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Abstract

Recent Hi-C measurements have revealed numerous intra- and inter-chromosomal interac-

tions in various eukaryotic cells. To what extent these interactions regulate gene expression

is not clear. This question is particularly intriguing in budding yeast because it has extensive

long-distance chromosomal interactions but few cases of gene regulation over-a-distance.

Here, we developed a medium-throughput assay to screen for functional long-distance inter-

actions that affect the average expression level of a reporter gene as well as its cell-to-cell

variability (noise). We ectopically inserted an insulated MET3 promoter (MET3pr) flanked by

~1kb invariable sequences into thousands of genomic loci, allowing it to make contacts with

different parts of the genome, and assayed the MET3pr activity in single cells. Changes of

MET3pr activity in this case necessarily involve mechanisms that function over a distance.

MET3pr has similar activities at most locations. However, at some locations, they deviate

from the norm and exhibit three distinct patterns including low expression / high noise, low

expression / low noise, and high expression / low noise. We provided evidence that these

three patterns of MET3pr expression are caused by Sir2-mediated silencing, transcriptional

interference, and 3D clustering. The clustering also occurs in the native genome and enhances

the transcription of endogenous Met4-targeted genes. Overall, our results demonstrate that a

small fraction of long-distance chromosomal interactions can affect gene expression in yeast.

Author summary

Eukaryotic transcription occurs within the nucleus where DNA is packaged into high

order chromosome structures. Some long-distance chromosomal interactions play an

important role in gene regulation in higher eukaryotic species, such as mouse and human.

In budding yeast, gene expression is traditionally thought to be regulated over short dis-

tances because the upstream regulatory sequences (URSs) are usually located close to the

core promoters. However, recent chromosome conformation capture experiments have

detected numerous long-distance chromosomal interactions in the yeast genome. The

function of these interactions in gene regulation remains unclear. Here, we developed a

new assay to screen for long-distance interactions that affect the activity of a reporter
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gene. We found three regulatory mechanisms that act from a distance: silencing, tran-

scriptional interference, and 3D clustering, which alter expression level of the reporter

gene as well as its cell-to-cell variability. Our results demonstrate that transcription in

budding yeast, similar to transcription in higher eukaryotes, can be regulated over long

distances. We anticipate our assay can be used as a general platform to screen for func-

tional long-distance chromosomal interactions that affect gene expression.

Introduction

Cell proliferation and differentiation depend on rigorously controlled gene activities. Gene

regulation is best understood at the level of linear organization of the genome, including the

primary DNA sequences and arrays of closely associated regulatory proteins. The three-

dimensional (3D) organization of chromosomes also plays an important role in gene regula-

tion [1–3]. Elucidating the regulatory functions of higher order chromatin configuration is a

critical component towards the fundamental understanding of eukaryotic gene regulation.

Long-distance gene regulation is best elucidated in some specific genomic loci in multi-cel-

lular organisms, such as the locus control region of the murine β-globin genes [4–7]. With the

recent development of Chromosome Conformation Capture technique (3C) and its derivatives

(4C, Hi-C, etc.), numerous intra- and inter-chromosomal interactions have been detected in

different model organisms [8–11]. These interaction patterns can change with cell types, devel-

opmental stages, and environmental stress [12–15]. Some of the long-distance interactions

were confirmed to have functional roles. However, in general, to what extent these interactions

regulate gene expression is not clear.

Traditionally, budding yeast has not been considered as a good model for gene regulation

over long distance because the upstream activating sequences (UASs) tend to be adjacent to

the target genes. Consistent with this idea, artificial displacement of GAL1UAS away from the

TATA box eliminated its activity [16]. There are only several cases in which long-distance

interactions have been proposed to regulate gene expression in yeast, including promoter-ter-

minator looping [17, 18] and inter-allelic interactions between homologous genes [19, 20].

Nevertheless, the Hi-C experiment in haploid yeast cells revealed extensive long-distance inter-

actions among the chromosomes [11, 14]. Statistical analysis of the Hi-C data showed that co-

regulated yeast loci tend to cluster [21, 22], and physically proximal genes tend to co-express

[23, 24]. These studies suggest a role of long-distance chromosomal interactions in gene regu-

lation, although direct evidence is lacking.

Other than affecting the average level of gene expression among a population, long-distance

interactions may also affect its cell-to-cell variability (noise). The amplitude of gene expression

noise is determined by the underlying regulatory mechanism [25–27]. Intuitively, since chro-

mosome organization can be highly dynamic among single cells [28], it may increase variation

in gene expression. In one example, an artificial long-distance activation system consisting of a

mouse β-globin gene and a human Locus Control Region showed high expression noise [29].

The generality of this conclusion is unclear.

In this work, we set up an experimental scheme to screen for long-distance chromosomal

interactions that affect the average level and noise of gene expression. A promoter flanked by

invariable sequences of more than 1kb in length is inserted ectopically at thousands of genomic

loci, allowing it to make contacts with different parts of the genome. A change in promoter

activity in this case would necessarily involve mechanisms that function over a distance. In a

small fraction of genomic locations (30 out of 1327), we observed modulations of the promoter

Long-distance gene regulation in yeast
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activity with three distinct patterns. We then thoroughly investigated the regulatory mecha-

nisms that cause these changes. We showed that Sir-dependent silencing and transcriptional

interference can repress gene expression to a comparable extent, but cause different levels of

noise. We also found evidence that the reporter gene can acquire higher activity by clustering

with a subset of co-regulated genes. The latter mechanism is also used in the wild-type yeast to

enhance the transcription of native genes.

