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a b s t r a c t 

Four novel ionic liquid tagged azo-azomethine derivatives (L1-L4) have been prepared by the conden- 

sation reaction of azo-coupled ortho-vaniline precursor with amino functionalised imidazole derivative 

and the synthesized derivatives (L1-L4) have been characterized by different analytical and spectroscopic 

techniques. Molecular docking studies were carried out to ascertain the inhibitory action of studied 

ligands (L1-L4) against the Main Protease (6LU7) of novel coronavisrus (COVID-19). The result of the 

docking of L1-L4 showed a significant inhibitory action against the Main protease (M 

pro ) of SARS-CoV- 

2 and the binding energy ( �G) values of the ligands (L1-L4) against the protein 6LU7 have found to 

be −7.7 Kcal/mole (L1), −7.0 Kcal/mole (L2), −7.9 Kcal/mole (L3), and −7.9 Kcal/mole (L4).The efficiency 

of the ligands has been compared with the FDA approved and clinically trial drugs such as remdesivir, 

Chloroquin and Hydroxychloroquin and native ligand N3 of main protease 6LU7 to ascertain the inhibitory 

potential of the studied ligands (L1-L4) against the protein 6LU7. Pharmacokinetic properties (ADME) of 

the ligands (L1-L4) have also been studied. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

n  

o  

H  

q  

[  

w  

m  

d  

a  

t  

t  

h  

p  

1  

s  

l  

c  

7

[  

a  

i  

m  

[  

t  

t  

t  

k  

C  

t  

p  

1  

a  

l  

[  

t  

i  

n  

t  

h

0

. Introduction 

After the outbreak of severe acute respiratory syndrome coro-

avirus 2 (SARS-CoV-2) in December 2019 from the Wuhan city

f China, the infectious disease was declared pandemic by World

ealth Organization (WHO) on 11the March 2020 and subse-

uently, the whole world witnessed a global health emergency

1] . As of June 11th 2020, the COVID-19 disease has spread to the

hole world with over 7.4 million confirmed cases and over 0.4

illion confirmed deaths (worldometer, June 11th 2020). After the

eclaration of novel coronavirus (COVID-19) infection as pandemic,

 number of countries took a preventive measure to slow down

he spread of the coronavirus (COVID-19) by implementing manda-

ory lockdown or national quarantine and as a result of mandatory

ome quarantine or isolations, more than a third of the planet’s

opulation faced some form of restriction (Business Insider, April

7th 2020). Early research on COVID-19 have shown that the cross

pecies and human to human transmission of the virus is regu-

ated by spike protein receptor binding domain and its host re-

eptor (ACE2) as similar to SARS-CoV which was outbreak in 2002
∗ Corresponding author. Department of Chemistry, St. Joseph’s College, Darjeeling, 
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2] . Till date, no specific vaccine or therapeutic agents are avail-

ble for the treatment of COVID-19 infection and several exist-

ng FDA approved antmaliarial and antiviral drugs have been for-

ulated as a supportive care for the treatment of this infection

3] . Therefore, a rapid formulation of novel compounds as a po-

entential therapeutic agent for COVID-19 infection is an impor-

ant mission [4] . Recent studies on SARS-CoV-2 have shown that

he 3CL hydrolase (chymotrypsin-like protease, PDB ID: 6LU7), also

nown as the main protease (Mpro) of novel coronavirus (SARS-

oV-2) plays an important role in the life cycle of coronavirus and

hus, its inhibition could provide a promising therapeutic princi-

le for developing strategic and specific treatment against COVID-

9 infection [5, 6] . Apart from the existing FDA approved antiviral

nd antimalarial drugs, Traditional Chinese Medicine has gained a

ot of interest to treat coronavirus (COVID-19) infection in China

7–12] . Identification of potential inhibitors for specific disease by

raditional methods are time consuming and expensive. However,

n-silico techniques such as molecular docking and molecular dy-

amic have gained lot of interest for the identification of poten-

ial inhibitors for specific disease in recent years [13, 14] . Since, the

ain protease (3CL pro ) of coronaviruses is conserved and there-

ore many research groups are engaged in finding the effective

nhibitors for COVID-19 Protease (Mpro) by virtual screening ap-

roach using the library of small molecules (antiviral, antimalar-

https://doi.org/10.1016/j.molstruc.2020.129178
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2020.129178&domain=pdf
mailto:dhirajslg2@gmail.com
https://doi.org/10.1016/j.molstruc.2020.129178
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ial, plant derived, fungal metabolites and synthesized molecules)

