MLEs) 
of SA and ω, by maximizing the likelihood function in Equation (8), can 
be equivalently solved from the following equations:

These MLE-derived equalities in Equation (9) can also be deduced 
when applying the moment of methods to Equation (7). Variances of 
ŜA and ω̂ can accordingly be estimated from diagonal elements of the 
inverse of the observed information matrix. Then, the normalized di-
versity index, αA, for the entire region can be estimated by 

(3)P(NA=n|A, k, ω)=C
Γ(k+n)

Γ(k)Γ(n+1)

(
ω

ω+A

)k(
A

ω+A

)n

, n=1,2… ;

P(NA=n|A, k, ω)=
∫∞
0

(Aλ)
n
e−Aλ

n!

ωkλk−1e−λω

Γ(k)
dλ

1− ∫∞
0
e−Aλ

ωkλk−1e−λω

Γ(k)
dλ

, n=1,2…

(4)ϕ(n|A, ω)=lim
k→0

P(NA=n|A, k, ω)=
[
ln
(
1+

A

ω

)]−1 (
1

n

)(
A

ω+A

)n

,

n=1,2, ...;

(5)ϕ(n|αA)=
αA

n
(1−e

−1∕αA )n;

(6)P(Na=n�a, A, k, ω)=
⎧
⎪
⎨
⎪
⎩

C

��
ω

ω+a

�k

−
�

ω

ω+A

�k
�
, n=0

C
Γ(k+n)

Γ(k)Γ(n+1)

�
ω

ω+a

�k�
a

ω+a

�n

, n=1,2,…

(7)ϕ
(
n|αa,αA

)
= lim

k→0
P(Na=n|a, A, k, ω)=

{
(1−αA∕αa), n=0
αA

n
(1−e−1∕αa )n, n=1,2, ...

(8)

L(SA, ��f1, ..., f� )

=
Γ(SA+1)

Γ(SA−Sa+1)
∏�

j=1
Γ(fj+1)

�
ϕ(0 ���a,�A )

�SA−Sa ∏�

n=1

�
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�
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SA
=E(Na)=�A

(
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Sa=E(Sa)=SA
(
�A∕�a

)

(10)α̂A=1∕ln (1+A∕ω̂)
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2.4 | Interpolation and extrapolation of species  
richness

Consider an interpolated or extrapolated area of size A*. Interpolation 
(0 < A* ≤ a) or extrapolation (A ≥ A* ≥ a) of species richness from local 
area a can be estimated by the following estimator:

Applying the variance decomposition formula to Var
(
ŜA∗

)
, which 

is conditional on Sa, we can estimate the variance as 

where Vâr
(
Sa
)
=Sa

(
1−Sa∕ŜA

)
.

The variance Vâr
(
ŜA∗

)
 estimated using Equation (12) for our pro-

posed area-based model differs from the original one proposed by 
Fisher et al. (1943), the calculation details of which are presented in 
the additional method section of the Supporting Information.

2.5 | Numerical tests

As Fisher’s logseries distribution in Equation (2) is not a standard 
probability distribution and lacks a specific sampling framework, it 
is difficult to conduct numerical tests with the model and estimate 
related parameters. In contrast, our area-based model (Equation 7) 
has a standard parametric probability distribution with an explicit 
sampling structure (i.e., local versus regional models). Accordingly, 
the asymptotic properties of parameter estimation in our model are 
clear.

Therefore, we conducted extensive simulations to demonstrate the 
performance of regional richness estimation (i.e., extrapolation) and 
checked what we found using the proposed area-based model. First, 
we simulated sampling data from the proposed area-based Fisher’s 
logseries in Equation (7). Details of the simulation algorithm are pre-
sented in additional methods section of the Supporting Information. In 
our simulation, the regional species richness, the parameter ω, and the 
regional area size information can vary and were given when simulat-
ing species abundances in local sampling area a (the size of which was 
fixed as 1 in all scenarios).

The regional species richness is allowed to vary as SA = 500, 
2,000, or 6,000. The area size of the region can vary as A = 100, 
1,000, 10,000, or 50,000. Finally, we let parameter ω vary as 
ω = 0.005, 0.01, or 0.05. Based on this, we had 3 × 4×3 = 36 config-
urations when simulating local species diversity data for subsequent 
analyses and comparisons.

In addition to simulating data following the proposed model, we 
further simulated data for another two models of species abundance 
distribution. One is from the pmf in Equation (7), that is, TNBD, with 
letting k be 1, 0.5, 0.1, and 0.01 and fixing ω =0.01 and A = 100; note 
that this model will approach to the area-based logseries model when 
k becomes small. As a special case, TNBD is the same as the geometric 
series model when k = 1.