Results

Construction of a novel yeast strain library to probe long-distance

regulation

We reasoned that we want a reporter whose activity is high enough to allow accurate measure-

ment, but not too high to potentially mask the long-distance effects. We therefore chose MET3
promoter (MET3pr) driving GFP as our reporter (Fig 1A). MET3pr is an inducible promoter

that has mild activity when induced by the depletion of methionine in the media [30]. To

enable PCR-based analyses of the promoter without the interference from the endogenous

MET3pr, we used the MET3pr from S. kudriavzevii in our construct. These two MET3prs have

similar induction kinetics and steady-state expression levels (S1A and S1B Fig). They share

~50% of sequence homology and can be clearly differentiated in PCR with certain primers

(S1C Fig). To selectively detect long-distance effect, we embedded the MET3pr in the middle

of a ~3kb cassette, so that it is more than 1kb away from the variable chromosomal context at

the integration site. Both edges of the cassette are flanked by terminator sequences, which

should prevent (or at least reduce) invasive transcription elongation. These designs distinguish

our study from previous position-dependent gene expression studies in yeast [31, 32], where

the promoter of the reporter gene was placed immediately downstream an endogenous pro-

moter, and the change in the reporter activity is more likely to reflect local instead of long-dis-

tance regulation.

To increase the chance of detecting long-distance chromosomal interactions that play a role

in gene regulation, we put the reporter gene at highly dispersed genomic locations to explore

different chromosomal interactions. We took advantage of the commercially available yeast

insertion library, which contains more than 2000 heterozygous diploid strains each with an

mTn sequence at a unique genomic locus [33] (S2 Fig). The initial mTn insertion was carried

out by a transposition reaction in E. coli [34], and therefore the insertion sites are not influ-

enced by the chromatin structure in yeast. We added the mTn sequences to the reporter cas-

sette so that it can be integrated at the mTn loci through homologous recombination. Because

the integrated reporter disrupts many open reading frames (ORFs), we integrated a MET3pr–
mCherry control into a fixed locus to distinguish the regulatory effect specific to GFP from the

global effect due to the loss of a resident gene (Fig 1B; Methods).

In total, we have constructed 1327 strains, each with a GFP reporter inserted at a unique

genomic locus and mCherry at a fixed locus (see S1 and S2 Tables for strain list and expression

data). We induced the strains in methionine-free synthetic media for 5–6 hours to reach the

steady-state of MET3pr activation (S1A Fig) and measured the fluorescent intensity with flow

cytometry (FACS), which allows us to evaluate the reporter gene expression in single cells (Fig

1B; Methods).

GFP outliers show three distinct expression profiles

We used the coefficient of variation (CV; standard deviation divided by the mean) to quantify

the gene expression noise and plotted the noise versus mean for both GFP and mCherry in all

Long-distance gene regulation in yeast
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Fig 1. Construct of the strain library for screening long-distance regulation. A) Reporter gene cassette

containing MET3pr driving GFP. Tm: Terminator. HL and HR: mTn homolog sequences. MET3pr is located in

the middle of the cassette so that it is far from the local sequences at the integration sites. B) Procedure of

library construction. MET3pr-GFP was inserted into the mTn site, and MET3pr-mCherry was then inserted

into the CDC20 locus. Library strains were grown under inductive conditions (no methionine), and the steady-

state level of GFP and mCherry were measured in single cells using flow cytometry. Typical processed FACS

data (yellow) are shown along with background control (black) and GFP only (green) / mCherry only (red)

controls.

https://doi.org/10.1371/journal.pgen.1006736.g001
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our library strains (Fig 2A). We identified the strains with expression levels more than three

standard deviation from the mean as “outliers”. For each outlier found in the initial screen, we

confirmed its expression using three or more colonies and verified the integration site of the

reporter with inverse PCR (Methods). As expected, there are more outliers in GFP expression

than in mCherry. In total, 30 strains showed unusual expression in GFP but not in mCherry

(“GFP outliers”), 1 in mCherry only, and 2 in both (S3 Table). The following investigation

focused on the GFP outliers.

Fig 2. Expression profiles of the library strains. A) Noise versus average expression level for all strains. Each dot shows the average GFP /

mCherry fluorescence level (x axis) and the CV (y axis) in one strain. In both panels, the colored dots represent the GFP outliers in profile 2 (blue),

3 (green), and 4 (red). The purple dots represent outliers in both GFP and mCherry expression. B) GFP (left) and mCherry (right) FACS data in

four example strains, one from each profile. Strain 2, 3, and 4 are GFP outliers. Stain 2 has the GFP reporter inserted in telomere, and GFP in

strain 3 and 4 are localized in apparent euchromatic regions (SEG2 and CWC23). C) Fluorescent images of strain 2 and 3 in (B) after 5 hours of

induction. These images confirm that strain 2 has higher cell-to-cell variation in GFP expression, but not in mCherry. D) GFP insertion sites in

each profile. All the strains in profile 2 have MET3pr-GFP in known silencing loci (HML, rDNA, and telomere). In striking contrast, the outliers in

profile 3 and 4 all have MET3pr-GFP located in euchromatic regions. E) Pol II ChIP over the GFP and mCherry ORFs in eight strains, two from

each profile. The arrows mark the locations of the PCR probes. All the ChIP signals were normalized by that in the profile 1 strains. The error bars

represent the standard errors among three biological replicates (the same as below). The change in pol II enrichment is consistent with the

change in GFP expression level.

https://doi.org/10.1371/journal.pgen.1006736.g002
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The GFP data in Fig 2A fall into four distinct regions (“profiles”). Most strains belong to

profile 1 with close-to-average expression level and noise, while the rest can be divided into

profile 2, 3, and 4 with “low expression / high noise”, “low expression / low noise”, and “high

expression / low noise”, respectively. The profile 2–4 strains have close-to-average mCherry

level (Fig 2A), showing that the unusual GFP expression is not due to global changes in the

MET3pr activity. We selected one strain from each profile (strain 1–4 correspond to profile

1–4) and plotted their FACS data (Fig 2B). Note that the GFP expression in strain 2 and 3 are

repressed to similar levels (0.59 vs 0.61), but the noise is significantly higher in strain 2 (p-

value < 0.0001). This difference can be clearly visualized in fluorescent images of the two

strains (Fig 2C). Since there is strong connection between noise and the underlying gene regu-

latory mechanism [26, 27], these data suggest that the MET3pr repression in profile 2 and 3 is

caused by different mechanisms. Consistent with this idea, all of the profile 2 strains have

MET3pr-GFP inserted in the silenced regions (HML, rDNA and telomere), and all of the pro-

file 3 and 4 strains have the reporter in non-silencing “euchromatin” (Fig 2D). Eleven strains

in profile 1 have the insertion sites in the sub-telomeric regions, which is consistent with a pre-

vious finding that some locations at the chromosome ends do not have the silencing effect

[35].

