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Abstract

Alzheimer’s disease (AD) is a complex disorder influenced by environmental and genetic factors. Recent work has
identified 11 AD markers in 10 loci. We used Genome-wide Complex Trait Analysis to analyze >2 million SNPs for
10,922 individuals from the Alzheimer’s Disease Genetics Consortium to assess the phenotypic variance explained
first by known late-onset AD loci, and then by all SNPs in the Alzheimer’s Disease Genetics Consortium dataset. In
all, 33% of total phenotypic variance is explained by all common SNPs. APOE alone explained 6% and other known
markers 2%, meaning more than 25% of phenotypic variance remains unexplained by known markers, but is tagged
by common SNPs included on genotyping arrays or imputed with HapMap genotypes. Novel AD markers that explain
large amounts of phenotypic variance are likely to be rare and unidentifiable using genome-wide association studies.
Based on our findings and the current direction of human genetics research, we suggest specific study designs for
future studies to identify the remaining heritability of Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia. Worldwide estimates of prevalence vary, with
estimates of 24 to 35 million people affected [1-3]. Combined
with an aging population, prevalence is expected to increase to
1 in 85 people by 2050 [2].

AD is a heterogeneous disease caused by a combination of
environmental and genetic factors. The most important risk
factor for Alzheimer’s disease is age [1,4]. Environmental risk
factors include hypertension, estrogen supplements [5],
smoking [6,7], stroke, heart disease, depression, arthritis, and
diabetes [8]. In addition, certain lifestyle choices appear to
decrease the risk of AD: exercise [9], intellectual stimulation
[10], and maintaining a Mediterranean diet (including fish)
[11,12].

The genetics of AD are complex. Several genes are known
to harbor either causative or risk variants for AD. There are two
primary types of AD as defined by age. The first is early-onset,
or familial AD, and the second type is late-onset AD (LOAD),
sometimes termed sporadic AD. Three genes, APP [13],
PSEN1 [14], and PSEN2 [15] are known to harbor many highly
penetrant, autosomal dominantly-inherited variants, which lead
to early-onset AD but account for only a small fraction of total
AD cases.

LOAD accounts for 99% of AD cases and is caused by a
more complex underlying genetic architecture. Genome-wide
association studies (GWAS) have identified 10 different loci
associated with AD (Table 1). Recent applications of next-
generation sequencing (NGS) have suggested rare variants
play important role and have large effects in the etiology of AD
[16-18]. Identifying additional variants will provide information
that is integral to the development, evaluation and application
of effective therapeutic strategies for AD. Lee et al. [19] used
3,333 cases and 3,924 controls, including 2,699 population-
based controls to estimate that common genetic variants
account for 24% of variance in AD. They also estimated the
contribution of APOE using several proxy SNPs, with varying
degrees of LD, with the APOE ε4 allele to estimate the APOE
effect at approximately 4%. Here we evaluate the variance in
AD status explained by common SNPs and along with all
recently identified AD genes, including direct genotyping of the
APOE ε2 and ε4 alleles, in 5,708 AD cases and 5,214 clinically
ascertained controls. We also suggest strategies for identifying
the remaining AD genes.

Methods

Dataset
We used the Alzheimer’s Disease Genetics Consortium

(ADGC) dataset described in Naj et al. [20] for our analyses.
Samples were genotyped using Affymetrix and Illumina SNP
chips. Quality control of the imputed data was performed as
described by Naj et al. 2011 [20]. Briefly, markers with a minor
allele frequency of less than 1% and deviation from HWE

where P<10-6 were removed. To have a common set of SNPs
across all samples, imputation to HapMap phase 2 (release 22)
[21] was performed using MaCH [22] and strand ambiguous
SNPs were removed, resulting in a rectangular dataset with
2,042,114 SNPs. Only SNPs imputed with R2 ≥ 0.50 were
included in the dataset. We added an additional two SNPs,
rs7412 and rs429358, corresponding to APOE ε2 and ε4,
respectively.

We used a compiled dataset of directly genotyped SNPs
common to all 15 studies to assess cryptic relatedness and
calculate principal components to account for population-
specific variations in allele distribution. We excluded strand
ambiguous SNPs, resulting in a rectangular dataset with
21,880 directly observed (not imputed) SNPs in common
across all the studies. We filtered SNPs with pairwise LD (r2) <
0.20, resulting in a dataset with 17,054 SNPs. We used both
PLINK [23] and KING-ROBUST [24] for relatedness analysis.
KING-ROBUST provided unbiased kinship coefficient
estimates for related individuals in our dataset. We excluded up
to 3rd degree relatives (kinship >= 0.0442) for a final dataset
containing 19,692 individuals.