[15–31] . Recently, computer aided drug design namely molecular

docking and molecular dynamic study have gained a lot of interest

in the field of drug designing for the treatment of specific disease

[32, 33] . On the other hand, azo or diazene compounds containing

conjugated chromophoric azo (- N = N -) group are an important

class of organic colorants which are mostly studied during recent

years [34] . These colorant compounds are widely used as a class of

dyes due to their versatile application in various fields such as the

dyeing of textile fiber, coloring of different materials, plastics, cos-

metics industries, biological-medical studies and advanced applica-

tion in organic synthesis [35, 36] . Furthermore, the azo compounds

were found to possess a variety of biological activities such as an-

tibacterial, antifungal, antiviral and anti-inflammatory etc., [37–40] .

Interestingly, azo compounds are found to involve in many bio-

logical processes such as nitrogen fixation, inhibition of DNA, RNA

and protein synthesis, and carcinogenesis [41] . Moreover, Microor-

ganisms, fungi, fungal endophytes, lichenized, ascomycetes, plant

parts (bark, berries, leaves, roots, and wood), and marine inverte-

brates are found to posses natural diazine or azo alkaloids. In re-

cent years, several azo metabolites have been isolated from acteno-

mycetes, fungal species, terrestrial and marine sources [42] . Valan-

imycin and its derivatives (isloalted from Streptomyces viridifaciens,

MG456-hF10), maniwamycins A and B (isolated from Streptomyces

prasinopilosus ), azoxybacilin (isolated from Bacillus cereus, NR2991),

Elaiomycin (isolated from Streptomyces hepaticus ), Elaiomycins K, L

and amide elaiomycin K (isolated from Streptomyces sp., Tu ̈ 6399),

jietacins A and B (isolated from Streptomyces sp.), lyophyllin (iso-

lated from mushroom Lyophyllum shimeji ), calvatic acid (isolated

from fungi Calvatia craniformis ) etc., are the actenomycetes and

fungal metabolites which have naturally occurring azo groups and

they are found to posses antibiotic activities [43–52] . Thus, it was

thought worthwhile to investigate the inhibitory potential of the

synthesized azo derivatives against the main protease of COVID-19

and therefore, in this article, we report the computational study on

inhibitory action of synthesized Azo imidazole derivatives (L1-L4)

against COVID-19 main Protease (M 

pro ). 

2. Experimental 

2.1. Materials and methods 

All the reagents used were of analytical grade and used

without further purification. orthovaniline, Aniline, 2 chloroanin-

line, 4-chloroaniline, and 4-fluoro aniline were procured from

Sd fine chemical company, India.1-methylimidazole, KPF 6 and 2-

bromoethylaminehydrobromide were procured from sigma Aldrich

and used without further purification. All the solvents used were

of spectroscopic grade. 

2.2. Instrumentation 

The IR spectra of the synthesized compounds were analyzed

using Perkin-Elmer Spectrum FT-IR spectrometer (RX-1) operating

in the region 40 0 0 to 40 0 cm 

−1 in KBr. 1 H NMR spectra were

recorded at room temperature on a FT-NMR (Bruker Advance-II

400 MHz) spectrometer using DMSO–d 6 as solvents and chemical

shifts are quoted in ppm downfield of internal standard tetram-

ethylsilane (TMS). Elemental microanalyses (C, H and N) were con-

ducted by using Perkin–Elmer (Model 240C) analyzer. The purity of

the prepared compounds was confirmed by thin layer chromatog-

raphy (TLC) on silica gel plates and the plates were visualized with

UV-light and iodine as and when required. 
.3. Preparation of protein and ligand for docking study 