The other model considered simulating species abundance data 
approximately following a lognormal distribution. To take the area 
effect into consideration while to ensure that all species have pos-
itive probabilities to exist in the study region, given the intensity λ 
that is related to the mean abundance of a species, we let NA follow 
a zero-truncated Poisson distribution having the conditional pmf as 
follows: 

A sample with area a taken from the entire region, the abundance 
of a species in the sample, Na, can be derived from the pmf of NA and 
has the condition pmf as 

We then considered that λ follows a lognormal distribution 
transformed from a normal distribution with mean μ and standard 
deviation σ, where μ was fixed at zero and σ varied from 1.5 to 3 
with an increment 0.5 in the simulation study. For simplicity, TPLN 
(μ, σ) is used to signify this model for truncated Poisson-lognormal 
distribution.

For each configuration or combination, we independently simu-
lated 5,000 local species diversity data (abundance and number) and 
then measured relevant quantities, including an average of the esti-
mated species richness and the sample standard error (SE) computed 
by the simulated data. Additionally, the averaged estimated SE of spe-
cies richness was computed using over 5,000 simulated data for each 
estimator so the performance of the estimators could be compared. A 
reasonable variance estimator was determined whether its estimated 
SE was very close to the sample SE.

For each of the above generated local species abundance data, 
we fit our proposed area-based Fisher’s alpha model to the local 
data and the fitted model was used to perform regional species 
richness estimation (extrapolation). To demonstrate the predictive 
power of the proposed parametric model, regional species richness 
was also estimated by applying three commonly used nonparamet-
ric methods to the simulated local data for comparison, including 
the Chao1 estimator (ŜChao1) (Chao 1984), abundance-based cov-
erage estimator (ACE: ŜACE) (Chao & Lee 1992), and first-order 
jackknife estimator (ŜJk1) (Burnham & Overton 1978; Heltshe & 
Forrester 1983). Their methods of calculating richness extrapola-
tion and the corresponding variance formulas are provided in the 
Supporting Information.

Comparing species diversities between different local communi-
ties is very common in ecology. However, samples from different local 
communities often differ in their sampling areas (and individual sam-
ple numbers as well). Therefore, richness interpolation or rarefaction 
should be performed when ecologists want to compare and rank the 
species diversity status of different samples (Hurlbert 1971; Heck et al. 
1975; Soetaert & Heip 1990; Gotelli & Colwell 2001). In our study, the 
proposed index αA takes both the local sampling area and the entire 
region into account; thus, it is like a species–area relationship (Gleason 

(11)ŜA∗ =Saα̂a∕α̂A∗ .

(12)
Vâr

(
ŜA∗

)
=S

2

A∗

(
α̂aa

ω̂2+ω̂2a
−

α̂A∗A
∗

ω̂2+ω̂2A∗

)2

Vâr (ω̂)+

(
ŜA∗

Sa

)2

Vâr
(
Sa

)
,

P(NA=n|λ, A)=
(
Aλ

)n
e−Aλ

n!
(
1−e−Aλ

) ,n≥1.

P(Na=n|λ, a, A)=
{ e−aλ − e−Aλ

1−e−Aλ
, n=0

(aλ)ne−aλ

n!(1−e−Aλ)
, n≥1

.
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1922). However, contrary to conventional species–area relationships, 
our area-based model only requires observed individual and species 
numbers as inputs to establish the relationship between sampling area 
and species richness.

Here, apart from the richness extrapolation, we again also 
performed local species richness rarefaction using the proposed 
area-based model, through numerical simulation. The purpose of 
performing area-based rarefaction was to compare and rank local 
species diversity statuses for three theoretical sites (L1, L2, and L3) 
from a region with a total area size A = 30. Suppose that we had 
conducted field surveys of these three local sites, and the follow-
ing data on the local species richness, community size, and sampling 
area size had been gathered: site L1 had species number = 100, total 
individual number = 5,000, and sampling area size = 15; site L2 had 
species number = 50, total individual number = 2,000, and sampling 
area size = 1; and site L3 had species number = 80, total individual 
number = 2,000, and sampling area size = 2. We also assumed that 
we knew that the local SADs in these three sites followed a Fisher’s 
logseries distribution. At first glance, it seems that L1 has the highest 
species richness, followed by L3 and L2. Moreover, because both L2 
and L3 had the same total number of individuals and the species rich-
ness–area ratio is higher for L2, it seems that L2 might have higher 
diversity than site L3.

However, as previously outlined, we cannot directly compare spe-
cies richness levels of these sites because their sampling area sizes 
(and also sampling individual numbers) differ. Therefore, we fit our 
area-based Fisher’s alpha model into these three local samples and 
then performed species richness rarefaction so as to rank species 
diversity among the three hypothetical sites at a given baseline area 
(e.g., area = 10). Through our area-based rarefaction, we can show that 
it was not true that site L1 had the highest species richness. Also, we 
can show that the species richness at site L2 was not higher than that 
at site L3 as expected earlier.