GFP intensity reflects an integrated rate of transcription, translation, and post-transcrip-

tional regulations. To test if the GFP outliers originate from altered transcriptional rates, we

selected two strains from each profile and analyzed the RNA polymerase II (Pol II) distribution

on the GFP and mCherry ORFs using chromatin immunoprecipitation (ChIP) (Methods).

Comparing with profile 1, the pol II density over the GFP ORF is reduced in profile 2 and 3

(p-value < 0.0001 and 0.0027) and increased in profile 4 (p-value = 0.03), whereas it remains

constant on the mCherry ORF (Fig 2E). Therefore, GFP expression in the outliers is modu-

lated at the transcriptional level.

The transcriptional repression in profile 2 is likely due to Sir-dependent silencing that is

known to spread over a few thousand bases [36]. Indeed, deletion of Sir2 leads to significant

increase of the GFP expression in profile 2 strains (S3 Fig). We next investigated the regulatory

mechanisms of profile 3 and 4.

GFP repression in some profile 3 strains is due to transcriptional

interference

We examined various properties of the reporter insertion sites in profile 3. We noticed that in

these strains, the GFP reporters tend to be inserted into highly expressed ORFs (Fig 3A):

according to the database in [37], 5 out of the 10 genes at the profile 3 insertion sites produce

>40 mRNAs per cell, which is significantly higher in comparison to the rest of the genome (p-

value < 2×10−5). This observation raised the possibility that the high-level transcription of the

flanking genes may leak onto the MET3pr and interfere with its expression, as shown in some

other cases [38, 39].

To test this idea, we selected two profile 3 strains containing MET3pr-GFP in highly

expressed genes (PDC1 and CIS3) and measured the pol II density over the GFP cassette. We

probed the ChIP signals over the KanMX promoter, MET3pr, and GFP ORF (Fig 3B). We also

included a profile 1 and a profile 2 strain as controls. Strains containing GFP but not mCherry

were used here to maintain the S. kud MET3pr as a single copy. Consistent with Fig 2E, the

profile 2 and 3 strains have less pol II over the GFP ORF. However, the two profile 3 strains

have higher pol II density in the KanMX and MET3 promoters (Fig 3B), supporting the idea

that polymerases are “invading” from the upstream gene onto to the MET3pr. To test the

causal relation between the invading transcription and GFP repression, we used CRISPR/Cas9

Long-distance gene regulation in yeast
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Fig 3. Repression in some profile 3 strains is due to transcriptional interference. A) Reporter insertion sites in profile

3 strains and the transcript levels of the local genes. Half of the profile 3 sites are located inside highly transcribed genes

(highlighted in pink). B) Pol II ChIP over the KanMX promoter, MET3pr, and the GFP ORFs in four strains from profile 1, 2

and 3. The reporter cassette in the two profile 3 strains are located in PDC1 and CIS3, two highly expressed genes. All

ChIP signals were normalized by that in the profile 1 strains. The error bars represent the standard errors among three

biological replicates. High pol II density over the promoters in profile 3 strains were detected. C) Effect of the upstream

TATA deletion on pol II density. The reporter cassette are located in either SNT2 (profile 1), or PDC1 / CIS3 (profile 3). Pol

II ChIP signal was probed in identical locations as in (B). Deletion of the TATA box had no effect on pol II density over all

three regions in the profile 1 strain (first two bars). In contrast, it restores the pol II density to the normal level in the two

Long-distance gene regulation in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006736 April 20, 2017 7 / 21

https://doi.org/10.1371/journal.pgen.1006736


to delete the TATA elements of PDC1 and CIS3 and measured the resulting pol II density and

GFP expression (Methods). Deletion of these TATA boxes restored pol II density and GFP

expression to the profile 1 level (Fig 3C and 3D). These data show that GFP repression in these

profile 3 strains are due to transcriptional interference.

There are also some profile 3 strains with GFP not in highly expressed genes (Fig 3A). We

selected two of these strains (SAM2 and SEG2) and performed pol II ChIP. Interestingly, the pol II

density over theMET3pr is the same as in the profile 1 control, but the density over the GFP ORF

is lower (S4 Fig). This result is different from the profile 2 strain where pol II density is lower in

both regions (S4 Fig). These data indicate that the transcription ofMET3pr in these profile 3 strains

initiates at a normal level, but is curtailed in a subsequent step (e.g. transition from initiation to

elongation or during elongation). The detailed mechanism of this repression is still unclear.

GFP overexpression in profile 4 is due to clustering of co-regulated

genes

We next studied the mechanism of MET3pr-GFP overexpression in profile 4 strains. Unlike

profile 3 strains, the reporter insertion sites in profile 4 strains involve genes with mild expres-

sions (mRNAs per cell from 0.5 to 4) (S4 Table). Some profile 4 insertion sites are close to each

other in the genome. For example, GFP reporters inserted into five consecutive genes, RSM23,

CWC23, SOH1, SCS3, and MET13, all showed higher-than-average expression (p-values =

0.0004, 0.008, 0.0033, 0.0048, and 0.005 respectively; Fig 4A and 4B). This observation indi-

cates that profile 4 overexpression is regulated by certain property of chromosomal regions,

rather than that of individual genes. The profile 4 sites in Fig 4B are adjacent to MET13, which,

similar to MET3, is also in the methionine metabolic pathway activated by transcription factor

Met4 [40, 41]. It turns out that all profile 4 insertion sites are close to Met4-targeted genes

(average distance 1.4 kb), which is highly significant comparing with random sites (p-value <

10−4; Fig 4A, S5 Fig; Methods). The reverse is not true: not all GFPs landed close to Met4-tar-

geted genes are overexpressed.