The X-ray crystallographic structures of main protease (Mpor,

DB ID 6LU7) of SARS-CoV-2 has been retrieved from the Protein

ata Bank (PDB) ( http://www.pdb.org .) database. Graphical User

nterface program “Auto Dock Tools (ADT) 1.5.6 ′′ from Molecular

raphics Laboratory (MGL) developed by Scripps Research Insti-

ute has been employed for the preparation of protein for docking

tudy [53] . Input file of receptor protein for the docking study is

reated by taking specific china (Chain A) of the protein (6LU7). In

 typical receptor protein preparation, water molecules and het-

ro atoms along with the co-crystallised ligands in PDB crystal

tructures were removed and subsequently, the receptor .pdbqt file

as been created by adding polar hydrogen atoms and Kollman

nited atom charges [54] . The three dimensional (3D) structures

f ligands (L1-L4) were drawn using Chemsketch (ACD/Structure

lucidator, version 12.01, Advanced Chemistry Development, Inc.,

oronto, Canada, 2014, http://www.acdlabs.com .) and geometry op-

imization of the ligands (L1-L4) were carried out using MM2

rogram incorporated in Chem. Draw Ultra 8.0 and further op-

imization of geometry of each molecule were carried out with

he MOPAC 6 package using the semi-empirical AM1 Hamiltonian

55] . The input .pdbqt file of the ligands was generated using Auto

ock Tools (ADT). As the ligand molecules (L1-L4) are non pep-

ides, therefore, Gasteiger charge was assigned and then non-polar

ydrogen was merged. The structure of the ligands L1-L4 is given

n Fig. 1 . 

.4. Docking study using AutoDock Vina 

All molecular docking simulations were carried out in the

utoDock Vina programe 1.1.2 developed by Scripps Research in-

titute [56] . and the results of the docking study and the inter-

olecular interactions between receptors and the ligand molecules

ere analyzed using BIOVIA Discovery Studio 2020 (DS), version

0.1.0.0 (Dassault Systèmes BIOVIA, Discovery Studio Modeling En-

ironment, Release 2017, San Diego: Dassault Systèmes, 2016) and

du pymol version 1.7.4.4 [57] . The three dimensional (3D) affin-

ty (grid) maps and electrostatic a grid boxes of 50 ×50 ×50 Å grid

oints and grid center (X, Y, Z) of −26.283 12.599 58.966 with a

pacing of 1.00 Å generated by AutoGrid auxiliary program for each

f the receptor for blind docking were generated to cover the en-

ire active site of the receptor protein in order to eliminate any

iasness arising during the docking simulation [58] . Lamarckian

enetic algorithm and a standard protocol with default setting of

ther run parameters were used for docking simulation. For each

ocking experiments, several runs were performed by the program

ith one predicted binding mode with each run. All the torsions

ere allowed to rotate. The predicted inhibitory constant ( pK i ) has

een calculated using the following standardized equations [59–

1] . 

 K 

i = 10 [ Binding Energy Score / 1 . 336 ] 

.5. Synthesis 

.5.1. General procedure for the synthesis of azo imidazole 

erivatives, L1 - L4 

azo imidazole derivatives has been synthesized by following

he literature procedure given elsewhere [37, 62–65] . In a typ-

cal synthetic procedure 1-(2-Aminoethyl) −3-methylimidazolium

exafluoro-phosphate, ([2aemim] [PF 6 ]) (5 mmol) in absolute

thanol was pour in a stirring solution of azo-coupled o-vaniline

recursors (5 mmol) in 20 ml of absolute ethanol during a pe-

iod of 10 min. The reaction mixture was then refluxed in an oil

ath for 6 h at 90 °C with constant stirring with the help of mag-

etic stirrer and the progress of the reaction monitored by TLC

http://www.pdb.org
http://www.acdlabs.com
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Fig. 1. Structure of Azo Imidazole ligands (L1-L4). 

Scheme 1. Syntheses of Azo Imidazole derivatives L1-L4. 
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10% ethyl acetate in hexane as eluent). The solution was cooled

o room temperature and the solid product thus obtained was fil-

ered, washed with little ethanol and diethyl ether respectively and

nally recrystallized from hot ethanol solution and dried over silica

nder vacuum to get the pure products ( Scheme 1 ). 

