
fmicb-13-928774 July 12, 2022 Time: 14:32 # 1

TYPE Original Research
PUBLISHED 15 July 2022
DOI 10.3389/fmicb.2022.928774

OPEN ACCESS

EDITED BY

Qi Zhao,
University of Science and Technology
Liaoning, China

REVIEWED BY

Marilena Hall,
Stonehill College, United States
Puey Ounjai,
Mahidol University, Thailand

*CORRESPONDENCE

Heng Chen
hchen13@gzu.edu.cn
Jian Huang
hj@uestc.edu.cn

SPECIALTY SECTION

This article was submitted to
Phage Biology,
a section of the journal
Frontiers in Microbiology

RECEIVED 26 April 2022
ACCEPTED 27 June 2022
PUBLISHED 15 July 2022

CITATION

He B, Li B, Chen X, Zhang Q, Lu C,
Yang S, Long J, Ning L, Chen H and
Huang J (2022) PDL1Binder:
Identifying programmed cell death
ligand 1 binding peptides by
incorporating next-generation phage
display data and different peptide
descriptors.
Front. Microbiol. 13:928774.
doi: 10.3389/fmicb.2022.928774

COPYRIGHT

© 2022 He, Li, Chen, Zhang, Lu, Yang,
Long, Ning, Chen and Huang. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

PDL1Binder: Identifying
programmed cell death ligand 1
binding peptides by
incorporating next-generation
phage display data and different
peptide descriptors
Bifang He1, Bowen Li1, Xue Chen1, Qianyue Zhang1,
Chunying Lu1, Shanshan Yang1, Jinjin Long1, Lin Ning2,
Heng Chen1* and Jian Huang3*
1Medical College, Guizhou University, Guiyang, China, 2School of Healthcare Technology, Chengdu
Neusoft University, Chengdu, China, 3School of Life Sciences and Technology, University
of Electronic Science and Technology of China, Chengdu, China

Monoclonal antibody drugs targeting the PD-1/PD-L1 pathway have showed

efficacy in the treatment of cancer patients, however, they have many intrinsic

limitations and inevitable drawbacks. Peptide inhibitors as alternatives might

compensate for the drawbacks of current PD-1/PD-L1 interaction blockers.

Identifying PD-L1 binding peptides by random peptide library screening

is a time-consuming and labor-intensive process. Machine learning-based

computational models enable rapid discovery of peptide candidates targeting

the PD-1/PD-L1 pathway. In this study, we first employed next-generation

phage display (NGPD) biopanning to isolate PD-L1 binding peptides. Different

peptide descriptors and feature selection methods as well as diverse machine

learning methods were then incorporated to implement predictive models of

PD-L1 binding. Finally, we proposed PDL1Binder, an ensemble computational

model for efficiently obtaining PD-L1 binding peptides. Our results suggest

that predictive models of PD-L1 binding can be learned from deep

sequencing data and provide a new path to discover PD-L1 binding peptides.

A web server was implemented for PDL1Binder, which is freely available at

http://i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl.

KEYWORDS

PD-1/PD-L1 pathway, PD-L1 binding peptides, machine learning, next-generation
phage display (NGPD) biopanning, support vector machine (SVM)

Introduction

Blocking the immune checkpoint pathway is a highly promising therapeutic
modality to fight cancer. Programmed cell death protein 1 (PD-1) is an immune
checkpoint protein, which is mainly up-regulated on activated T cells, natural killer
cells and B cells (Freeman et al., 2000). Programmed cell death ligand 1 (PD-L1) is
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a ligand for PD-1, which is highly expressed on many different
malignancy cells and antigen-presenting cells (APCs) (Talantova
et al., 2013). The interaction between PD-1 on T cells and PD-L1
on tumor cells leads to the inhibition of T-cell responses and loss
of the cytotoxic T-cells’ functions and thereby mediates tumor
cells to escape from the host immune surveillance. Blockade of
this pathway can activate tumor-infiltrating T cells and restore
their anti-tumor activity (Tumeh et al., 2014; Wolchok and
Chan, 2014). Therefore, PD-1 and PD-L1 have become attractive
therapeutic targets against cancer. Neoadjuvant anti-PD-1/PD-
L1 therapy also achieved satisfactory clinical results in tumors
(Li et al., 2021b).

