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Sarcopenia is defined as the loss of skeletal muscle mass and muscle function. It is common in patients with malignancies and
often associated with adverse clinical outcomes. The presence of sarcopenia in patients with cancer is determined by body
composition, and recently, radiologic technology for the accurate estimation of body composition is under development.
Artificial intelligence- (AI-) assisted image measurement facilitates the detection of sarcopenia in clinical practice. Sarcopenia is
a prognostic factor for patients with cancer, and confirming its presence helps to recognize those patients at the greatest risk,
which provides a guide for designing individualized cancer treatments. In this review, we examine the recent literature (2017-
2021) on Al-assisted image assessment of body composition and sarcopenia, seeking to synthesize current information on the
mechanism and the importance of sarcopenia, its diagnostic image markers, and the interventions for sarcopenia in the
medical care of patients with cancer. We concluded that Al-assisted image analysis is a reliable automatic technique for
segmentation of abdominal adipose tissue. It has the potential to improve diagnosis of sarcopenia and facilitates identification
of oncology patients at the greatest risk, supporting individualized prevention planning and treatment evaluation. The
capability of AI approaches in analyzing series of big data and extracting features beyond manual skills would no doubt
progressively provide impactful information and greatly refine the standard for assessing sarcopenia risk in patients with cancer.

1. Introduction

Sarcopenia was first introduced by Dr. Irwin Rosenberg in
1989, who described it as “age-related loss of skeletal muscle”
[1]. It was initially regarded as the progressive decline in skel-
etal muscle mass, muscle strength, and physical performance
associated with aging [2], but the definition and management
of sarcopenia have expanded in recent years. In today’s

broader view, besides associations with aging, the shared risk
factors for development of sarcopenia include chronic dis-
eases, nutrition deficiencies, physical inactivity, hormonal
changes, insulin resistance, loss of the neurons that stimulate
muscle, and fat infiltration into muscle [3]. Among possible
comorbidities, malignancy is a major category of disease-
related sarcopenia. The causes of muscle loss in patients with
cancer are multifactorial, especially in older adults [4].
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Gender differences have been found in the prevalence of
sarcopenia for people younger than 70 years and those older
than 80 years; sarcopenia is diagnosed more often in
women in those aged <70 years, while among those aged
>80 years, more men will have sarcopenia than women
[5]. This gender difference is clearly influenced by age,
and sarcopenia must be considered when evaluating people
of all ages who have cancer.

The etiology of sarcopenia in patients with cancer may
vary between different ages and genders and can be associ-
ated with genetic predisposition, underlying comorbidities,
reduced physical performance, and age-related declines in
various hormones. Cancer-induced inflammatory cytokines
and anorexia that cause decreased protein intake and
synthesis and increased protein degradation may also be
markers of sarcopenia in cancer patients. Treatment-
related causes may include the side effects of chemotherapy,
surgery, or radiotherapy [4, 6].

Sarcopenia is a prognostic factor for patients with cancer,
and confirming its presence helps to recognize those patients
at the greatest risk and to guide individualized cancer treat-
ment [7]. The diagnosis of sarcopenia is determined through
the assessment of body composition (analysis of adipose and
muscle tissue components), and recently, artificial intelli-
gence- (Al-) assisted image measurement is being used to
facilitate the detection of sarcopenia in clinical practice [8].

The purpose of this review was to synthesize current
information in recent studies addressing Al-assisted imaging
assessment of body composition and sarcopenia, particularly
to gain a clearer understanding of the mechanism and the
importance of sarcopenia in cancer and its diagnostic image
markers and interventions for sarcopenia in the medical care
of patients with cancer.

2. Literature Review

We searched the recent literature in PubMed from 2017 to
2021 using (“deep learning”[MeSH Terms] OR (“deep”[All
Fields] AND “learning”[All Fields]) OR “deep learning”[All
Fields]) AND (“sarcopenia”’[MeSH Terms] OR “sarcope-
nia”[All Fields]). A total of 28 articles addressing AI-
assisted imaging assessment of body composition and sar-
copenia were found, of which 20 reporting DICE coeffi-
cients were finally included for review. They are discussed
below along with other supportive studies for background,
focusing on cancer-related sarcopenia and the current sta-
tus of Al-assisted imaging in the evaluation of sarcopenia
in cancer patients.