2.6 | An empirical test

We fit our proposed area-based Fisher’s alpha model to tree species 
in interior (species number = 371, total individual number = 2,174) 
and edge (species number = 332, total individual number = 1,966) 
areas, respectively, from 12 fragments of Brazilian Atlantic forests 
(Magnago et al. 2014). The original species frequency count data from 
their paper are summarized in Table 1. In their original data, for each 
of the 12 fragments, an edge transect and an interior transect were 
sampled. Each transect was composed of ten 10 × 10-m plots. Species 
richness was extrapolated to estimate species richness at a broader 
spatial scale (combining all sampling plots from both edge and interior 
areas = 2.4 ha) and the entire region (the 12 fragments, which had a 
size of A = 67,282.16 ha). As a comparison, two nonparametric meth-
ods used above, including Chao1 and ACE estimators, were also per-
formed and compared.

Moreover, as we have observed data combined from the interior 
and edge areas (i.e., at the augmented 2.4-ha spatial scale, total spe-
cies number = 443, total individual number = 4,140) (Magnago et al. 

2014), the rarefaction of species richness for the 1.2-ha interior or 
edge areas from the combined area (i.e., the augmented 2.4-ha area) 
can be performed and validated as well. In contrast to the richness ex-
trapolation using Chao1 and ACE, Hurlbert (1971)’s individual-based 
and Coleman (1981)’s area-based methods were correspondingly ap-
plied for comparison.

TABLE  1 Original species abundance distribution data in terms of 
species frequency counts reported by Magnago et al. (2014) for the 
interior (1.2 ha), edge (1.2 ha), and combined areas (2.4 ha) in 12 
fragments of Brazilian Atlantic forests

Habitat f1 f2 f3 f4 f5 f6 f7

Edge 115 49 38 28 14 11 13

Interior 128 49 42 33 19 17 7

Edge+Interior 115 57 32 41 26 23 15

Habitat f8 f9 f10 f11 f12 f13 f14

Edge 5 6 6 3 4 3 5

Interior 9 7 7 6 3 3 3

Edge+Interior 15 13 10 4 4 6 6

Habitat f15 f16 f17 f18 f19 f20 f21

Edge 2 5 2 2 2 2 1

Interior 4 4 2 2 3 4 6

Edge+Interior 5 6 4 2 6 2 1

Habitat f22 f23 f24 f25 f26 f27 f28

Edge 0 2 0 1 0 1 1

Interior 0 2 0 1 0 2 1

Edge+Interior 2 2 4 2 3 3 1

Habitat f29 f30 f31 f32 f33 f34 f35

Edge 0 1 0 1 0 0 0

Interior 0 1 0 1 0 1 1

Edge+Interior 1 1 1 2 1 0 0

Habitat f36 f37 f38 f39 f40 f41 f42

Edge 2 1 0 0 0 1 0

Interior 0 0 0 0 0 0 0

Edge+Interior 3 1 1 3 1 1 2

Habitat f43 f45 f46 f49 f51 f52 f53

Edge 0 1 1 1 0 0 0

Interior 0 0 0 0 0 1 0

Edge+Interior 1 0 2 0 2 1 2

Habitat f55 f68 f79 f89 f104 f110 f121

Edge 0 0 0 1 0 1 0

Interior 0 0 0 0 0 0 0

Edge+Interior 1 1 1 0 1 0 1

Habitat f123 f140 f159 f181 Ma Sa

Edge 0 0 0 0 1,966 332

Interior 1 1 0 0 2,174 371

Edge+Interior 0 0 1 1 4,140 443
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To conduct goodness-of-fit tests of our proposed model when ap-
plied to Magnago et al.’s empirical dataset (for either edge, interior, or 
the augmented combined areas), we utilized both the Kolmogorov–
Smirnov (KS) and chi-squared (χ2) tests (Arnold & Emerson 2011). In 
particular, the KS test has to be adjusted because species abundance 
is a discrete variable (Arnold & Emerson 2011).

Other than verifying the predictive power of the species richness 
interpolation associated with the 95% CIs using the fitted area-based 
models to cover the true observed species richness in the 1.2-ha edge 
and interior areas (and extrapolation to the 2.4-ha augmented areas), 
we extrapolated the species richness using the fitted area-based mod-
els up to the entire region (i.e., the sum of all 12 fragments, with an 
area size 67,282.16 ha), even though the true species richness at this 
large spatial scale was unknown. Because we were estimating regional 
species richness here, all three nonparametric methods, including 
Chao1, ACE, and first-order jackknife estimators, were applicable and 
implemented for comparison.

3  | RESULTS

The curved shape of Fisher’s logseries predicts more rare species if pa-
rameter ω is larger or the regional area size is smaller (Figure 1). Such 
patterns can theoretically be interpreted by Equation (7). No matter 

what values of ω and regional area A are used in Figure 1, the ratio of 
the relative abundances for n = 1 and n = 2 was close to two, which 
is a key feature predicted by Fisher’s logseries model. Original data 
(Table 1) on the species frequency counts reported by Magnago et al. 
(2014) empirically showed that this ratio could exist in field surveys.