Six PD-1/PD-L1 monoclonal antibody (mAb) blockers to
date have been approved by FDA for cancer treatment (Postow
et al., 2015; Robert et al., 2015; Bang et al., 2018; Tang et al.,
2018). Moreover, most of PD-1/PD-L1 inhibitors in the clinical
development are mAbs (Lin et al., 2020). Although mAbs
targeting either PD-1 or PD-L1 have showed certain anti-tumor
efficacy in cancer patients (Hamanishi et al., 2016), current
mAb agents have many intrinsic limitations such as expensive
production, still poor therapeutic responses (only approximately
20% of patients with a durable response) (Yang et al., 2016), and
considerable individual differences as well as immunotherapy-
induced improper immune-related responses (Fishman et al.,
2019). Additionally, mAb therapeutics are accompanied by
inevitable drawbacks including inferior organ or tumor
penetration, poor oral bioavailability and immunogenicity.
Compared to mAbs, peptides as drug candidates have several
advantages, including higher tissue or tumor penetration, lower
production costs and decreased immunogenicity. Peptides can
also be subjected to chemical modifications to improve their
pharmaceutical properties. However, PD-L1 binding peptides
discovery through random peptide library screening is time
consuming, expensive, and laborious.

In order to improve the efficiency of phage display selection,
researchers have employed computational methods to aid
analysis of results of random peptide library screening. For
example, SAROTUP integrates a suite of tools which can be used
to scan, report and exclude possible target-unrelated peptides
from phage display biopanning results (He et al., 2019b). Sun
et al. (2016) have proposed an epitope prediction method
based on random peptide library screening. Machine learning
methods have been used in mining and designing peptides of
specific function (Tallorin et al., 2018; Ma et al., 2022). Obtaining
therapeutic molecules is cheap and fast with the help of machine
learning approaches (Liu et al., 2020; Laustsen et al., 2021).
However, there are currently no bioinformatics tools to identify
PD-L1 binding peptides.

Phage display permits high-throughput screening of peptide
ligands with high affinity and specificity for almost any target
of interest through several rounds of target-binding (selection)
and amplification of phage display peptide libraries (Jaroszewicz
et al., 2022; Ledsgaard et al., 2022). Moreover, phage display

coupled with next-generation sequencing (NGPD) offers a
more powerful tool to identify peptide ligands (Matochko and
Derda, 2015; He et al., 2016, 2018a, 2019c; Asar et al., 2020;
Pleiko et al., 2021). Fewer biopanning rounds powered by deep
sequencing can discover robust target-binding peptides that
are not identified by Sanger sequencing (Juds et al., 2020). In
addition, NGPD has been revealed very effective to suppress
false-positive hits from amplification-induced bias (Matochko
et al., 2014). Many researchers have employed traditional phage
display technology to identify PD-L1 binding peptides (Li
et al., 2018, 2021a; Liu et al., 2019; Tooyserkani et al., 2021),
however, current existing PD-L1 binding peptides are not
enough to implement a computational model for identifying
PD-L1 binding peptides. NGPD can help to discover more
novel PD-L1 binding peptide ligands. Illumina sequencing is a
massively parallel sequencing technology and can produce large
amounts of data (Quail et al., 2008). We screened the Ph.D.-
12 phage display library against PD-L1, and here the selection
output was investigated using Illumina sequencing.

In the present study, we aimed to develop a novel
computational classifier for identifying peptides targeting PD-
L1. We took advantage of NGPD to isolate PD-L1 binding
peptides and used them to construct the predictive model via
machine learning methods. First, we used PD-L1 as bait to
screen the Ph.D.-12 phage display library. Second, the PD-
L1 binding peptides isolated by phage display selection were
paired with non-PD-L1 binding peptides. They were used
to implement machine learning based models for predicting
PD-L1 binding peptides. Third, we utilized two independent
testing datasets to evaluate the generalization ability of
the models. The PD-L1 binding peptides identified in this
work hold high potential to be developed as anti-tumor
therapeutics. The predictor for identifying peptides targeting
PD-L1, called PDL1Binder, is valuable in accelerating PD-
L1 binding peptides discovery and freely available at http:
//i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl. Our study
demonstrates that predictive models of PD-L1 binding can be
learned from deep sequencing data and provides an efficient
approach to discover PD-L1 binding peptides.

Dataset and methods

Phage display peptide library
biopanning

We performed two rounds of phage display selection using
recombinant human PD-L1 extracellular domain (ECD) protein
(Cat# 10084-H08H, Sino Biological Inc., Beijing, China) as
bait. The selection of Ph.D.-12 phage display library (New
England Biolabs, Ipswitch, MA, United States) against PD-L1
was performed in six replicates. The control selections, i.e.,
Ph.D.-12 against Dynabeads (Cat# 10-103-D, Invitrogen) and
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Ph.D.-12 against unrelated anti-FLAG M2 monoclonal antibody
(Cat# F3165, Sigma-Aldrich), were performed in triplicate.