The analytical and spectroscopic data for each of the synthe-

ized azo imidazole derivatives (L1-L4) are given in supplementary

ata file SD1. 

. Results and discussion 

Azo imidazole derivatives has been successfully prepared by the

ondensation reaction of 1-(2-Aminoethyl) −3-methylimidazolium 

exafluoro-phosphate, ([2aemim] [PF 6 ]) with substituted azo-

oupled o-vaniline precursors in ethanol. All the isolated com-

ounds (L1 - L4) were found to be air stable solid, soluble in com-

on organic solvents like methanol, ethanol, acetonitrile, DMF,

MSO etc., and intensely colored compounds. 

.1. IR spectral studies 

In order to ascertain the binding mode in the synthesized azo

midazole derivatives L1-L4, the IR spectra of the compounds were

losely analyzed. In the solid state IR spectrum of the Azo im-

dazole derivatives (L1-L4), appearance of bands in the IR spec-

ra of L1-L4 in the range 1620–1647 cm 

−1 can be assigned to the

tretching vibration of azomethine linkage ν(- C = N ) [64, 66] . As-

rong band at 33,100–3436 cm 

−1 can be assigned to stretching fre-

uency of OH group, ν(OH) group [67] . A band appearing in the

ange 1593–1616 cm-1 in the IR spectra of L1-L4 derivatives can be
ssigned to ν( C = C ) stretching frequency. Also, the N = N stretch-

ng frequency of the synthesized compounds are found at 1542–

552 cm 

−1 and 1453–1500 cm 

−1 and the N = N bending vibra-

ions are found in the range 1153–1176 cm 

−1 and 956–969 cm 

−1 .

R spectra of the representative compound L1 is depicted in Fig. 2 .

 band in the range 838–842 cm 

−1 in the IR spectrum of deriva-

ives (L1-L4) can be assigned for stretching vibration of PF 6 group

65] . Thus the IR spectral data therefore supports the formation of

he compounds (L1-L4). The IR spectra of L2, L3 and L4 are de-

icted in supplementary figures (Fig. S1.1-Fig. S1.3). 

.2. 1 H NMR spectral studies 

The 1 H NMR spectra of the synthesized azo imidazole deriva-

ives L1-L4 recorded in DMSO–d 6 at ambient temperature, displays

 group of signals corresponding to the hydrogen of each molecule.

n the 1 H NMR spectrum of L1-L4, the signal corresponds to OH

roton exhibited a slightly broad singlet peak at δ 13.3–13.50 ppm

nd the signal for CH 

= N proton of the compounds L1-L4 appeared

s a singlet in the range δ 8.56–8.61 ppm. The appearance of the

ollowing peaks, triplet in the range δ 7.62–7.68 ppm for (NCH)

roton, triplet in the range δ 7.73–7.76 for (NCH) proton and sin-

let in the range δ 9.11–9.17 ppm for N (H) CN proton respec-

ively is in good agreement with the proposed structure for the

ynthesized compounds L1-L4. Signals for NCH 3 and OCH 3 pro-

ons appeared in the range δ 3.37–3.76 and δ 3.91–3.97 respec-

ively. The aromatic protons of all the synthesized compounds (L1-

4) appeared as multiplate in the range δ 7.31–7.95 ppm. The NMR

pectra of representative compound L1is depicted in Fig. 3 and the

MR spectra of other compounds (L3 and L4) are listed in supple-

entary figures (Fig. S1.4 & Fig. S1.5). 
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Fig. 2. Infrared Spectra of Compound L1. 

Fig. 3. 1 H NMR spectra of compound L1. 
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3.3. Pharmacokinetic properties of L1-L4 

Pharmacokinetics provides information about drug concentra-

tions in the different parts of the organism with respect to time.