When data were simulated from the area-based logseries model, 
numerical simulation results showed that the nonparametric richness 
estimators (Chao1, ACE, and first-order jackknife) always underes-
timated the true regional species richness to large extents (Table 2 
and Tables S1–S3). Regardless of the true values of regional species 
richness, regional area size, and parameter ω given in the simulations, 
the estimated regional species richness using the proposed area-
based method was consistently and statistically close to true values 
(Table 2 and Tables S1–S3). Furthermore, compared to Fisher’s original 
logseries model and other estimators, for each simulation configura-
tion, the coverage percentage (CP) of the 5,000 simulation in which 
the 95% CIs covered the “true” species richness in the region for the 
proposed area-based model was always closest to the nominal value 
of 0.95 (Table 2 and Tables S1–S3).

For the simulated local species richness, our proposed variance 
calculation formula (Equation 12) was asymptotically consistent or 
unbiased compared to Fisher’s original variance calculation formula 
(Equation S10 in the Supporting Information), when comparing the 
estimated SE with the sample SE from the simulated data (Table 2 

F IGURE  1 Curve shape patterns of 
the proposed area-based Fisher’s logseries 
model as a function of ω and regional area 
A
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and Tables S1–S3). In contrast, the original Fisher’s variance method 
presented remarkable biases (being much smaller) with respect to the 
“true” variance computed directly from the simulated data.

To extrapolate species richness over the entire region based on 
the simulated local data, estimated standard errors (SEs) using our 
area-based method were always very close to the sample SEs com-
puted directly from the simulated datasets (Table 2 and Tables S1–S3). 
In contrast, the estimated SE computed from original Fisher’s method 
failed to provide a reasonable approximation of the sample SE for the 
entire region (Table 2 and Tables S1–S3), regardless of how the config-
uration (e.g., regional species number, regional area size, or parameter 
ω) for the simulations changed.

Another theoretical example for performing area-based rarefac-
tion showed that the hypothetical sites, L1, L2, and L3, actually had 
different species richness levels at a given baseline area of 10 (any 
other local area or the entire region A = 30 could be the baseline area; 
Figure 2): L3 was actually expected to have the highest species rich-
ness, followed by L1 and L2. Although there was some overlap be-
tween the 95% CIs for the species richness between these sites, site 
L3 was always expected to have an average species richness that was 
higher than the mean species richness for site L1 across the entire 
region (Figure 2). Moreover, even though both L2 and L3 had the same 

total sampled individual numbers and site L2 had a higher ratio of spe-
cies richness to sampling area (50/1 = 50), the rarefaction curves con-
sistently implied that L3 had higher species richness than L2 across the 
entire region (Figure 2).

When data were generated rather than from the area-based 
logseries model (Tables S4–S6), the extrapolated richness estimated 
by the proposed method would be considerably overestimated in 
some cases. For example, the mean estimate 9705.1 by the proposed 
method is about as large as 1.5 times the true richness 6,000 for 
TPLN(0, 1.5) in Table S4; applying the proposed model to the data from 
TNBD with k = 1 and ω = 0.01 or 1 led to the mean estimates 12,140.1 
(Table S5) or 13,340 (Table S6), respectively. However, for TNBD with 
k becoming small, the mean estimates of the proposed method will 
gradually approach to the true richness as the area-based logseries is 
derived from TNBD as k goes to zero. However, to avoid incurring the 
overestimation of species richness, conducting some goodness-of-fit 
tests (e.g., KS and χ2 tests) on the observed data should be necessary 
prior to using the proposed method.

The empirical datasets of tree species diversity in Brazilian Atlantic 
Forests fit very well, if not perfect, using our proposed area-based 
logseries model. As can be seen, both the KS and χ2 tests gave p values 
that were much larger than the significance threshold of 0.05 for the 