Round 1

In a microcentrifuge tube, 20 µL of Dynabeads were coated
with a solution of PD-L1 (100 µL, 100 µg/mL) in PBS for
overnight at 4 C. The solution was added to 900 µL of PBS and
then transferred to a well in the KingFisher 96 deep-well plate
(Cat# 95040450, Thermo Fisher Scientific). The Dynabeads with
PD-L1 were rinsed 3 times with 0.1% Tween-20 in PBS, and then
blocked with 2% (w/v) BSA in PBS for 1 h at room temperature,
followed by an incubation with 3 × 1011 PFU Ph.D.-12 phage
display library for 1.5 h at room temperature. The unbound
phage was rinsed with 0.1% Tween-20 in PBS. Phage remained
on the beads were eluted for 9 min at room temperature by
adding 20 µL of HCl (pH 2). The elution buffer along with
the beads were transferred into a 1.5 mL microcentrifuge tube
and immediately neutralized with 10 µL of neutralization buffer
(Phusion HF Buffer, NEB B0518S). The recovered phage was
amplified in E. coli ER2738 (New England Biolabs, Ipswitch,
MA, United States) for the second round of biopanning.

Round 2

Six microcentrifuge tubes containing 20 µL of Dynabeads
were coated with a solution of PD-L1 (100 µL, 100 µg/mL) in
PBS for overnight at 4 C. An additional three microcentrifuge
tubes containing 20 µL of Dynabeads were coated with a
solution of Protein G (100 µg/mL) along with anti-FLAG
M2 monoclonal antibody (150 µg/mL) in 100 µL PBS for
overnight at 4 C. In parallel, three more microcentrifuge tubes
containing 20 µL of Dynabeads were suspended in 100 µL PBS
for overnight at 4 C. Solution from all 12 microcentrifuge tubes
were then, respectively, added to 900 µL of PBS and transferred
to 12 wells in a KingFisher 96 deep-well plate. The Dynabeads
were rinsed with 0.1% Tween-20 in PBS, and then blocked with
2% (w/v) BSA in PBS for 1 h at room temperature, followed
by incubation with 3 × 1010 PFU enriched Ph.D.-12 phage
display library from Round 1 for 1.5 h at room temperature.
The unbound phage was rinsed with 0.1% Tween-20 in PBS
five times. Phage remained on the beads were resuspended
in DNase free water and boiled at 90 C for 10 min. The
single-stranded DNAs (ssDNAs) from discovered phage were
extracted and subjected to polymerase chain reaction (PCR)
amplification and Illumina sequencing, and those from Ph.D.-
12 libraries before and after the first round of biopanning were
also sequenced to serve as additional controls. The steps for
Illumina sequencing of phage display libraries were described
previously (He et al., 2018b). Briefly, PCR amplification was
first performed to transform the ssDNA of the amplified phage
into Illumina-compatible double-stranded DNA (dsDNA). The

detailed PCR protocol for Illumina sequencing can be found in
the Supplementary Information. After PCR amplification, the
dsDNA PCR fragments corresponding to the expected size were
confirmed and quantified using agarose gel electrophoresis. The
PCR products from multiple experiments were then mixed
together allowing 20 ng of each product in the mixture and
purified by E-Gel (Thermo Fisher Scientific, Waltham, MA,
United States). The purified dsDNAs were finally sequenced
using the Illumina NextSeq paired-end 500/550 High Output Kit
v2 (150 cycles).

Deep-sequencing analysis

Raw FASTQ data were processed by using MatLab scripts
described in a previous publication (He et al., 2018b) and
filtered to find significantly enriched sequences using MatLab
scripts previously reported on a computational server (Sugon
I840-G20, Dawning Information Industry Co., LTD., Beijing,
China). Sequences isolated from the PD-L1 screen that increased
significantly in abundance against sequences isolated from
the control selections were labeled PD-L1 binding peptides.
Significance of the ratio was assessed using one-tailed, unequal
variance Student t-test. Only sequences with ratio ≥ 2 and
p-value ≤ 0.05 were considered as PD-L1 binding peptides.
Deep sequencing the library before round 1 (R0), the output
of two selection rounds (R1 and R2) and the control selection
experiments identified 80 peptide sequences that exhibited high
normalized abundance in R2 and low normalized abundance in
R0, R1, and the control experiments R2-DB (Dynabeads), and
R2-UF (unrelated anti-FLAG M2 monoclonal antibody).

Database search for target-unrelated
peptides

All sequences that were identified as potential PD-L1
binding peptides were searched against the BDB database1 (He
et al., 2016) to check if they have been previously discovered in
other phage display screens with distinct targets (MimoSearch2

and MimoScan3). Peptides that were identified by four or more
entirely different targets were putative target-unrelated peptides
(He et al., 2019a).