Next, we investigated if the overexpression in profile 4 is specific to MET3pr. We carried

out a “promoter swapping” experiment, in which we replaced MET3pr in the reporter cassette

with GAL1Spr [42], an attenuated GAL1 promoter with similar firing strength as the MET3pr.
We integrated the new reporter into eight loci, two from each profile, induced the GAL1Spr-
GFP expression with galactose, and measured the steady-state gene expression under the

microscope. When inserted in the profile 2 and 3 sites, GAL1Spr-GFP continues to have low-

ered expression, as expected from the silencing and transcriptional interference mechanisms

(Fig 4C). In contrast, GAL1Spr-GFP in profile 4 loci no longer shows overexpression (Fig 4C),

indicating that the hyper-activity in profile 4 is MET3pr-specific.

A straightforward explanation for the data above is that some Met4-targeted genes (like

MET13) may increase the local concentration of Met4 and/or other co-activators, and thus

enhance the MET3pr activity in its vicinity. To test this idea, we deleted the entire MET13 gene

(including the promoter and the transcribed region) and measured the reporter expression.

Since we conducted our experiments in diploids, we deleted the MET13 either in cis or in trans
relative to the reporter, or both (Methods). These deletions do not affect MET3pr activity

globally because mCherry expression remains unchanged (Fig 4D). Importantly, the GFP

profile 3 strains. D) Effect of the upstream TATA deletion on GFP expression. Deletion of the PDC1 or CIS3 TATA box has

no effect on mCherry expression, but restores the GFP expression to the same level as in the profile 1 strain.

https://doi.org/10.1371/journal.pgen.1006736.g003
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expression is not reduced in any of the MET13 deletion strains (Fig 4D), indicating that the

overexpression is not due to the presence of a nearby MET13 gene.

To test if the overexpression is due to the presence of other local genes, we took the reporter

cassette in CWC23 (site “c” in Fig 4B), together with the neighboring genomic sequences

Fig 4. Overexpression in profile 4 is not due to local neighboring genes. A) Reporter insertion sites in profile 4 strains (left column).

The insertion sites are either within or near Met4-targeted genes (right column). Some of these sites are close to each other in the genome

(highlighted in colors). B) A group of the profile 4 insertion sites near the MET13 gene on Chr7. MET3pr-GFP shows overexpression when

inserted over a ~5kb region including multiple adjacent genes (from “b” to “f”). “a” is a nearby site profile 1 site. C) Promoter swapping test.

We selected two strains from each profile and integrated the GFP reporter driven by the GAL1Spr instead of the MET3pr. GAL1Spr-GFP

at profile 4 sites do not show overexpression, indicating that the overexpression is specific to the MET3pr. D) Deletion of the MET13 allele

does not affect the MET3pr overexpression. We started with three strains containing GFP reporter at site “a” (control), “b”, or “c” (1), and

deleted the trans (2) or cis (3) copy of MET13, or both (4). The cluster of four bars in the lower plots correspond to the average GFP or

mCherry expression with configurations (1)-(4). None of the MET13 deletion eliminates the GFP overexpression at the “b” and “c” sites. E)

GFP overexpression disappears when translocated with neighboring genes to a new genomic locus. The reporter cassette at the “c” site

along with neighboring genes (from CEG1 to MET13) was inserted into Chr15. The average GFP expression is reduced to the profile 1

level at this new location (p-value = 0.0038). F) Potential model for profile 4 overexpression. Some profile 4 sites may cluster at a

transcriptional “hotspot”, allowing the nearby Met4-targeted genes to gain higher expression.

https://doi.org/10.1371/journal.pgen.1006736.g004
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(3.8kb on one side and 5.5kb on the other), and inserted it into a profile 1 locus on Chr15

(Methods). This translocation reduces the GFP expression to the normal (profile 1) level with-

out affecting the mCherry expression (Fig 4E). This result confirms that the GFP overexpres-

sion is not due to the neighboring MET13 gene, nor any other genes within a few kb range.

Based on the above evidence, we suspected that the overexpression is related to pathway-

specific long-distance chromosomal organization. In particular, the profile 4 sites may be

physically located in transcriptional “hotspot(s)” with high local concentration of Met4 and/or

related factors that promote MET3pr firing (Fig 4F). If this model is correct, we may be able to

detect interactions between at least some of the profile 4 sites. Therefore, we carried out 3C

experiments to probe the interactions between a hyper-active MET3pr-GFP and other endoge-

nous profile 4 loci (Fig 5A; Methods). Since previous reports indicate that chromosomal interac-

tions in yeast may change with transcriptional status [19, 20, 43], the 3C assays were performed

in either the presence or absence of methionine. We also performed the same measurement

between MET3pr-GFP and a cis region ~13kb away as a positive control to ensure the success

execution of the 3C assay (Methods).

As shown in Fig 5B, a 3C signal was detected between the CWC23-localized GFP and

ADK1. As expected from the 3C procedure, this signal is absent without ligation and/or cross-

linking (Fig 5B). This GFP reporter also makes contacts with most of the other profile 4 loci

(Fig 5C). Although all of the 3C signals are visible in the presence or absence of methionine,

the strength of the interactions increase by 1.5–4 fold in the activating condition (p-val-

ues = 0.0016, 0.0057, 0.049, 0.0001 for ADK1,GTO1, SER33, PDR12; Fig 5D). These results

indicate that the overexpressed MET3pr-GFP is in physical proximity to many profile 4 sites

before the induction, and they come closer after the induction.