True value Method Average Sample SE Estimated SE CP

ω = 0.1 
A = 100 
SA = 6,000

ω̂ 0.1002 0.0046 0.0045 94.8

Sa 2,082.9 37.2 (22.1) 36.9 (74.8) 95

ŜA
6,002.8 124.3 (24.5) 123.9 (29.4) 94.8

ŜChao1
2,956.1 91.6 82.9 0.0

ŜACE
2,923.5 74.4 62.9 0.0

ŜJk1
2,872.8 56.0 39.7 0.0

ω = 0.05 
A = 100 
SA = 6,000

ω̂ 0.0501 0.0022 0.0022 94.7

Sa 2,402.7 38.2 (22.2) 38 (75) 94.6

ŜA
5,999.1 105.4 (23.4) 106.2 (35) 95.1

ŜChao1
3,195.9 85.9 76.8 0.0

ŜACE
3,122.1 66.8 54.6 0.0

ŜJk1
3,154.5 54.8 38.8 0.0

ω = 0.01 
A = 100 
SA = 6,000

ω̂ 0.01 4e-04 4e-04 95.1

Sa 3,006.2 39 (30) 38.7 (86.8) 94.4

ŜA
5,999.5 82.8 (24.9) 82.3 (45) 94.9

ŜChao1
3,661.0 77.8 68.3 0.0

ŜACE
3,564.6 58.9 45.6 0.0

ŜJk1
3,651.0 51.9 35.9 0.0

ω = 0.005 
A = 100 
SA = 6,000

ω̂ 0.005 2e-04 2e-04 95

Sa 3,213.5 38.6 (31.3) 38.6 (88.6) 95.4

ŜA
6,001.2 75.7 (24.9) 75.9 (47.2) 95.2

ŜChao1
3,822.7 74.8 65.6 0.0

ŜACE
3,729.6 57.2 43.5 0.0

ŜJk1
3,816.8 50.6 34.7 0.0

TABLE  2 Comparisons of the 
performance of estimating regional species 
richness of different statistical methods 
based on the available species diversity 
information from simulated local samples. 
The true value indicates that the 
predesigned species assemblage in regional 
area A had a richness S, and the abundance 
of all species followed a logseries 
distribution with the given parameter, ω, 
for the simulation. Sa is the species richness 
observed in local sample a (area size = 1) 
averaged from 5,000 simulations. Regional 
species richness was estimated by four 
methods, including three nonparametric 
methods and our proposed area-based 
method (ŜA). CP is the coverage percentage 
of the 5,000 generated datasets in which 
the 95% confidence intervals covered the 
“true” species richness in the region that 
can be predicted by each richness 
estimator. The estimated standard error 
(SE) and CP associated with Fisher’s original 
model are in parentheses
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empirical dataset (Figure 3). Additionally, the cumulative distribution 
functions (CDFs) between the observed data and fitted model were al-
most indistinguishable from each other for both the edge and interior 
empirical datasets and the combined data of both (Figure 3).

The proposed area-based Fisher’s alpha method estimated 
that species richness at a broader spatial scale, which combined all 
sampled plots from both edge and interior areas, was 456 with a 
95% CI of 415–498, when using local plots from edge areas only 
(Table 3). The estimated species richness became 408 with a 95% CI 
of 369–447 when only sampled plots from interior areas were used 
(Table 3). The 95% CIs of richness at the 2-time extrapolated spa-
tial scale always encompassed the true observed species richness 
(443) reported in Magnago et al. (2014). In comparison, not all of the 
95% CIs from the nonparametric estimators encompassed the true 
observed species richness (Table 3). This was particularly true for 
estimates using the edge local dataset only: The two nonparametric 
methods, Chao1 and ACE estimators, were found to have underes-
timated the true species richness at the 2-time extrapolated spatial 
scale (Table 3).

Extrapolation of regional species richness to the entire region 
(composed of all 12 fragments in the Brazilian Atlantic forests, 
please refer to Figure 1 in Magnago et al.’s paper) showed that the 

95% CIs largely overlapped, regardless of whether species richness 
was extrapolated from the plots of the interior area only, the edge 
area only, or the combination of both areas (Figure 4). Species rich-
ness was estimated to be in a range 1,577–1,769 by the area-based 
logseries model against a range 447–559 by the three nonparamet-
ric methods for the entire fragment region (A = 67,282.16 ha), de-
pending on the local dataset used (Figure 4; Table 4). Moreover, the 
95% CIs by these estimates largely overlapped (Figure 4, Table 4). 
However, all three nonparametric methods predicted that regional 
species richness had much smaller values (Table 4). Furthermore, 
the 95% CIs by these estimators sometimes did not overlap when 
estimated from different local datasets (i.e., interior, edge, or the 
combined areas). For example, for the ACE estimator, the 95% CIs 
did not overlap between the case when local edge-area data were 
used and the case when combined data from augmented areas were 
used (Table 4).

4  | DISCUSSION

When predicting species richness or species extinctions, Fisher’s alpha 
actually does not need to take abundance frequencies of species in 
the local sample into account, as shown in previous empirical studies 
(Gilbert et al. 2006; Slik et al. 2015). This is different from a perspec-
tive of nonparametric species richness estimation (Chao & Chiu 2016), 
which incorporated species abundance frequencies as data inputs to 
estimate species richness. However, whether the species frequencies 
are crucial to species richness estimation depends on what model is 
employed. Nevertheless, we can statistically prove that Fisher’s alpha 
index either in Fisher et al. (1943)’s original paper or in our study does 
not rely on sampling frequency information at all. This is because, as 
demonstrated in the full maximum-likelihood equation (Equations 8 
and 9), Fisher’s alpha needs very parsimonious information when pre-
dicting species diversity, including the observed species richness and 
observed individual number. These two quantities are sufficient sta-
tistics for inferring Fisher’s alpha parameter in both Fisher’s paper and 
our area-based model. In contrast, most existing richness estimators 
(particularly nonparametric methods) ask for species abundance fre-
quency data as data inputs which sometimes may be unavailable (e.g., 
in an imperfectly sampled case).