Benchmark dataset for training

The positive dataset was composed of 80 PD-L1 binding
peptides identified by NGPD. The remaining peptides were

1 http://i.uestc.edu.cn/bdb/

2 http://i.uestc.edu.cn/bdb/index.php/site/tools?type=MimoSearch

3 http://i.uestc.edu.cn/bdb/index.php/site/tools?type=MimoScan
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non-PD-L1 binding peptides, which consisted of the negative
dataset. Redundant peptides were then removed by using
CD-HIT (Li and Godzik, 2006; Fu et al., 2012), with a
sequence identity threshold of 0.8 for the PD-L1 and non-
PD-L1 binding peptides, respectively. We used this value
based on the size of our dataset. More stringent criteria, such
as 0.4 or 0.3, were not adopted because machine learning
algorithms could not acquire abundant information to learn
with a relatively small sample. After this analysis, no redundant
peptides were found and excluded, and the positive training
dataset consisted of 80 PD-L1 peptides. To balance the
positive and negative training dataset, we randomly selected
800 peptides from the negative dataset and divided them
into 10 sub-datasets. Each negative sub-dataset was paired
with the positive training dataset. Finally, 10 pairs of sub-
datasets were constructed and each pair was composed of
80 PD-L1 and 80 non-PD-L1 binding peptides (Table 1).
The training dataset is provided in Trainingdataset.xslx in the
Supplementary Material.

Independent testing dataset
construction

The literature data related to PD-L1 binding peptides were
extracted from the PubMed database. A typical text mining
query is given below: (anti-PD-L1 peptide) OR (PD-L1 binding
peptide). The search returned 652 articles published before July
08, 2021. PD-L1 binding peptide sequences were then manually
extracted from the above peer-reviewed papers. Modified
peptides (peptides with non-natural amino acids) were first
excluded since no modified peptides were in the training dataset.
Inclusion criteria were as follows: (1) peptides containing only
20 natural amino acids and less than 50 residues were collected
since peptides having more than 50 amino acids were considered
as proteins; (2) peptides that have been experimentally verified
to bind with PD-L1 in vitro or in vivo were collected.
Finally, 34 experimentally validated PD-L1 binding peptides
were obtained. After removing redundant peptides by using
CD-HIT with a sequence identity cutoff of 0.8, 30 PD-L1
binding peptides were retained. Consequently, we constructed

TABLE 1 Number of PD-L1 and non-PD-L1 binding peptides
in each dataset.

Dataset Number of
PD-L1 binding
peptides

Number of non-PD-L1
binding peptides

Training dataset 80 80/80/80/80/80/80/80/80/80/80

TestDataset_1 30 /

TestDataset_2 / 221405

For the training dataset, each negative sub-dataset with 80 non-PD-L1 binding peptides
was paired with the positive training dataset composed of 80 PD-L1 binding peptides.

two independent testing datasets, i.e., TestDataset_1 (30 PD-
L1 binding peptides) and TestDataset_2 [221405 non-PD-L1
binding peptides from the remaining negative dataset (not for
training)] (Table 1). As the sources of the two datasets are
different, they were tested separately. Datasets TestDataset_1
and TestDataset_2 are provided in Testingdataset.xlsx in the
Supplementary Material.

Sequence encoding and peptide
descriptor analysis

Four peptide descriptors, including the amino acid
composition (AAC), pseudo amino acid composition (PseAAC),
dipeptide composition (DPC) and the composition of k-spaced
amino acid group pairs (CKSAAGP), were used to encode
each peptide in the training dataset. The calculation of the
above descriptors were performed by the codes within the
iLearnPlus (Chen et al., 2021). AAC and DPC are defined as
follows:

AAC (i) =
x(i)∑20
i=1 x(i)

(1)

DPC
(
j
)
=

y(j)∑400
j=1 y(j)

(2)

where AAC(i) is the percent of the ith (i = 1, 2, . . .,
20) amino acid, and x(i) represents the number of the
ith amino acid in a peptide sequence. DPC(j) is the
frequency of the jth (j = 1, 2, . . ., 400) dipeptide, and
y(j) represents the number of the jth dipeptide in a
peptide sequence.

The CKSAAGP descriptor is modified from the composition
of k-spaced amino acid pairs (CKSAAP) in which the
occurrences of the amino acid pairs that are separated by
k-residues are calculated. For CKSAAGP, 20 amino acids are
first divided into five groups according to their physicochemical
properties: aromatic, aliphatic, negative-charged, positive-
charged, and uncharged residues. The frequencies of the 25
amino acid pairs (5 × 5) separated by k-residues with group
annotations were then calculated. For a peptide with L residues,
if the k-spaced residue group pair AE appears n times, the
frequency of the corresponding residue pair is n/[L−(k + 1)].
In this study, k = 0, 1 and 2 were jointly considered due to
the peptide length of 12. Finally, the CKSAAGP descriptor with
25 × 3 = 75 dimensions was comprised of the frequencies of
0-spaced, 1-spaced, 2-spaced residue group pairs.