Drugs when administered into the body of an organism, it needs

to cross different biological barriers. Thus, the main properties

like absorption, distribution, metabolism and excretion (ADME) are

very important parameters for any compounds to be considered as

a drug and therefore prior to any clinical and animal studies it is

relatively important to ascertain their pharmacokinetic properties

of the molecules under consideration [68] . The properties such as

lipophilicity (LogPo/W), gastrointestinal absorption (GI), water sol-

uble capability (Log S), and CYP1A2 inhibitor, Blood - Brain Bar-

rier (BBB) are very important pharmacokinetic parameters for any

compounds [69] . Therefore, we also determine the pharmacoki-

netic properties such as lipophilicity (LogPo/W), gastrointestinal

absorption (GI), water soluble capability (Log S), and CYP1A2 in-

hibitor, Blood - Brain Barrier (BBB) of the studied compounds (L1-

L4) to ascertain their drug likeness character using SwissADME
atabase ( http://www.sib.swiss ) and the Lipinski’s properties and

harmacokinetic properties of compounds (L1-L4) and standard

rug remdesivir are depicted in Table 1 [70] . 

From Table 1 , it is evident that the compounds (L1-L4) with

ioavailability 55% have consensus lipophilicity (LogPo/W) value

n the range 2.41–2.89. Thus the high and positive lipophilicity

alues (LogPo/W) which indicates that the compounds are more

ipophilic. Lipophilicity is an important phartmacokinetic property

f drug candidate in the development of its dosage form, because

rug molecules must pass through the lipid bilayer of most cellu-

ar membranes. Therefore, generally it is believed that for a drug

olecule to have good absorption, it must be lipophilic. According

o Lipinski’s Rule of Five, the partition coefficient should be pos-

tive, but less than 5 i.e., log 10 PC = 5 [71] . Therefore, the studied

ompounds (L1-L4) with positive and less than 5 (LogPo/W) values

an have good absorption in the body and the studied molecules

all on the category of good lipophilic compounds. However, the

ompounds (L1-L4) are moderately soluble in water as indicated by

heir solubility (LogS) values which ranges from −3.83 to −4.42. All

http://www.sib.swiss
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Table 1 

Lipinski’s properties and pharmacokinetic properties (ADME) of the ligands L1-L4 and drug Remdesivir. 

Properties L1 L2 L3 L4 Remdesivir 

Molecular weight (gm/mole) 364.42 398.87 398.87 382.41 602.58 

Rotatable bonds 7 7 7 7 14 

H-bond donor (5) 1 1 1 1 4 

H-bond acceptor 5 5 5 6 12 

Violations 0 0 0 0 2 

Log Po/W 2.41 2.89 2.89 2.70 1.81 

Log S −3.83 

(MS) 

−4.42 

(MS) 

−4.42 

(MS) 

−3.99 

(MS) 

−4.12 

(MS) 

GI High High High High Low 

BBB No No No No No 

CYP1A2 No No No No No 

Bioavailability Score 0.55 0.55 0.55 0.55 0.17 

Topological Surface Area ( ̊A 2 ) 76.40 76.40 76.40 76.40 213.36 

∗MS: Moderately Soluble, BBB: Blood-Brain Barrier, CYP: Cytochrome P450, GI: Gastrointestinal tract. 

Fig. 4. Structure of M 

pro of SARS-Cov-2 with domain I, II and III (yellow circle rep- 

resents catalytically active site). 
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v  
he studied compounds have high gastrointestinal absorption. The

ompounds (L1-L4) have no Blood-Brain Barrier and CYP1A2 prop-

rties. Thus from the pharmacokinetic analysis, it can be seen that

he compounds (L1-L4) qualifies the drug likeness criteria with no

ipinski rule violations and these compounds can serves as a po-

ential drug candidate. 

.4. Molecular docking study 

Recent study on structural analysis of M 

pro of SARS-CoV-2 have

hown that it also has same location of active site as Mpro of SARS

irus and it is located between the domain I and domain II of pro-

ein 6LU7 ( Fig. 4 ). 