Previous studies argued that when abundance-rank plots are 
used and the abundance of each species is log-transformed, the fit-
ted curves for both geometric series and logseries models should be 
indistinguishable (Taylor et al. 1976; Fattorini 2005). However, we 
proved that Fisher’s logseries was the most extreme scenario derived 
from the TNBD in predicting rare species and predicting maximal 
numbers of singleton and doubleton species that were always higher 
than any other TNBD-derived models, including the geometric series 
model (when aggregation parameter k = 1, see the detailed derivation 
from Theorem 2 in the Supporting Information). Moreover, our study 
showed that even though the geometric series model might be very 
suitable for characterizing extremely uneven SADs (Magurran 2004; 
Fattorini 2005), it did not perform well in predicting rare species 

F IGURE  2 Fitting, rarefaction, and extrapolation of species 
richness in three hypothetical sites (L1, L2, and L3) from a 
hypothetical region A = 30 using the proposed area-based Fisher’s 
alpha method. Site L1 has species number = 100, total individual 
number = 5,000, and sampling area size = 15; site L2 has species 
number = 50, total individual number = 2,000, and sampling area 
size = 1; and site L3 has species number = 80, total individual 
number = 2,000, and sampling area size = 2. Last, we assumed that 
the species abundance distributions (SADs) of all sites and the entire 
region are known a priori to follow the Fisher’s logseries distribution. 
The 95% confidence intervals were calculated using the variance 
formula from Equation (12)
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richness. This is simply because it cannot predict a number of rare 
species (especially for singleton and doubleton species) as high as 
Fisher’s logseries model. It can be mathematically proven that the 

proposed area-based logseries model, derived from the TNBD, pre-
dicts the highest number of rare species (please refer to Theorem 3 in 
the Supporting Information).

F IGURE  3 A comparison of the fitting performance of the proposed area-based Fisher’s alpha method on tree species from either interior, 
edge, or both areas of fragments of Brazilian Atlantic forests. We fit our area-based model to two local areas (interior versus edge areas: the first 
four panels), both had the same local sampling area size of 1.2 ha; and the combined area had an area size of 2.4 ha (the last two panels)
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If the area-based logseries model is the basis of observed data, our 
model is extremely powerful, because species richness can be extrap-
olated at a regional scale, the spatial extent of which is much larger 
than that of local sampling sites (Hubbell 2015; Slik et al. 2015). As 
shown in the simulation tests from Table 2 and additional tables in the 
Supporting Information, the ratio of regional area size A to local sam-
pling area a can be a very large value. In contrast, previous nonpara-
metric methods, like the Chao1 estimator, would not be applicable, as 
the extrapolation range of these nonparametric statistical methods is 
very small (typically 2–3 times larger than the local area size) (Chao 
et al. 2016). Moreover, as expected, the underestimation problem be-
comes worse when the regional area size is larger (Table 2 and Tables 
S1–S3) (Chao & Chiu 2016; Chao et al. 2016). Therefore, when the 
spatial grain of the extrapolation becomes larger than those for local 
samples, nonparametric estimators should be carefully used, and one 
should be aware of the considerable underestimation of species rich-
ness if the logseries model fits the surveyed data very well. In this 
case, Fisher’s alpha and the proposed area-based version are recom-
mended (Hubbell 2015; Slik et al. 2015). As a rule of thumb, if the ratio 
of the numbers of singleton to doubleton species in the surveyed spe-
cies frequency data has a numeric value close to 2 (Figure 1), Fisher’s 
logseries model is very likely. Moreover, goodness-of-fit tests can be 
conducted to further confirm this.

Nearly, all previous methods on the rarefaction and extrapolation 
of species richness believed that species richness would be meaning-
ful and comparable for different communities as long as the number 
of individuals was interpolated or extrapolated to the same baseline 
value (Hurlbert 1971; Heck et al. 1975; Soetaert & Heip 1990; Gotelli 
& Colwell 2001). However, in addition to the individual number, our 
study also revealed that the sampling area size is important when 

comparing different communities. As demonstrated in Figure 2, even 
though hypothetical sites L2 and L3 had the same number of species 
individuals (=2,000), their species richness status could not be com-
pared, because their sampling area sizes differed. After controlling 
for the sampling area size, it was consistently found that site L3 had 
higher species richness than L2.