The sequence-order information would be completely
ignored if AAC is used to encode a sequence. To compensate
for AAC, PseAAC was proposed by introducing discrete factors
for incorporating some sort of sequence-order or pattern
information (Chou, 2001). The detailed calculation of PseAAC
can be found at (Chou, 2009). In the formula for PseAAC, the
weight factor ω and discrete counted-rank correlation factor λ
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are two key parameters. Considering the limited sequence length
and to ensure the diversity of key components, we set λ= 4 and
ω = 0.4 to generate PseAAC with 20+ λ dimensions.

Feature selection

In this study, feature selection was implemented by using the
iLearnPlus platform (Chen et al., 2021). Chi-square test (CHI2)
(Forman, 2003), Information gain (IG) (Yu and Liu, 2003),
F-score value (FScore) (Chen et al., 2018), Mutual information
(MIC) (Peng et al., 2005), and Pearson’s correlation coefficient
(Pearson) (Stigler, 1989) feature selection strategies were used to
identify key features. The selected feature number was set to be
160 as each sub-dataset was comprised of 160 peptide sequences.
The MinMax normalization approach was then utilized to
scale the selected features to the unit range between 0 and
1. To select the optimal feature set, we further used various
machine learning methods to construct models with each of
the feature sets selected by CHI2, IG, FScore, MIC and Pearson
feature selection approaches, respectively, via fivefold cross-
validation. The feature set, which achieved the best classification
performance, was utilized for further model construction.

Machine learning algorithm selection

The optimal feature set obtained by feature selection was
used to construct classifiers based on 12 state-of-the-art machine
learning algorithms in the iLearnPlus-AutoML module via
fivefold cross-validation (select the “Auto optimization” option
to optimize parameters automatically), including Support vector
machine (SVM) (Cortes and Vapnik, 1995), Random forest
(RF) (Breiman, 2001), Decision tree (DecisionTree) (Breimann
et al., 1984), K-nearest neighbors (KNN) (Altman, 1992),
Logistic regression (LR) (Freedman, 2009), Gradient boosting
decision tree (GBDT) (Friedman, 2001), Light gradient boosting
machine (LightBGM) (Ke et al., 2017), Extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016), Stochastic
gradient descent (SGD) (Pedregosa et al., 2011), Naïve Bayes
(NaïveBayes) (Rennie et al., 2003), Linear discriminant analysis
(LDA) (McLachlan, 1992), and Quadratic discriminant analysis
(QDA) (McLachlan, 1992).

Performance evaluation

The fivefold cross-validation test was selected to evaluate
the performance of the constructed classifiers. In the fivefold
cross-validation test, the sequence dataset is randomly divided
into five equally sized folds. Four folds of these folds are
used to develop the machine learning model and optimize
its parameters, and the remaining one fold is employed

to assess the performance of the model. The process was
repeated five times until each fold is used for testing once.
In this study, eight commonly used metrics were utilized to
quantify the model predictive performance, including sensitivity
(Sn), specificity (Sp), Precision (Pr), F1 score (F1), accuracy
(Acc), Matthews correlation coefficient (MCC), the area under
the receiver operating characteristic (ROC) curve (AUROC)
and the area under the precision-recall curve (AUPRC).
The former six performance indicators are calculated by the
following equations:

Sn =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

Pr =
TP

TP + FP
(5)

F1 =
2× TP × TP

TP × (TP + FN)+ TP × (TP + FP)
(6)

Acc =
TP + TN

TP + FP + TN + FN
(7)

MCC =
TP × TN − FP × FN

√
(TP + FP)×(TP + FN)× (TN + FP)×(TN + FN)

(8)
where TP, FP, TN, FN, respectively, are the number of true
positives, the number of the false positives, the number of
true negatives, the number of the false negatives. We also
computed the AUROC and AUPRC values for comparing the
model performance.

Final model construction and web
service implementation

Ten submodels were constructed based on SVM by using
the LIBSVM 3.25 package (Chang and Lin, 2011), which
is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The
radial basis function (RBF) was selected as the kernel function
to develop SVM-based models. The kernel width factor
gamma and the regularization factor c were automatically
optimized by selecting the “Auto optimization” option via
the grid search method in iLearnPlus (Chen et al., 2021).
To reduce the generalization error of the prediction, we
adopted the voting strategy to implement an ensemble
predictor, called PDL1Binder. The ensemble model aggregates
the predictive result of each submodel. In this study, we used
the averaging voting technique, which takes an average of
predictions from ten submodels and uses it to make the final
prediction. Each peptide for prediction will be subjected to
the prediction of ten submodels. Each submodel corresponds
to a possibility value of the peptide being a PD-L1 binding
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FIGURE 1

Overview of this study.

peptide. The final probability value was computed by averaging
the probability values of ten submodels. If the value is
greater than or equal to the threshold of possibility value
(0.5 by default), the peptide will be identified as a PD-L1
binding peptide.