To understand how specific the interactions occur at the profile 4 sites, we also included

two negative controls in the 3C measurements (N1 and N2). N1 is a profile 1 site on Chr16

that has similar distance to the centromere as ADK1. Previous Hi-C experiments indicate that

long-distance chromosomal interactions in yeast are partially determined by the Rabl configu-

ration, in which sites with similar distance to the centromere tend to interact [11, 14]. We do

not think the interactions seen in Fig 5C are based on this mechanism because the interacting

loci have variable distances to centromeres (differing by>300kbp; S5 Table). Consistent with

this idea, ADK1 but not the N1 site shows interaction with GFP. N2 probes the interaction

between the same MET3pr-GFP with MET28, a Met4-targeted gene that is a profile 1 site. No

interaction was observed in this case (Fig 5C and 5E). It is important to point out that we have

found profile 1 sites at other Met4-targeted genes that make contacts with the overexpressed

MET3pr-GFP (S6A Fig). Interestingly, in comparison to Fig 5D, the strengths of these interac-

tions show less changes in the activating condition (p-value < 0.005; S6B Fig), indicating that

these sites do not cluster further with the profile 4 sites upon induction.

When we moved a profile 4 MET3pr-GFP together with 9.3kb of neighboring sequences to

Chr15, the GFP no longer shows overexpression (Fig 4E). At this translocated site, MET3pr-
GFP loses its interaction with all the profile 4 sites (Fig 5E), and the corresponding 3C signals

were undetectable in qPCR. Overall, the correlation between GFP overexpression and its inter-

action with other profile 4 sites support the model in Fig 4F that profile 4 sites cluster to en-

hance MET gene expression.

Endogenous genes at the profile 4 sites use long-distance interactions to

enhance expression

In Figs 4 and 5, we focused on the chromosomal interaction and expression of GFP reporters.

We suspect that the endogenous Met4-targeted genes at the profile 4 sites can also benefit
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from the same long-distance interactions to gain higher expression. To test this idea, we mea-

sured pair-wise interactions between the endogenous profile 4 sites (Fig 6A; Methods). Out of

the 15 pairs, we detected 10 interactions (Fig 6B). In particular, MET13makes contacts with all

the other profile 4 sites. We then moved the MET13 gene from its endogenous location to a

new location on Chr15 (same location as in Fig 4E; Methods). At this ectopic location, MET13
loses its interactions with all of the other profile 4 sites (Fig 6C). Using RT-PCR to measure the

average mRNA level of MET13 before and after the translocation, we found that the MET13
expression is significantly reduced at the new location (p-value = 0.0009; Fig 6D). The magni-

tude of the drop (~30%) is consistent with the difference in MET3pr-GFP expression at these

two locations. In contrast, mCherry expression driven by the MET13pr at CDC20 locus in

these two strains are the same (Fig 6D). Therefore, similar to the MET3pr-GFP reporter, the

endogenous MET13 gene shows higher expression at its native genomic locus, which correlates

with its long-distance interactions with other profile 4 loci.

Fig 5. Long-distance interaction between profile 4 sites. A) 3C scheme to detect interactions between the GFP reporter (inserted

into CWC23) and other profile 4 sites (1: ADK1, 2: GTO1, 3: XKS1, 4: SER33, 5: PDR12). B) 3C assay between the GFP reporter

and ADK1 (interaction #1) under both +/–methionine conditions in the presence of absence of crosslinking and/or ligation. P: positive

control (3C between the GFP reporter and a cis region ~13kb away). The 3C product is only visible with ligation and crosslinking. C)

3C assay between the GFP reporter and five profile 4 sites (see A) under both +/–methionine conditions. Besides the same positive

control (P), we also included two negative controls (N1 and N2; see text for detailed explanation). D) Quantification of the 3C signals

in C using qPCR. The 3C signals of interaction 1, 2, 4, and 5 are increased after–Met induction (p-values are 0.0016, 0.0057, 0.049,

and 0.0001), while that of the positive control remains constant. E) 3C assay between profile 4 sites 1–5 and the GFP reporter that is

translocated to Chr15. The signals in 1–5 are no longer visible.

https://doi.org/10.1371/journal.pgen.1006736.g005
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Discussion

Three distinct mechanisms for gene regulation at a distance in yeast

Numerous intra- and inter-chromosomal interactions have been discovered in budding yeast,

yet their role in gene regulation is far from clear. In this paper, we probed the effect of these

interactions on gene expression by ectopically inserting an insulated reporter into thousands

of genomic loci and characterizing the reporter activity at the single cell level. At most loca-

tions, the expression has similar average level and noise, indicating that the majority of long-

distance chromosomal interactions detected by Hi-C do not play a significant role in gene reg-

ulation (at least for MET3pr). However, in a small fraction of locations, gene expression devi-

ates from the norm and exhibits three distinct patterns including low expression / high noise,

low expression / low noise, and high expression / low noise (profile 2, 3, and 4). Our follow-up

studies indicate that profile 2 expression is due to the Sir2-mediated silencing, profile 3 is par-

tially due to transcriptional interference, and profile 4 is due to 3D clustering of Met4-targeted

genes. This assay may be used as a general platform to screen for functional long-distance

chromosomal interactions that affect gene expression.

Silencing and transcriptional interference generate different expression

noise

Silencing and transcriptional interference are well-characterized mechanisms of gene repres-

sion. Interestingly, our data revealed that these two mechanisms can repress the average gene

expression to a similar extent, but generate different levels of cell-to-cell variability. The

Fig 6. Long-distance interaction and gene regulation of the native profile 4 sites. A) A list of the 3C pairs between the native profile 4 sites.