2.1. The Definition/Mechanism of Sarcopenia in Cancer
Patients. Complex metabolic pathways are involved in the
development process of sarcopenia. Several discriminating
metabolites have been identified and investigated as poten-
tial biomarkers for the presence of sarcopenia. For example,
one study demonstrated that low levels of plasma lysophos-
phatidylcholine 18:2 predict a greater decline of gait speed
in older adults [9]. Another study reported that increased
asparagine, aspartic acid, citrulline, ethanolamine, glutamic
acid, sarcosine, and taurine are found in older adult patients
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with sarcopenia [10]. As for patients with cancer, a serum
and urine metabolomics study found that cancer-related
metabolic reprograming may represent a distinct diagnostic
model [11].

2.2. Diagnostic Image Markers for Sarcopenia. In clinical
practice, assessment techniques for sarcopenia include hand-
grip strength to measure muscle strength and gait speed and
chair stand tests to evaluate physical performance [12]. Bio-
impedance analysis and dual-energy X-ray absorptiometry
are the most common diagnostic tools for confirmation of
muscle quantity and quality [13]. In the field of oncology,
the use of abdominal computed tomography (CT) to mea-
sure body composition helps to identify sarcopenia in
patients with cancer by providing precise and simplified data
for describing sarcopenia and its correlation with clinical
factors [14]. Thus, the performance of routine abdominal
CT at cancer diagnosis, posttreatment evaluation, and regu-
lar follow-up provides the means for gauging body composi-
tion throughout the course of cancer.

The cross-sectional area (CSA) of muscle tissue at the
level of the 3™ lumbar spine (L3) provides reproducible eval-
uation of muscle size in cancer patients without the need for
additional examinations. The measurements collected from
a single slice CT image reveal solid evidence that correlates
strongly with whole-body adipose tissue and skeletal muscle
[15-17]. The common method is to manually draw the total
CSA of all muscle groups at L3 or to quantify the CSA using
thresholds of Hounsfield units (HU) from -29 to 150 for
skeletal muscle using the available software [18]. The third
lumbar vertebra, L3, is chosen because it is the current gold
standard for quantification of muscle mass by obtaining
parameters from the analysis of a single-slice CT scan [19].
The cross-sectional skeletal muscle area (SMA) calculated
at the level of L3 can correctly estimate total body muscle
mass [17]. A review has shown that attempts to use alternate
vertebral levels to L3 (cervical, thoracic, and lumbar CT
slices) for evaluating SMA in cancer patients have shown
no validation of whole-body skeletal muscle mass in various
types of cancer (lung, head, and neck) and a lack of consen-
sus [20]. The skeletal muscle index (SMI, cm?*/m?) is calcu-
lated by dividing the CSA by the square of body height
with various cut-off values according to gender and different
body mass index (BMI 225.0 or <25.0) [21]. The formula
used was SMI = L3 skeletal muscle CSA (cm?)/height? (m?).
The muscle groups for SMI consist of psoas major, para-
spinal muscle, and abdominal wall muscles (Figure 1). The
solitary muscle indices such as psoas muscle index (PMI)
and paravertebral muscle index (PSMI) also achieve good
performance for sarcopenia evaluation [16, 22, 23]. The
CT-derived measurement of muscle mass is usually evalu-
ated using the method with thresholds of HU from -29 to
150 that will limit the evaluation of myosteatosis (fat infil-
trates into muscle) technologically. The patients with higher
BMI had greater SMI but lower skeletal muscle density
(SMD) [24, 25]. In the future, CT-derived measurement of
muscle mass (area) and quality (myosteatosis) could be
achieved with fully automated segmentation for contouring
of muscle groups using deep learning systems [26].
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FiGURre 1: The muscle groups for the skeletal muscle index consist
of psoas major (green), quadratus lumborum (blue), erector
spinae (red), and abdominal wall muscles (transversus abdominis
muscle, internal and external oblique muscle (yellow), and rectus
abdominis (purple)).