For ease of use, the PDL1Binder classifier was further
implemented into an online web service, which is freely
available at http://i.uestc.edu.cn/pdl1binder/cgi-bin/
PDL1Binder.pl. The web interface of PDL1Binder was
developed by using Perl. The web service was tested
in the Mozilla Firefox, Google Chrome, and Internet
Explorer browsers.

Results

The workflow of this study is shown in Figure 1.
We first isolated 80 PD-L1 binding peptides by using
NGPD and utilized them as the benchmark dataset to
develop computational models for identifying PD-L1
binding peptides. Four different peptide descriptors were
employed to encode each peptide sequence. The optimal
feature selection approach chosen from five feature
selection strategies and 12 machine learning methods
were combined to implement predictive models. Fivefold
cross-validation results showed that the SVM-based model
outperformed models developed with 11 other machine
learning algorithms. Therefore, an ensemble SVM-based
computational model, called PDL1Binder, was implemented.
Moreover, two independent testing dataset: TestDataset_1
(30 PD-L1 binding peptides) and TestDataset_2 (221405
non-PD-L1 binding peptides not for training) were used to
evaluate PDL1Binder.

Selection and analysis of peptides that
bind to programmed cell death ligand 1

We used the Ph.D.-12 phage display library to discover
peptide ligands for PD-L1. Two rounds of phage display
selection were performed using PD-L1 ECD as bait. In round 2,
we also performed two control selections; in the first control, we
panned the enriched Ph.D.-12 library from Round 1 against the
Dynabeads (R2-DB) and in the second control, we panned the
enriched Ph.D.-12 library from Round 1 against unrelated anti-
FLAG M2 monoclonal antibody (R2-UF). Deep sequencing the
library before round 1 (R0), the output of two selection rounds
(R1 and R2) and the control selection experiments identified 80
peptide sequences that exhibited high normalized abundance in
R2 and low normalized abundance in R0, R1, and the control
experiments R2-DB, and R2-UF.

All 80 potential peptide binders for PD-L1 were significantly
enriched (p< 0.05, R≥ 2) in the selection of the Ph.D.-12 phage
display library on PD-L1 but not in any of the control screens
(Supplementary Figure 1). We clustered the hit sequences
based on their features described by the BLOSUM62 matrix
and found that 29 peptides were clustered into five groups
(Figure 2). The remaining un-clustered sequences were assigned
to their nearest clusters (Supplementary Figure 1).

Finally, we investigated whether 80 PD-L1 binders could be
target-unrelated peptides which are enriched for other reasons
other than target specificity. MimoSearch and MimoScan
confirmed that YPGSQSWMPSDF has been previously selected
by IgE from patients, while the remaining 79 peptides have
not been identified in other phage display biopanning datasets
which are curated in BDB. As YPGSQSWMPSDF was only
identified with two different targets so far, it was not considered
as a target-unrelated peptide and remained for further analysis.
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FIGURE 2

Deep sequencing the output of all selection rounds and the control experiments identified peptide sequences that exhibited high normalized
abundance in R2 and low normalized abundance in R0, R1, and the control screens R2-DB, and R2-UF. Twenty-nine sequences from the deep
sequencing results were clustered into five groups. Rep, replicate; R0, the library before round 1; R1, the first round of panning against PD-L1
ECD; R2-DB, panning the enriched Ph.D.-12 library from R1 against the Dynabeads; R2-UF, panning the enriched Ph.D.-12 library from R1
against unrelated anti-FLAG M2 monoclonal antibody (R2-UF); R2, panning the enriched Ph.D.-12 library from R1 against PD-L1 ECD.

Performance analysis of models
trained with diverse machine learning
and feature selection methods

The AAC, DPC, CKSAAGP, and PseAAC descriptors were
used to encode each peptide in the training dataset. We directly
concatenated four types of peptide descriptors. As a result, the

dimension of the feature vector of each peptide is 519 (Table 2).
For each of the ten sub-datasets, feature selection was performed
by using five popular feature selection approaches, respectively.
The number of selected features was determined to be 160 to
keep the same as the number of peptides in the training dataset.

The feature subsets obtained through various feature
selection methods were then used to develop predictors
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TABLE 2 List of 519 features.

Peptide descriptor Feature dimension

Amino acid composition (AAC) 20

Dipeptide composition (DPC) 400

Pseudo amino acid composition (PseAAC) 24

Composition of k-spaced amino acid group pairs
(CKSAAGP)

75

(AAC, DPC, PseAAC, CKSAAGP) 519

Each peptide was represented by four types of peptide descriptors, which were conflated
into a feature vector with 519 dimensions.

with 12 different traditional machine learning methods
implemented in iLearnPlus (Chen et al., 2021). As shown
in Figure 3, the results of fivefold cross-validation showed
that the SVM-based classifier trained with the feature set
selected by Pearson’s correlation coefficient achieved an
average accuracy of 82.13% with an average of 86.13%
sensitivity and 78.13% specificity. For all ten submodels,
the AUROC and AUPRC values of the SVM-based model
are the highest. The model under this combination
outperformed other models developed with different
feature subsets and machine learning algorithms (see
Machinelearningresult.xlsx in Supplementary Material).
Therefore, feature subsets selected by Pearson’s correlation
coefficient and SVM were utilized for further model
construction. Performance metrics of each submodel under

each combination were provided in Machinelearningresult.xlsx
in Supplementary Material.