B) 3C assay between the gene pairs in A. The pairs with positive signals are labeled red in A. C) 3C assay between MET13 and the rest of the

profile 4 sites after translocation to Chr15. No interaction was detected at this new location. D) MET13 expression measured by RT-PCR at the

endogenous (End) or ectopic (Ect) location. The MET13 mRNA level is significantly reduced on Chr15 (p-value < 0.001). The expression of the

control (mCherry driven by MET13pr at CDC20 locus) is unchanged.

https://doi.org/10.1371/journal.pgen.1006736.g006
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detailed mechanism underlying this phenomenon requires further elucidation. Based on pre-

vious results [28, 30], we hypothesize that the two repression mechanisms have different time

scales of action. Sir2-dependent silencing may be maintained at different levels from cell to cell

for relatively long period of time (epigenetic memory), resulting in variable “silencing states”.

In contrast, transcriptional interference is likely to occur multiple times during the MET3pr
activation in each single cell, averaging out the stochasticity of this process and resulting in

uniformly reduced transcription. For practical purposes, these two mechanisms can be used

by synthetic biologists to engineer different gene expression noise with similar average level of

expression.

Overexpression and clustering

For the overexpression mechanism in the profile 4 strains, here is the evidence that we found:

1) overexpressed MET3pr-GFP tends to locate inside or close to a Met4-targeted gene, although

the presence of this gene or other neighboring genes are not responsible for the overexpression

(Fig 4A, 4D and 4E). 2) Overexpression is specific to theMET3pr (Fig 4C). 3) Overexpressed

MET3pr-GFP contacts many other profile 4 loci, and the intensities of these interactions increase

upon induction (Fig 5C and 5D). A large fraction of the profile 4 loci in the native genome also

interact with each other (Fig 6B). 4) When either the overexpressed GFP reporter or the endoge-

nousMET13 gene is translocated to a different genomic locus, they lose the interactions with

other profile 4 loci and show reduced expression (Figs 4E, 5E, 6C and 6D).

We interpret the interactions among the profile 4 sites as “clustering” of a subset of Met4-tar-

geted genes. This interpretation is supported by previous findings that co-activated genes tend

to cluster in 3D space [21, 22, 24, 44]. Interestingly, there seems to be a hierarchy among the

profile 4 loci interactions: when we removed MET13 from the cluster, not only the interactions

between MET13 and other profile 4 sites disappear, but also many interactions between ADK1/

XKS1, SER33/GTO1, and PDR12 (S7A Fig). In contrast, the interactions between ADK1-XKS1
and GTO1-SER33 remain present. These data indicate that ADK1-XKS1 and GTO1-SER33may

form “sub-clusters”, which are brought together by MET13 (S7B Fig). Similar phenomenon has

been observed in mammalian cells [23]. The translocation ofMET13 also results in mild but sig-

nificant reduction in the expression of ADK1,GTO1, and PDR12 (p-value< 0.034, 0.028, 0.022,

respectively; S7C Fig). Overall, these data suggest that MET13 is important for clustering and

overexpression among profile 4 genes.

The detailed molecular mechanism underlying these clustering is not clear. Our data indi-

cate that some degree of clustering occurs prior to induction, which is consistent with previous

analysis showing that Met4-targets form significant 3D contacts even in rich media [22]. These

interactions are either a passive consequence of chromosome folding, or actively mediated by

some DNA-binding proteins or RNAs constitutively associated with these loci. The strengths

of the interactions are quantitatively increased by transcriptional activation (Fig 5D), indicat-

ing that the transcription factors, transcription machinery, or RNAs may further enhance or

stabilize the clustering.

In Figs 5 and 6, we show that clustering and overexpression are positively correlated. In par-

ticular, when translocated to a different genomic location, MET3pr-GFP and the endogenous

MET13 gene lose both the long-distance interaction and overexpression. Some Met4-targets

show interaction with profile 4 sites but do not support MET3pr-GFP overexpression. The

intensity of these interactions do not increase significantly after induction. Taken together,

these results paint the following picture. A fraction of Met4-targeted genes are in physical

proximity in the nucleus before induction, and a subset of these genes cluster more upon

induction. Such clustering may directly lead to enhanced gene expression by creating a sub
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nuclear compartment with elevated local concentrations of transcription activators, GTFs,

and/or pol II. A similar mechanism has been proposed to enhance transcription for other co-

regulated gene clusters [23, 24, 45]. Future effort is needed to unambiguously dissect out the

causal relation between clustering and overexpression.

Materials and methods

Plasmid and strain construction

Standard methods were used to construct the strains and plasmids. If not mentioned specifi-

cally, plasmids used in the study are derived from pRS yeast shuttle vectors. For the reporter

cassette, the S. Kud MET3pr was flanked by an upstream KanMX gene that serves as a selective

marker. The cassette contains TEF1 (from Ashbya Gossypii) and ADH1 terminator at the 3’ end

of the KanMX and GFP gene, respectively. Homologous sequence of the mTn transposon was

added on each side of the cassette so that the reporter system can be integrated into the yeast

insertion library (Open Biosystems) through homologous recombination. The library strain

was derived from y800 diploid strain (MATa leu2-D98cry1R/MATalpha leu2-D98CRY1 ade2-
101 HIS3/ade2-101 his3-D200 ura3-52 caniR/ura3-52CAN1 lys2-801/lys2-801CYH2/cyh2R
trp1-1/TRP1Cir0 carrying pGAL-cre (amp,ori, CEN, LEU2)), with an mTn transposon sequence

inserted as a single copy into thousands of different genomic loci [46]. The mCherry control

was similarly constructed with the URA3marker. To avoid mCherry double integration, the

integration site was chosen within an essential gene, CDC20, and only the strains with a single

mCherry integration can survive. GFP and mCherry transformations were done consecutively

in 96 plate format.

MET13 deletion was carried out by replacing the entire MET13 gene (from -237 to +2165

relative to the start of ORF) with ADE2 gene. We chose this region starting from the end of

transcription termination site of the upstream tandem gene SCS3 to the termination site of the

convergent downstream gene MON1 [47]. Transformants were tested through tetrad dissec-

tion to determine which MET13 allele was deleted. Strains with both alleles deleted were

mated from two haploids both lacking MET13. Since MET13 is essential for viability in–Met

media, one copy of the MET13 gene was integrated into a Chr15 locus (LDS2, 243695) in the

double deletion strain (Figs 4D and 6C). To have a fair comparison of the 3C signal in Fig 6B

and 6C, we deleted one MET13 gene from the endogenous locus in Fig 6B, so that both strains

contain single-copied MET13. The inserted MET13 region in Fig 4E includes a ~9.3 kb frag-

ment from the endogenous genome (ChrVII: 262709–274780) and the MET3pr-GFP reporter

inserted in CWC23.