The catalytic dyad (Cys145-His41) is present on the active site

f the protein and both the domain contributes one residue to the

atalytic dyad [72, 73] . The Cys-His-catalytic dyad of M 

pro shows

rotease activity and thus inhibition the catalytic dyad in M 

pro 

ould become an attractive target for designing anti-CoV drug [74] .

s of now, no treapeutic agents or vaccine have been developed
pecifically to treat the infection caused by SARS-CoV-2 [73] . How-

ver, several FDA approved antiviral, anti HIV and anti Malarial

rugs have been used as supportive measures to treat and prevent

urther spread of infection caused by SARS-CoV-2 infection [75–

7] . On the other hand, azo containing molecules such as Valan-

mycin, maniwamycins A and B, Elaiomycin etc., are ubiquitous in

ature and these azo compounds are highly bioactive and some

f them have been used as antibiotics to cure specific disease

43–45] . Prontosil and Phenazopyridine are FDA approved antibi-

tic drugs containg Azo group.Prontosil is widely used antibacte-

ial drug which contains azo linkage and sulfonamide group and

t has also been used to cure puerperal fever [78, 79] . Phenazopyri-

ine is used as local analgesic effects on the urinary tract infection

nd also sometimes used with antibiotics for immediate symp-

omatic relief [80] . Since, the traditional method of drug formula-

ion is time consuming and therefore, computational method such

s molecular docking and molecular dynamic simulation study

ay be an alternative way to find out the potential drug candi-

ates for the specific disease at relatively less time [81] . Study of

rotein- ligand interactions with the help of computer aided drug

esign method such as molecular docking can provide a promising

nd potential therapeutic agent for the treatment of specific dis-

ase. Therefore, in this study we are utilizing the molecular dock-

ng method to study the efficiency of azo imidazole derivatives (L1-

4) as inhibitors of M 

pro of SARS-CoV-2. The results obtained from

hese docking studies indicated strong interactions of ligands (L1-

4) with (M 

pro , 6LU7) of SARS-CoV-2 near the domain pocket I. A

ummary of the results obtained from successful docking of stud-

ed ligands (L1-L4) with main protease (M 

pro , 6LU7) are summa-

ized in Table 2 . 

.5. Visualization of docking results 

It has been reported that the amino acid residues His41, Cyd145

nd Glu166 are important residues in substrate binding site and

nvolvement of these residues in the formation of hydrogen bond

ould be prominent for the inhibitory effect of main protease

M 

pro ) [82] . After successful docking of all the ligands (L1-L4) with

 

pro of SARS-CoV-2, the results showed significant interactions

nd binding of ligands with the protein 6LU7. The binding ener-

ies ( �G) and predicted inhibitory constant ( pK i ) of the ligands

L1-L4) are −7.7 Kcal/mole, −7.0 Kcal/mole, −7.9 Kcal/mole, and

7.9 Kcal/mole respectively and 1.72 μM, 5.76 μM, 1.22 μM and

.22 μM respectively. 

The docking result of L1 with the Protease (6LU7) showed that

he ligand (L1) fits inside the core pocket region of the protease at

he interface between domain I and domain II ( Fig. 5 ). 

A closed analysis of the binding of L1 with the protein 6LU7 re-

ealed that the L1 binds to the protein with binding energy ( �G)
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Table 2 

Summary of docking of ligand (L1-L4) against COVID-19 Main Protease (M 

pro , 6LU7) with their binding energy ( �G), predicted inhibitory constant (pK i ), interacting amino 

acid residues and types of interactions. 

Ligands 

Binding Energy ( �G) 

(Kcal/mole) 

Predicted inhibitory 

constant (pK i ) μM Amino Acid residues Types of interactions 

L1 −7.7 1.72 Gly143 and Ser144 H-bond 

Met165 π -Sulpher 

His163 and His172 π -alkyl 

Thr24, Thr25, Phe140 and Cys145 π -donor H-bond 

Thr26, Leu27, His41, Thr45, Met49, Leu141, 

Asn142, Glu166 and Gln189 

Van der walls 

L2 −7.0 5.76 Leu141, Ser144 and Cys145 H-bond 

His163 and His172 π -alkyl 

Thr24, Thr26 and Phe140 π -donor H bond 

Thr25, Leu27, His41, Met49, Asn142, Gln143, 

Met165, Glu166 and Gln189 

Van der walls 

L3 −7.9 1.22 Gly143 and Ser144 H-bond 

Met165 π -sulpher 

His163 and His172 π -alkyl 

Thr24, Thr25, Thr26, Phe140 and Cys145 π -donor H bond 

Leu27, His41, Thr45, Met49, Asn142, Glu166, 

Gln189 and Thr190 

Van der walls 

Leu141 Unfavorable Acceptor- 

acceptor 

L4 −7.9 1.22 His41, Leu141 and Cys145 H-bond 

Gln189 and Thr190 Halogen (F) bond 

His163, Met165 and His172 π -alkyl 

Thr24, Thr26 and Phe140 π -donor H bond 

Thr25, Leu27, Thr45, Met49, Asn143, Gln143, 

Ser144 and Glu166 

Van der walls 

Fig. 5. Visualization of docking of Ligand L1 docked in M 

pro (6LU7) (A) Best binding mode of protein (Ligand L1 as green and red stick), (B) Amino acid residues involved 