Ensemble predictor for identifying
programmed cell death ligand 1
binding peptides

Based on the above results, we proposed an ensemble
SVM-based predictor for identifying PD-L1 binding peptides,
called PDL1Binder, the framework of which is illustrated
in Figure 4. For a given peptide, it will be predicted
by ten submodels separately. PDL1Binder then uses the
averaging voting method and makes final predictions based
on the average probability value. The fivefold cross-validation
results in Figure 3 showed that PDL1Binder achieved an
average accuracy of 82.13% with an average of 86.13%
sensitivity, 80.42% precision, and 78.13% specificity, and
an average of 0.6528 MCC, 0.8271 F1, 0.8978 AUROC,
and 0.8989 AUPRC.

For the convenience of users in using PDL1Binder, an online
web service has been developed, which is freely available at http:
//i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl. As shown
in Figure 5, a professional and user-friendly web architecture
for PDL1Binder was implemented. PDL1Binder allows users
to submit peptide sequences in fasta or plain text format
and set the threshold of probability value to differentiate

FIGURE 3

The performance metrics of each submodel. All data were expressed as mean ± standard deviation. SVM, Support vector machine; LR, Logistic
regression; SGD, Stochastic gradient descent; NaïveBayes, Naïve Bayes; Pearson, Pearson’s correlation coefficient; CHI2, Chi-square test; IG,
Information gain; FScore, F-score value; MIC, Mutual information.
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FIGURE 4

Framework of the proposed scheme for PD-L1 binding peptide prediction.

between predicted positives and negatives (tp) (Figure 5A),
which makes it more convenient and flexible for future users.
To simplify the representation of PDL1Binder prediction,
predictive results are displayed in a table (Figure 5B). Users
can sort the results in ascending or descending order by a
specific column.

Evaluation of PDL1Binder with
independent testing datasets

Two independent testing datasets, one with 30 non-
redundant PD-L1 binding peptides and the other one with
221405 non-redundant non-PD-L1 binding peptides, were
employed to evaluate the generalization ability of PDL1Binder
under different tp-values. As shown in Table 3, with the
increase of the tp-value, the value of sensitivity decreases, while
the specificity value increases. When the tp-value was set to
0.55 within PDL1Binder, 83.33% PD-L1 binding peptides in
the TestDataset_1 were correctly identified as PD-L1 binding
peptides, while 53.29% non-PD-L1 binding peptides were
precisely predicted as non-PD-L1 binding peptides in the
TestDataset_2 (Table 3).

Discussion

Many studies have demonstrated that PD-L1 binding
peptides are promising for the treatment of cancers (Pan

et al., 2021). PD-L1 binding peptides screened by phage
display selection in this study could serve as peptide
drug candidates for blocking the PD-1/PD-L1 interaction.
However, only a few tens of PD-L1 binding peptides have
been experimentally identified. In fact, many candidate
molecules are needed to develop a peptide drug for cancer
immunotherapy. Therefore, it is urgently needed to employ
computational methods to rapidly identify more novel PD-L1
binding peptides.

At present, no computational models have been proposed
for efficiently discovering PD-L1 binding peptides. To pursue
identifying PD-L1 binding peptides from pools of peptides with
unknown functions, we designed a SVM-based classifier based
on sequence information, called PDL1Binder, which could help
to eliminate false positive peptides and improve the efficiency
of obtaining PD-L1 binding peptides. The classifier integrates
10 SVM submodels. Two independent testing datasets were
constructed to test the performance of PDL1Binder. Here,
83.33% of PD-L1 binding peptides in the TestDataset_1 were
correctly identified as PD-L1 binding peptides, while 53.29%
of non-PD-L1 binding peptides were precisely predicted as
non-PD-L1 binding peptides in the TestDataset_2 when the
tp-value was set to 0.55 within PDL1Binder. The proposed
approach is considered as an applicable scheme for assisting the
development of novel PD-L1 binding peptides.