We generated 36 combinations of results from the numerical 
tests (Tables S1–S3) to validate the estimation power and accuracy 
of regional species richness using the proposed area-based model. 
As a comparison, all three nonparametric methods largely underes-
timated the regional species richness when sample data follow the 
proposed area-based logseries model (Table 2 and Tables S1–S3). 
Moreover, through the empirical test on the tree diversity data from 
Brazilian forest fragments, when local sampling plots from edge 
areas were used, all nonparametric methods were found to underes-
timate the true species richness (even some of their 95% CIs failed 
to encompass the true value) for the augmented 2.4-ha sampling 
area (Table 3). In contrast, the proposed model accurately predicted 
species richness for which the 95% CIs encompassed the true value, 
regardless of which local data were used. The situations for species 
richness interpolation, from the augmented area (2.4 ha) to either 
the interior or edge area, were also similar (Table 3). Therefore, non-
parametric methods tend to underestimate true species richness in 
both numerical and empirical tests, especially when data are likely 
from the logseries model.

In the numerical simulation, the sample SE was always underes-
timated by the estimated SE (Table 2 and Tables S1–S3) calculated 
using the Fisher’s original variance computational formula (Equation 
S10 in the Supporting Information). The underestimation was ag-
gravated in the regional species richness estimation (ŜA) (Table 2 

TABLE  3 Empirical validation of the richness extrapolation or interpolation power using our proposed area-based model from either interior, 
edge, or the combined augmented areas in fragments of Brazilian Atlantic forests. For richness extrapolation from each local dataset (interior or 
edge areas only; second and third columns), the local sampling area size was a = 12 ha, and accordingly, the combination of both areas had an 
augmented area A* = 2.4 ha. The last column represents the interpolation of species richness from the augmented area (a = 2.4 ha) for either 
interior or edge areas (A* = 1.2 ha). The proposed area-based model with a single parameter, ω (the variance was estimated using Equation 12), 
was compared with nonparametric methods, the relevant point estimation, and variance calculation methods, which are presented in the 
Supporting Information. The jackknife estimator was inapplicable here. The 95% confidence intervals for each estimator are in parentheses, 
where ¶ indicates that a log transformation (Chao 1987; Chiu et al. 2014) was applied to the confidence interval. Because richness interpolation 
by Hurlbert (1971) was an individual-based method, different values were reported for the 1.2-ha interior and edge areas (as they have 
different species frequency data) when performing richness interpolation from the augmented 2.4-ha area. As a comparison, richness 
interpolation by Coleman (1981) is an area-based method. Therefore, like our proposed area-based method, it returned a single value for both 
interior and edge areas, given that both have the same sampling area sizes (1.2 ha)

Brazilian Atlantic forests

Extrapolation Interpolation

Methods Interior areas only Edge areas only Interior+Edge combined areas

(Ma = 2,174, Sa = 371) (Ma = 1,966, Sa = 332) (Ma = 4,140, Sa = 443)

Area-based logseries ŜA∗ =456 (415,498) 
ω̂=0.071 (0.056,0.086)

ŜA∗ =408 (369,447) 
ω̂=0.070 (0.054,0.086) 

ŜA∗ =360 (326,393) 
ω̂=0.073 (0.058,0.088) 

Chao1/Hurlbert ŜChao1=454 (433,484)¶ ŜChao1=414 (394,442)¶ Interior: ŜInterior
Hurlbert

=368 (358,379)

Edge: ŜEdge
Hurlbert

=357 (347,367)

ACE/Coleman ŜACE=451 (429,481)¶ ŜACE=405 (384,434)¶ ŜColeman=363 (347,380)
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and Tables S1–S3). The underestimation of sample SE is due to the 
fact that Fisher’s original variance calculation formula was derived 
by fixing the number of individuals in the sample, while ignoring 
the sampling uncertainty caused by the difference in the number 
of simulated individuals in the local sample in different simulation 
rounds. Moreover, when the regional area is sufficiently large, the 
variance (or estimated SE) calculated using Fisher’s original formula 
reaches an upper limit, which explains why the underestimation of 
sample SE was worse when estimating regional species richness (see 
the theoretical proof in the Supporting Information). By comparison, 
our proposed variance estimator (Equation 12) can account for this 
simulation uncertainty by recognizing the fact that the species ob-
served in sample a (their number was Sa) are a part of those from the 

larger regional area A. This means that Sa follows a binomial distribu-
tion with total species number SA and occurrence probability αA∕αa 
(see the term (αA∕αa)Sa (1−αA∕αa)

SA−Sa from the likelihood function in 
Equation 8).

The proposed area-based model is statistically consistent, as in-
dicated by two observations: (1) the estimated species richness for 
the augmented 2.4-ha areas from either edge or interior areas was 
very close (Table 3); and (2) the estimated regional species richness for 
the entire region was very similar from different local datasets (edge, 
interior, or combined edge and interior areas) (Table 4; Figure 4). Other 
than these, the corresponding 95% CIs by these estimates largely 
overlapped (Tables 3–4; Figure 4). These results demonstrated that 
the proposed area-based model could consistently estimate regional 
species richness. This is expected, as species richness in augmented 
areas or the regional species richness over the 12 fragments estimated 
from local areas (edge, interior, or combined edge and interior areas) is 
a fixed value, even though its true value is yet unknown for the entire 
region (but richness in the augmented areas was known to be 443).