in hydrogen bonding interaction (green dash line represents H-bonding) and (C) Binding interaction (2D) of ligand L1 with amino acid residues of protein 6LU7 (green dash 

line represents H-bonding and yellow dashed line represents π-sulpher interaction). 
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−7.7 Kcal/mole. Ligand L1 forms two hydrogen bonds with pro-

tein 6LU7. The first hydrogen bond is formed by NH 2 group of the

amino acid residue Gly143 with O atom of OH group of ligand L1

at a distance 2.58 Å and the second hydrogen bond is formed be-

tween OH group of residue Ser144 and proton (H) of OH group

of ligand L1 at a distance 2.50 Å. Apart from hydrogen bond, S

atom of residue Met165 form π-Sulpher bond with π electrons

of azobenzene moiety. π-alkyl interactions also exist between the

π-electro of residues His163 and His172 and OCH 3 group of L1.

The amino acid residues Thr25, Thr25 Cys145 and Phe140 form π-

donor hydrogen bonds with L1. The residues ThrR26, Thr45, Leu27,

His41, Met49, leu141, Asn142 Glu160 and Gln189 are observed to

interact with the ligand L1 through Van der walls interactions. 

The visualization of docking result of L2 with main protease

(6LU7) revealed that the L2 binds with the Protein at the in-

terface between domain I and domain II with binding energy

−7.0 Kcal/mole. It shows significant binding with three hydrogen
onding interactions between, C = O group of amino acid residue

eu141, OH group of residue Ser144 and proton (H) of OH group

f L2 at a distance 1.74 Å and 2.88 Å respectively and NH(amide)

roup of residue Cys145 with O atom of OH group of L2 at a dis-

ance 2.59 Å (Fig. S1.6). The other types of interactions are π-alkyl

nteractions between the π-electron of residues His163 and His172

nd OCH 3 group of L2.The residues Thr24, Thr26 and Phe140 are

ound to interact with the ligand L2 through π-donor hydrogen

ond. Apart from these, amino acid residues Thr25, Leu27, His41,

et49, Asn142, Gly143, Met165, Glu166 and Gln189 found to in-

eracts with the ligand L2 through Van der walls interactions. 

The docking of ligand L3 with the protein 6LU7 revealed that

he ligand binds tightly with the protein residues with binding en-

rgy −7.9 Kcal/mole and the significant interactions are character-

zed by two hydrogen bonds. The first hydrogen bond is formed

etween the NH 2 group of residue Gly143 and O atom of OH group

f L3 at a distance 2.21 Å and second hydrogen bond exist be-
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Table 3 

Comparison of binding energy ( �G) of ligand (L1 –L4) with previously 

reported docking result of some FDA approved and clinically trial an- 

tiviral and anti malarial drugs and ligand N3 against main protease of 

Covid-19 (6LU7). 

Compounds (drugs) Binding energy, �G (Kcal/mol) 

Remdesvir −5.8 [83] , −7.215 [84] , −2.47 [30] 

−6.5 [85] −9.70 [87] 

Chloroquine −7.5 [83] , −3.62 [30] −5.1 [85] −5.75 

[86] 

Hydroxychloroquine −6.7 [85] −5.21 [86] 

N3 −7.7716 [87] , −8.396 [88] 

L1 −7.7 [this work] 

L2 −7.0 [this work] 

L3 −7.9 [this work] 

L4 −7.9[this work] 
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ween the OH group of amino acid residue Ser144 and proton (H)

f OH group of L3 at a distance 2.81 Å. The residue Met165 form

-Sulpher interactions between the π-electron of ligand L3 and S

tom of amino acid residue (Fig. S1.7). The other types of inter-

ctions are π-alkyl ( π electron of His163 and His172 with OCH 3 

roup) and π-donor hydrogen bonds (Thr24, Thr25, Thr26, Phe140

nd Cys145). Apart from these interactions, the residues Leu27,

is41, Thr45, Met49, Asn142, Glu166, Gln189 and Thr190 are found

o interact with L3 through Van der walls interactions. An unfavor-

ble acceptor-acceptor interaction between the ligand and residue

eu141 has also been observed. 