PDL1Binder could be beneficial for both panning
experiments and subsequent affinity determination
experiments. The model can help researchers remove as
many non-PD-L1 binding peptides as possible, thereby
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FIGURE 5

Webpage of PDL1Binder. (A) Input interface of PDL1Binder. Users can submit query sequences in FASTA or plain text format. The tp can be set
by users, ranging from 0 to 1. (B) Output interface of PDL1Binder. PDL1Binder outputs the number of SVM-based submodels that identify the
query peptide is a PD-L1 binding peptide and the probability value that the query sequence is predicted to be a PD-L1 binding peptide. The
output likelihood value is obtained by averaging the probability values of 10 SVM-based submodels.

reducing both time and costs involved in getting PD-L1 binding
peptide candidates. After testing on two independent test sets,
we found that PDL1Binder was able to help remove around 5%

of non-PD-L1 binding peptides (TestDataset_2) while retaining
almost all PD-L1 binding peptides (TestDataset_1) (tp = 0.2).
When the tp-value was set to 0.5, PDL1Binder correctly
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TABLE 3 Performance of PDL1Binder in two independent testing
datasets under different tp-values.

tp 0.1 0.15 0.20 0.25 0.30 0.35

TestDataset_1 100.00% 100.00% 100.00% 96.67% 93.33% 93.33%

TestDataset_2 0.80% 2.79% 5.03% 8.92% 15.18% 20.29%

tp 0.40 0.45 0.50 0.55 0.60 0.65

TestDataset_1 93.33% 86.67% 83.33% 83.33% 63.33% 53.33%

TestDataset_2 27.52% 37.39% 44.31% 53.29% 62.34% 71.17%

tp 0.70 0.75 0.80 0.85 0.90 0.95

TestDataset_1 43.33% 43.33% 30.00% 10.00% 3.33% 0.00%

TestDataset_2 80.84% 86.43% 92.26% 96.52% 99.09% 100.00%

tp, threshold of probability value to differentiate between predicted positives and
negatives. Performance metric is the predictive accuracy of PD-L1 binding for
TestDataset_1 and that of non-PD-L1 binding for TestDataset_2. Bold: The predictive
accuracy of PD-L1 binding and that of non-PD-L1 binding have reached their maximum
under tp = 0.55.

predicted 83.33% of PD-L1 binding peptides (TestDataset_1)
while clearing away 44.31% of non-PD-L1 binding peptides
(TestDataset_2). Additionally, our tool could successfully
eliminate more than half of non-PD-L1 binding peptides
(53.29%, TestDataset_2) while reserving 83.33% of PD-L1
binding peptides (TestDataset_1) (tp = 0.55). In the actual
situation of random peptide library screening experiment,
PD-L1 binding peptides are fewer and more precious, so
researchers wish to keep as many putative PD-L1 binding
peptides as possible in an experiment, while the proportion
of non-PD-L1 binding peptides is much larger than that of
PD-L1 binding peptides, thereby they wish to remove as many
non-PD-L1 binding peptides as possible. We recommend
users to set tp at 0.55 when using PDL1Binder since both the
predictive accuracy of PD-L1 binding and that of non-PD-L1
binding have reached their maximum under this threshold. The
above results indicate that PDL1Binder might save a significant
amount of time and cost, greatly improving the efficiency of
discovering PD-L1 binding peptides.

In the process of removing redundant peptides from 80
PD-L1 binding peptides identified by phage display screen, no
redundant peptides were found and excluded. This suggests
that these PD-L1 binding peptides seem to have a low
sequence identity (below 0.8), which indicates that there are
fewer features that are consistent within the PD-L1 binding
sequences in the low-dimensional space. The SVM algorithm
first projects the features in a low-dimensional space to those
in a high-dimensional feature space through the RBF kernel
function, and more consistent features are found in the high-
dimensional feature space. We speculate that this might be
a reason why SVM is superior to other machine learning
algorithms. Another possible reason might be that LIBSVM
utilizes L1 regularization (Chang and Lin, 2011), which could
effectively avoid overfitting on a small training dataset. SVM
with RBF kernel (RBFSVM) can handle the overfitting problem
through selecting appropriate kernel width factor gamma and
regularization factor c.

Our dataset for training is relatively small. More
experimentally validated PD-L1 binding peptides will be
needed to improve the performance of the computational
model for identifying PD-L1 binding peptides. In the future, we
will continue to improve the model and synthesize potential PD-
L1 binding peptides predicted by the model to experimentally
show if they can bind with PD-L1.

Conclusion

PD-L1 binding peptides are potential therapeutic agents
for treating cancers. The PD-L1 binding peptides identified
by phage display screen in this study are promising to
become peptide drug candidates for blocking the PD-1/PD-L1
interaction to combat cancer. Computational models for
identifying PD-L1 binding peptides can accelerate the discovery
of these novel drug candidates. This study proposes the first
SVM-based computational model, PDL1Binder, for effectively
predicting peptides targeting PD-L1. We implemented
PDL1Binder into an online web-server, which is freely accessible
at http://i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl. Our
study showcases the potential of machine learning approaches
for mining PD-L1 binding peptides from peptide pools of
unknown bioactivities and provides promising PD-L1 binding
peptide candidates for in-depth investigations.
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