Of the 19,692 individuals in the original dataset we analyzed
a subset of 10,922 individuals who had complete data for the
11 markers listed in Table 1, AD case-control status, age, sex,
and 10 principal components from the population stratification
analysis (missingness rates for each of the covariates and

Table 1. Late-onset Alzheimer’s disease associated genes/
variants.

Variant Gene Abbreviation
Odds
Ratio

rs429358 Apolipoprotein E (ε4 allele)[58] APOE 3.685
rs7412 Apolipoprotein E (ε2 allele)[59] APOE 0.621
rs744373 Bridging Integrator 1[32] BIN1 1.166
rs11136000 Clusterin[33,60] CLU 0.879

rs3764650
ATP-binding cassette, sub-family A
(ABC1), member 7[31]

ABCA7 1.229

rs3818361
Complement component (3b/4b) receptor
1 (Knops blood group)[60]

CR1 1.174

rs3851179
Phosphatidylinositol binding clathrin
assembly protein[33]

PICALM 0.879

rs610932
Membrane-spanning 4-domains,
subfamily A, member 6A[31]

MS4A6A 0.904

rs3865444 CD33 molecule[20,31] CD33 0.893

rs670139
Membrane-spanning 4-domains,
subfamily A, member 4E[31]

MS4A4E 1.079

rs9296559 CD2-associated protein[20,31] CD2AP 1.117

The dbSNP identification number, gene name, gene abbreviation, and odds ratio
for each of the top variants from the Alzgene.org meta-analyses. The SNP in
CD2AP, rs9349407, is not present in this sample, so we used rs9296559 instead
as a proxy. These two SNPs are close together (1,108 base pairs apart) and in
very high LD (r2=1).
doi: 10.1371/journal.pone.0079771.t001
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case-control status are reported in Table S1). Basic
demographic information for the 10,922 individuals in the
subset of the dataset used in this study is presented in Table 2.
We collected chromosome length and number of genes per
chromosome from the Vega database [25].

Genetic Analyses
We used Genome-wide Complex Trait Analysis (GCTA)[26],

a tool that implements the methods described in Yang et al.
[27], Lee et al. [28], and Yang et al. [29] to estimate the
phenotypic variance explained by known AD genes and tagged
by SNPs on the SNP arrays. Briefly, GCTA uses a mixed linear
model and treats the effects of SNPs as random effects,
effectively testing all the SNPs together for effect (in contrast to
GWAS, which considers each SNP individually). We used age,
sex, and 10 principal components as covariates. For the
analyses in which we examined unexplained phenotypic
variance, we also controlled for the 11 known AD markers
(Table 1). The 11 known AD markers are the AlzGene.org top
hits and are the markers with replicable evidence for
association with AD. Each of these markers is present in our
dataset except rs9349407 in CD2AP. As proxy we used
rs9296559, which is in very high LD with rs9349407 (r2=1). We
specified a population prevalence of LOAD at 0.13 [30].

Ethics Statement
All study procedures were approved by the Institutional

Review Boards of Brigham Young University and the University
of Washington.

Results

We estimated the variance in AD case-control status
focusing first on the 11 known AD markers (Table 1). Together
these markers account for 7.8% (standard error 0.03) of the
phenotypic variance (Table 3). Next, we estimated the
explained phenotypic variance for each chromosome (Figure
1). Chromosome 19 accounts for the highest proportion of
phenotypic variance.

In all, the 2,042,116 SNPs in the HapMap imputed ADGC
dataset explain 33.1% of phenotypic variance (genetic variance
of 0.0711, standard error 0.0072). The APOE ε2 and ε4 alleles
account for 5.9% (standard error 0.03) of the phenotypic
variance (Table 3). The other 9 known high frequency SNPs
identified in GWAS explain an additional 1.9% (standard error
0.03)(Table 3). After controlling for these 11 markers, an
additional 25.3% of the total phenotypic variance (genetic
variance of 0.046, standard error 0.006) is explained with as-
yet unidentified variants (Table 3). The remaining phenotypic
variance explained by each chromosome after controlling for
the 11 known markers is shown in Figure 2. SNPs on
chromosomes 1, 4, 5 and 17 account for the largest
percentage of remaining unexplained phenotypic variance
compared to other chromosomes, each accounting for more
than 2% (Figure 2). Chromosomes 9, 14, and 21 account for
the least (<0.0001% each); however, there is unexplained
phenotypic variance on all the autosomes. There is no
relationship between explained variance and chromosome

length (p-value = 0.8), or number of genes per chromosome (p-
value = 0.7).