The visualization of docking result of ligand L4 with the pro-

ein 6LU7 revealed that the ligand binds with the protein residues

ear the interface of domain I and domain II with binding en-

rgy ( �G) −7.9 Kcal/mole. Three hydrogen bonding interactions

xist between the protein residues and ligand L4. The two hydro-

en bonds are found to exist at the catalytic dyad (Cys145-His41)

etween the NH (imidazole ring) of residue His41 and N atom of

zomethine ( C = N ) group of ligand at a distance 2.91 Å and NH 2 

roup of residue Cys145 and O atom of OH group of L4 at a dis-

ance 2.65 Å. The other hydrogen bond is formed by the C = O

roup of residue Leu141 with proton (H) of OH group of L4 at a

istance 2.19 Å (Fig. S1.8). The C = O (amide) group of residue

ln189 and C = O group of residue Thr190 have been found to

orm halogen bond with F atom of L4 at a distance 3.60 Å and

.56 Å respectively. Other interactions include π-alkyl ( π elec-

ron of residues His163, Met165 and His172 and OCH 3 group of

4) and π-donor hydrogen bond (Thr24, Thr26 and Phe140). The

mino acid residues Thr25, Leu27, Thr45, Met49, Asn142, Glu143,

er144 and Glu166 found to interact with the ligand through Van

er walls interactions. 

The binding energy ( �G) value of ligands L1-L4 has been com-

ared with the previously reported binding energy ( �G) values of

DA approved and clinically trial antiviral and antimalarial drugs

uch as Remdesivir, choloroquin and hydroxychloroquine and na-

ive ligand N3 of protein 6LU7 in order to ascertain the inhibitory

otential of the studied ligands (L1-L4) against the main protease

6LU7) of SARS-CoV-2 and it is represented in Table 3 . 

Therefore, it is evident from Table 3 that the clinically trial

ntiviral drug Remdesivir has binding energy ( �G) in the range

2.47—9.70, antimalarial drugs, Chloroquin and Hydroxychloroquin

as binding energy ( �G) in the range −3.63—7.5 Kcal/mole respec-

ively and the ligand N3 has binding energy ( �G) value in the

ange −7.77—8.36 Kcal/mole. In our work the binding energy ( �G)

alue of the ligands (L1-L4) have been found to be −7.7 Kcal/mole

L1), −7.0 Kcal/mole (L2), −7.9 Kcal/mole (L3) and 7.9 Kcal/mole

L4) respectively. Thus from this comparison, it may be conclude

hat the ligands (L1-L4) could act as a potential inhibitor molecule

gainst SARC 

–CoV-2. 
. Conclusion 

In this article, we have reported the molecular docking study of

our ligands (L1-L4) against the main protease (6LU7) of SARS-CoV-

 to ascertain the inhibitory potential of these ligands. The dock-

ng results attributed various types of protein- ligand interactions

nd it is also seen that the lignads shows significant interactions at

he interface between domain I and domain II. Furthermore, most

f the ligands show interaction at the Cys-His-catalytic dyad. The

harmacokinetic study has revealed that the ligands (L1-L4) could

ct as a potential drug candidate. Thus, it is evident that various

ind of favorable interactions exist between the ligands (L1-L4) and

he main protease 6LU7. Therefore, on the basis of computational

tudy, it may concluded that the ligands (L1-L4) could act as po-

ential inhibitor against the main protease (6LU7) of SARS-CoV-2.

urthermore, in vivo and in vitro study is required to ascertain the

roper binding mechanism and understanding the drug behavior

f the studied ligands (L1-L4). 
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