FACS measurement and analysis

Strains containing the reporter genes were grown overnight in SCD + 10X Methionine (0.2 g/

L) in a deep 96-well plate, spun down, washed, and diluted into SCD—Met media to OD660 ~

0.05 for induction. After 6 h, samples were sonicated in Branson 5800 water bath for 20mins to

break cell cluster into single cells and were then transferred into a shallow 96-well plate for

flow cytometry measurement with BD LSR-Fortessa. The GFP is excited by the 488nm laser

and filtered by a 525/50 PMT. The mCherry is excited by the 532nm laser and filtered by the

610/20 PMT. Data were quantified through Flowjo and Matlab program. We first gated the

data based on the FSC (forward scattering) and SSC (side scattering) to select cells with regular

size and shape, and gated these cells again based on the presence of both GFP and mCherry

signal (a small fraction of cells, usually less than 2%, lose one fluorescence through loss of het-

erozygosity). We used these GFP-only and mCherry-only strains to calculate the crosstalk

between the two fluorescence channels, and eliminated the crosstalk for the cells containing
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both GFP and mCherry. The final fluorescent signals were normalized based on the average

expression of the profile 1 strains. “Outliers” are the strains with expression more than 3 stan-

dard deviation away from the mean.

Inverse PCR

Protocol was adapted from a previously described method [48]. Cells were grown in 5 ml

YEPD liquid media overnight to OD660 ~ 0.2, and genomic DNA was extracted through stan-

dard method. 5 ug of genomic DNA was used for AluI (4bp-cutter) digestion in a final volume

of 50 ul overnight. 10 ul of digested DNA was added to 190 ul ligation mix containing 20 ul of

10x T4 DNA ligation Buffer, 0.2 μl of T4 DNA Ligase (NEB, 400U/μl) and 169.8 ul of water for

intramolecular ligation at 16˚C for > 4 h. The ligation products were ethanol precipitated and

resuspended in 20 ul TE buffer. A pair of primers facing outwards in the GFP cassette were

used to amplify the nearby unknown genomic sequences. PCR products were purified for

Sanger sequencing. We confirmed the GFP reporter cassette insertion sites by mapping the

sequencing results to the yeast genome.

Fluorescence microscopy

We used the instrumentation and data acquisition platform as described in a previous study

[49]. Cells were grown in SCD + 10X Met liquid media at 30˚C to OD660 ~ 0.2, washed, and

then transferred onto a SCD - Met agarose pad for induction. After 6 h, the agarose pad was

put under the fluorescent microscope for imaging. The GFP and mCherry fluorescent inten-

sity within each cell boundary were quantified. The crosstalk between GFP and mCherry fluo-

rescence is negligible in this case.

Pol II ChIP

ChIP protocol was modified from a previously described method [19]. Cells were grown in

100 ml SCD - Met to reach OD660 ~ 0.4 and then crosslinked by formaldehyde (final concen-

tration 1%). After quenched with 6 ml of 2.5 M Glycine, these cells were harvested by centrifu-

gation and disrupted by glass beads for 30 min at 4˚C. The cell extract was then sonicated

(Qsonica) to fragment chromatin to an average length of 350 bp. The whole cell extract was

subjected to Rpb3 antibody (Biolegend) incubation followed by Protein A/G PLUS-Agarose

(Santa Cruz Biotechnology, sc-2003) incubation. An aliquot of the whole cell extract was saved

for input control. We extracted DNA from the input and immunoprecipitated samples and

quantified them by qPCR analysis. See S6 Table for the primer sequences used in the qPCR.

CRISPR/Cas9 gene editing of the TATA box

TATA consensus regions of two highly transcribed genes PDC1 and CIS3were identified

based on previous ChIP-exo study [50]. We used the one-vector CRISPR-Cas9 system [51] to

delete these TATA elements. We inserted the 20mer guide DNA sequences (see S6 Table) into

pML104, which also contains TDH3pr-driven Cas9 protein [51]. We transformed the modified

pML104 plasmid into yeast together with a ~ 100 bp double stranded DNA fragment carrying

the desired TATA-element deletion and a mutated PAM sequence (AGG to ACG). Transfor-

mants were selected on D-URA plates, confirmed with Sanger sequencing, and then trans-

ferred to D + FOA plates to pop-out the modified pML104 plasmid to avoid any potential

side-effect of Cas9.
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Chromosome conformation capture (3C)

Protocols are adapted from Singh and Hampsey [8, 18]. Strains were incubated overnight at

30˚C in SCD + 10 X Met and were then inoculated in a 50 ml SCD ± Met to an OD ~ 0.6–0.8.