Discussion

A clear understanding of the genetic architecture of
Alzheimer’s disease provides the foundation of information
needed to cure this terrible disease. While many large GWAS
for AD have been performed and several replicable loci have
been identified (as referenced in Table 1), relatively little
phenotypic variance is explained by these variants. Our
estimates of phenotype variance explained by common genetic
variants and by the APOE locus are higher than those of Lee et
al. [19]. We estimated total phenotypic variance explained by
common SNPs to be ~33%. In contrast Lee et al. [19]
estimated ~24%. In our study we used genotyped and HapMap
imputed SNPs, whereas Lee et al. [19] used only directly
genotyped SNPs. Inclusion of imputed SNPs improved
heritability estimates and suggests that imputed SNPs should
be included in such studies. In addition to using imputed
variants, our dataset was larger and our controls were clinically
ascertained. Differences in the estimates for APOE (~6% in this
study compared to ~4% in Lee et al. [19]) could be due to these
same characteristics as well as the direct genotyping of the
APOE ε2 and ε4 alleles in our samples as opposed to the use
of proxy markers. Regardless, both studies provide evidence
that a considerable amount of variance in AD is explained by

Table 2. Demographic information for individuals in the
analysis dataset.

 Count Cases / Controls Age (Cases / Controls)
Male 4489 2378/2111 74.8 (73.6 / 76.1)

Female 6433 3330/3103 75.3 (74.9 / 75.7)

Total 10922 5708/5214 75.1 (74.3 / 75.9)

We report total individuals, sex, case-control status, and average age for the
10,922 individuals analyzed in this report.
doi: 10.1371/journal.pone.0079771.t002

Table 3. Summary of genetic and phenotypic variance
measurements.

SNP Set
Genetic Variance
(Standard Error)

% Phenotypic Variance
(Standard Error)

All SNPs 0.071 (0.0072) 33.12% (0.033)
APOE ε2/ε4 0.020 (0.0066) 5.92% (0.033)
All known AD markers (Table
1)

0.025 (0.0066) 7.78% (0.033)

All SNPs excluding known AD
markers

0.046 (0.0060) 25.34% (0.033)

In this table we summarize our results, showing genetic and percent phenotypic
variance for four different subsets of SNPs: all SNPs in the ADGC dataset, the two
APOE alleles (ε2 and ε4), all known AD markers (as listed in Table 1), and all
SNPs excluding those in Table 1.
doi: 10.1371/journal.pone.0079771.t003
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yet unidentified genetic variation. Together these results show
that there is clearly much work to be done if we are to solve the
genetic architecture of AD. GWAS with sample sizes performed
to date are able to identify common variants with moderate to
small effect sizes. Results of GWAS in AD and other conditions
suggest there may be a large number of such variants and that
additional variants of this type can be identified by increasing
sample sizes. However, additional loci detected with the GWAS
strategy will likely have effects either similar to or smaller than
SNPs already identified. The range of SNPs identifiable by
current GWAS [20,31-36] is marked on Figure 3 by the large
box bordered by dots (the GWAS search space), with recent
GWAS hits inside the labeled oval. The GWAS being
conducted by the International Genomics of Alzheimer’s
Project represents a substantial increase in sample size and
will undoubtedly identify additional common loci with small
effects on AD risk. Nevertheless, it is unlikely that many
common variants of even modest effect size remain to be
identified.

There are still many AD variants that remain to be identified,
however, and these variants exist on every autosome (Figure
2). Variants with large effects are almost certainly present in
very low frequencies or they would have been identified in

GWAS. While such variants are unlikely to be detected using
traditional GWAS due to limitations of r2 based “tagging” for
alleles with different frequencies [37] the current analysis
allows for high D’ values between common alleles and rare
variants of large effect to contribute to the explained variance.
These rare variants of large effect appear in the smaller box
bordered with dashes in Figure 3. To date, identified alleles of
this type have clear functional effects and large effect sizes
compared to associated alleles from GWAS. Detecting rare
variants of large effect requires different experimental designs
than GWAS such as sequencing causal loci. Exome chip array
studies target known variation in coding regions, even those of
very low frequency; this may prove a promising and
economical approach. However, accurately genotyping variants
of less than 1-2% using these arrays is quite challenging, and
for variants that are present below these frequencies other
approaches are required.

Two seemingly contradictory hypotheses exist about the
architecture of complex disease: the common disease/common
variant hypothesis and the multiple rare variant hypothesis. In
the first, many common variants of small effect size collectively
explain disease risk, while in the second, rare variants, some
with large effect and high penetrance, explain disease risk.