As the proposed area-based logseries model is sensitive to the 
prediction of rare species in comparison with nonparametric methods, 
using the proposed method can lead to overestimation of species rich-
ness when data are not from the assumed model (Tables S5–S6). As a 
caveat, to determine whether or not the proposed model can be ap-
plied to the observed data, conducting some goodness-of-fit tests on 
the data is a very crucial step to avoid incurring the mentioned issue.

The goodness-of-fit statistic is critical for comparing performances 
of alternative ecological models (Waller et al. 2003). Currently, the 
nonparametric χ2 and KS tests are widely used in fitting theoretical 
probabilistic models to empirical SADs. However, these statistics 
should be used with caution. For example, the KS test was primarily 
developed for continuous probability models; thus, when applying it 
to test the goodness of fit of discrete probability models, some adjust-
ments are required. Because species abundance is a standard discrete 
variable, a step function should be used (Arnold & Emerson 2011) to 
characterize CDFs of both empirical data and the fitted SAD models 
as in Figure 3 in our study. Consequently, it would be misleading to 
use smooth and continuous CDFs to characterize species abundances, 

F IGURE  4 Rarefaction and extrapolation by the proposed area-
based Fisher’s alpha method on tree species from either interior, 
edge, or the combined areas or fragments of Brazilian Atlantic forests 
(the entire region had an area size A = 67,282.16 ha). The rarefaction/
extrapolation curves were generated using the fitted area-based 
models presented in Figure 3 (the fitted parameters are reported in 
Table 3). The 95% confidence intervals were calculated using the 
variance formula from Equation (12)
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TABLE  4 Extrapolation of species richness for the entire region (area size A = 67,282.16 ha) from either interior, edge, or combined 
augmented areas in fragments of Brazilian Atlantic Forests. The proposed area-based model was compared to three nonparametric models, the 
relevant point estimation, and variance calculation methods of which are presented in the Supporting Information. The 95% confidence interval 
for each estimator is in parentheses, where ¶ indicates that a log transformation (Chao 1987; Chiu et al. 2014) was applied to the confidence 
interval

Brazilian Atlantic Forests: Extrapolation of regional species richness

Interior areas only Edge areas only Interior+Edge combined areas

Methods (Ma = 2,174, Sa = 371) (Ma = 1,966, Sa = 332) (M2a = 4,140, S2a = 443)

Area-based ŜA=1,769 (1,581,1,956) ŜA=1,577 (1,400,1,753) ŜA=1,726 (1,569,1,882)

Chao1 ŜChao1=538 (476,637)¶ ŜChao1=467 (415,551)¶ ŜChao1=559 (515,630)¶

ACE ŜACE=496 (458,551)¶ ŜACE=447 (410,501)¶ ŜACE=533 (505,575)¶

First-order Jackknife ŜJk1=499 (468,530) ŜJk1=447 (417,477) ŜJk1=558 (528,588)
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which will increase Type II error. Last, the p value of the test should be 
adjusted using some techniques, like the Monte Carlo method (Arnold 
& Emerson 2011).

Finally, other than Magnago et al. (2014)’s species frequency count 
data used in our study (Table 1), the 2:1 ratio between singleton and 
doubleton species numbers actually is prevailingly reported in much of 
the other empirical literature (Norden et al. 2009; Longino & Colwell 
2011; Colwell et al. 2012; Slik et al. 2015). All these empirical examples 
show that Fisher’s logseries is a very important parametric model for 
fitting empirical species abundance data in ecology. Correspondingly, 
this 2:1 ratio can be a very good proxy to determine whether Fisher’s 
logseries model (and our area-based model, of course) should be ap-
plied in empirical settings. This ratio will be highly effective for quickly 
determining the applicability of Fisher’s logseries, particularly when 
complete species frequency data are sometimes unavailable from field 
sampling, and consequently, goodness-of-fit statistics like the KS or χ2 
tests cannot be used.

In conclusion, our study developed a general area-based Fisher’s 
alpha diversity model and derived an asymptotically unbiased variance 
formula, allowing it to perform both rarefaction and extrapolation of 
species richness so as to compare local species diversity between 
local samples with varying area sizes (and individual numbers as well) 
and predict the regional species richness. For future prospects, the 
present model has the potential to serve as a fundamental one when 
doing parametric estimation of species richness, given that our model 
is data parsimonious and Fisher’s logseries has been broadly observed 
and applied in many ecological communities worldwide (Volkov et al. 
2003, 2005; Gilbert et al. 2006; Norden et al. 2009; Longino & Colwell 
2011; Colwell et al. 2012; Magnago et al. 2014; Hubbell 2015; Slik 
et al. 2015).
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