Cells were collected and resuspended in 10 ml of spheroplasting buffer (0.4 M sorbitol, 0.4 M

KCl, 40 mM sodium phosphate buffer pH 7.2, and 0.5 mM MgCl2). 25 ul of Zymolyase 100T

solution (20 mg/ml zymolyase 100-T, 2% glucose and 50 mM Tris-HCl, pH 7.5) were added at

30˚C for 40 min to convert cells to spheroplasts. After washing twice in 10 ml of MES buffer

(0.1 M MES, 1.2 M sorbitol, 1 mM EDTA pH8.0, and 0.5 M MgCl2, adjust to pH 6.4), the sphe-

roplasts were crosslinked by formaldehyde (final concentration 1%) for 15 min and quenched

by 2.5 M glycine for 5 min. The crosslinked spheroplasts were washed twice and resuspended

with 1X cutsmart Buffer (NEB) in 36.5 ul aliquots. Note that reactions should not be pooled as

it will compromise the quality of the reaction. In one tube, we added 3.8 ul of 1% SDS (incu-

bated for 10 min at 65˚C), 4.4 ul 10% Triton X-100, and 60 U of HindIII to digest overnight

with gentle rotation at 37˚C. 8.6 ul of 10% SDS was added to inactivate HindIII by incubating

at 65˚C for 20 min. Digested chromatin was diluted in ligation mix to allow intramolecular

ligation. For each tube, we added 74.5 ul of 10% Triton X-100, 74.5 ul of 10X ligation buffer, 8

ul of 10 mg/ml BSA, 8 ul of 100 mM ATP, 596 ul of ddH2O and 800 units of T4 DNA ligase,

and incubated at 16˚C for 4 hours. After the overnight treatment with proteinase K, we

extracted the DNA with phenol/chloroform. Typically we get 5 ug of DNA at this step, and we

use 100 ng for each 3C PCR amplification. See S6 Table for the primer sequences.

Bioinformatic analysis of Met4-target enrichment near the profile 4 sites

We used a list of Met4 targets from Yeastract database for the bioinformatic analysis [52–55].

The list contains 405 documented Met4-activated genes from literature based on ChIP and

microarray data. We calculated the average distance of all the profile 4 insertion sites to the

closest Met4 targets (relative to the start of ORF). As a control, we selected 5000 random loca-

tions in the yeast genome and calculated their distances to the nearest Met4 target (see S5 Fig

for histogram). The comparison between the two distances above show that profile 4 sites tend

to locate near Met4-activated genes.

Supporting information

S1 Fig. Comparison between the homologous MET3pr in S.cer and S.kud. A) Activation

dynamics of S.kud MET3pr (black) and S.cer MET3pr (red) measured by time-lapse fluorescent

microscopy. Each trace represents MET3pr-GFP activity in a single cell during induction. The

zero time point is the time of methionine removal. B) Steady state level of S.kud MET3pr and

S.cer MET3pr integrated at three different locations: ECM18 (profile 1), YCL067C (profile 2),

and TDH3 (profile 3). The data were normalized to the ECM18GFP intensity. Note that the

two promoters show similar activation kinetics and steady state levels. C) PCR test of primer

specificity. Primers complementary to the S.kud MET3pr sequence can amplify the S.kud
MET3pr (right lane), but not the S.cer MET3pr (left lane).

(PPTX)

S2 Fig. Distribution of the GFP reporter insertion sites. A) Locations of the insertion sites

on the yeast chromosomes (grey bars). Some insertion sites fall into special regions, including

telomeres (blue), mating loci (red), and centromeres (green). B) Categories of insertion sites

based on their locations relative to the local genes.

(PPTX)
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S3 Fig. GFP repression in the profile 2 strains are due to Sir2-mediated silencing. We

picked one profile 1 strain (control) and three profile 2 strains, where the GFP reporter is

inserted into rDNA, telomere, and HML respectively, and carried out a heterozygous Sir2 dele-

tion (Sir2 is known to be haploinsufficient). GFP expression is significantly increased in all the

profile 2 strains (p-value < 0.01 in all three cases), but not in the control, confirming that GFP

repression in profile 2 is indeed due to Sir2-mediated silencing.

(PPTX)

S4 Fig. Pol II ChIP over the reporter in four strains from profile 1, 2 and 3. The reporter

cassette in the two profile 3 strains are located in SAM2 and SEG2, two moderately expressed

genes. 3(1): SAM2; 3(2): SEG2. All ChIP signals were normalized by that in the profile 1 strain.

The error bars represent the standard errors among three biological replicates. Different from

Fig 3B, the profile 3 strains here have normal pol II density over the KanMXpr and MET3pr
but lower density over the GFP ORF, indicating that they are repressed by a different mecha-

nism.

(PPTX)

S5 Fig. Histogram of the distances to the nearest Met4-targeted genes from randomly

selected locations. We obtained 405 documented Met4-targeted genes from literature based

on ChIP and microarray data [1–4]. We generated 5000 random locations in the yeast genome

and calculated their distances to the nearest Met4 targets (start of the ORF). The plot above is

the histogram of the distances. Comparing with these random locations, profile 4 insertion

sites are significantly closer to Met4-targets (p-value < 1 X 10−4).

(PPTX)

S6 Fig. Interactions between MET3pr and profile 1 Met4-targetd sites and their quantita-

tive changes upon methionine induction. A) Interactions between MET3pr and selected pro-

file 1 Met4-targetd sites. B) 3C signal change of profile 4 and profile 1 sites (2–9 in A) before

and after induction. Signals are normalized by the positive control (P).The dash line represents

the average 3C signal increase of profile 4 interactions. Overall, profile 1 sites have less changes

in interaction strengths comparing with profile 4 sites (p-value = 0.0022).

(PPTX)

S7 Fig. Interactions between native profile 4 sites before and after MET13 translocation.

A) 3C assay measuring all the pair-wise interactions listed in Fig 6A. B) Model of interactions

between profile 4 sites before and after MET13 translocation. The interactions between ADK1/

XKS1, SER33/GTO1, and PDR12 disappear after MET13 translocation, indicating that these

interactions may be bridged by MET13. C) mRNA levels of the profile 4 genes measured by

RT-PCR (normalized by that of ACT1). The expression of MET13,ADK1,GTO1, and PDR12
have significant decrease. The p-values are 0.0007, 0.034, 0.028, and 0.022, respectively.

(PPTX)

S1 Table. Strain list.

(PPTX)

S2 Table. Library strain list and expression data.

(XLSX)

S3 Table. Outlier strains and expression data.

(PPTX)

S4 Table. mRNA level of the endogenous genes at profile 4 insertion sites.

(PPTX)
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S5 Table. Distance between the sites tested in 3C to centromeres.

(PPTX)

S6 Table. Primer list.

(PPTX)
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