Figure 1.  Unexplained Alzheimer’s disease variance, by chromosome.  In this figure we show phenotypic variance, by
chromosome, explained by all SNPs. Error bars correspond to standard error.
doi: 10.1371/journal.pone.0079771.g001
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However, as suggested by Singleton et al. [38] these two
hypotheses are not mutually exclusive and the genetics of
complex diseases are likely a hybrid of the two. Singleton et al.
[38] suggests that both common and rare variants that increase
or decrease disease risk are likely to be found in the same loci
and coined the phrase “pleomorphic risk loci”. To date, AD
genetics research has largely focused on common variants that
influence disease risk, likely due to technological and financial
constraints. However, the advent of next generation
sequencing (NGS) and falling costs of this technology have
made it possible to expand AD research to include searching
for rare variants. Recently, this technology was used to identify
a functional variant that protects against Alzheimer’s disease in
the amyloid precursor protein (APP)[17]. Additionally, two
groups recently used NGS to identify additional, likely
functional, variants associated with AD in the triggering
receptor expressed on myeloid 2 (TREM2) gene [16,18]. The
TREM2 variant is present in about 1% of the general
population and has a high odds ratio (2.9 to 5.1 depending on
the dataset). Likewise, the APP variant is extremely rare
(frequency of 0.00038), but confers a large protective effect on

carriers. Larger scale applications of this technology and
careful study design are likely to identify additional variants and
further explain the remaining phenotypic variance in AD.

Family-based studies are also an effective application of
NGS. These studies require carefully ascertained families and
accurate pedigree data and can be used to identify high effect,
low frequency variants (located in the box with longer dashes in
Figure 3). Family-based studies are especially powerful
because large effect, low frequency disease-causing (or
disease-modifying) sequence features, some of which may be
unique to a single family, are likely to segregate, at least
partially, with disease status. These approaches have not yet
been extensively applied in AD research. Nevertheless, family-
based studies utilizing large-scale genome or exome
sequencing have recently been used to identify disease-
causing variants in several Mendelian [39-41] and complex
disorders [42,43].

It is also possible that gene-gene interactions account for
much of the unexplained variance in AD status [44]. These
interactions are widespread and common [45,46] and
approaches to understand the effects of epistatic interactions

Figure 2.  Unexplained Alzheimer’s disease variance, by chromosome, excluding known Alzheimer’s disease
markers.  This figure is the same as Figure 1 except we have removed variance explained by known Alzheimer’s disease markers.
Error bars correspond to standard error.
doi: 10.1371/journal.pone.0079771.g002
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exist and continue to mature [44,47]. Several interesting
candidate interactions have been identified and Ebbert et al.
2013 (accepted) recently demonstrated that allowing
interactions improves the diagnostic utility of the known AD
markers. Unfortunately, the complexity of this problem and the
extremely large samples sizes required to perform agnostic
screens for gene-gene interactions make it very difficult to
conduct effective screens for these effects.

AD is a highly complex disease with substantial genetic and
environmental components. Our results suggest that genetic
variance accounts for ~30% of phenotypic variance, but over
75% of this phenotypic variance remains unexplained by
currently identified AD genes. Future AD genetics research
must leverage larger samples and novel technologies such as

NGS to identify rare, high penetrant variation and gene-gene
interactions that are likely to explain the remaining genetic and
phenotypic variance in AD.

Genetic research in AD has followed roughly the same
model as the study of other complex diseases; largely focusing
on the identification of common variants of modest effect using
association studies. Scientist in many disease fields have
successfully identified numerous associated variants (this is a
small representative sample [48-57]). The transition from a
focus on common variants to a focus on the identification of low
frequency variants is now underway. These rare, functionally
relevant markers are often more easily characterized than
common variants of small effect. This will lead to strong and
testable hypotheses for the development of therapeutics, thus

Figure 3.  Variant search space.  Real and hypothetical variants are graphed by effect size (y-axis) and population frequency (x-
axis). Known Alzheimer’s disease SNPs are blue circles and hypothetical SNPs are red circles. The large box on the right outlined
with dots, is the GWAS search space and the smaller box on the left, outlined with dashes, is the next-generation sequencing
search space. Known Alzheimer’s disease SNPs are those found in Table 1 as well as APP and TREM2, which are both labeled on
the graph.
doi: 10.1371/journal.pone.0079771.g003
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accelerating the progress toward effective prevention and
treatment.

Supporting Information

Table S1.  Missingness rates for covariates and case-
control status. The Alzheimer’s Disease Genetics Consortium
dataset consists of 19,692 total individuals. We removed any
individuals missing any of the covariates (listed here) or case-
control status (included in this table).
(DOCX)
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