2.3. The Importance of Sarcopenia in Patients with Cancer.
The presence of sarcopenia in older adults may manifest as
impaired daily function, disability, increased falls, risk of
fractures, loss of independence, poorer quality of life,
increased mortality, and high healthcare expenditures
[27-31]. In patients with malignancies, sarcopenia is strongly
associated with poor oncologic outcomes. A meta-analysis of
4262 participants with ovarian cancer revealed a significant
association between the SMI and overall survival (OS)
(P =0.007; hazard ratio (HR): 1.11; 95% confidence interval
(CI): 1.03-1.20) [32]. Another meta-analysis of 5497 partici-
pants with breast cancer reported similar result (pooled
HR: 1.71; 95% CI: 1.25-2.33) [33].

Sarcopenia is also an independent predictor of
treatment-related toxicities, including surgical complica-
tions, prolonged hospitalization, and more adverse effects
of chemotherapy. A cohort study of 234 patients undergoing
liver resection for malignant tumors demonstrated that sar-
copenic patients had longer hospital stays (10 days vs. 6-8
days; P < 0.001) and more readmission (8.8% vs. 0-7.7%; P
=0.02) than those without sarcopenia [34]. A study of 533
patients with nonmetastatic colon cancer receiving a FOL-
FOX regimen reported that lower muscle mass is associated
with early discontinuation of chemotherapy (odds ratio
(OR): 2.34; 95% CI: 1.04-5.24; P=0.03), treatment delay
(OR: 2.24; 95% CI: 1.37-3.66; P = 0.002), and dose reduction
(OR: 2.28; 95% CI: 1.19-4.36; P =0.01) [35].

Body weight or BMI as an indication of body composi-
tion was previously used to predict the clinical outcomes of
patients with cancer [36, 37]. Emerging evidence suggests
that SMI correlates better with negative outcomes and com-
plications than does BMI. A study of 484 patients with pan-
creatic cancer showed that the changes in BMI during
chemotherapy did not have an impact on OS in patients
with maintained SMI values (P = 0.750), while decreases in
SMI were associated with poor OS in patients with main-
tained BMI (HR: 1.502; P=0.002) [38]. This can be
explained by the fact that patients with the same BMI may
have different SMI values due to different amounts of muscle
mass and differences in the level of fat infiltration. Similarly,
patients with the same body surface area (BSA) but different

SMI value receiving the same dose of chemotherapy may
have different severity of adverse effects [39, 40].

2.4. Interventions for Sarcopenia within the Medical Care of
Patients with Cancer. The prevalence of sarcopenia in
patients with cancer ranges widely from 16% to 71%,
depending on the definition in various study settings [7].
The understanding of the presence and the progression of
sarcopenia helps to identify high-risk patients and guide
the development of treatment plans. Since sarcopenia is sig-
nificantly associated with treatment-related toxicity [34, 35],
the dose titration of chemotherapy, the intensity of surgical
intervention, and the schedule of postoperative care should
be carefully assessed in sarcopenic patients. For the impact
of sarcopenia on oncologic outcomes, it also implies the
physician about the disease explanation, prognosis expecta-
tion, and treatment decision-making.

The interventions for sarcopenia in patients with cancer
include nutritional support, resistance exercise, and specific
treatments for sarcopenia and the underlying disease [6,
41-45]. Many studies support the use of nutritional supple-
ments [45], pharmacologic agents to increase muscle mass
[44], and exercise programs [42]. Some studies show con-
flicting results for interventions for increasing muscle mass
[6, 41], and the impact of those interventions on clinical out-
comes is still being investigated. Prospective studies on inter-
ventions for sarcopenia in patients with cancer are limited.

2.5. Medical Al Perspectives in the Diagnosis of Sarcopenia.
The present review identified a total of 20 articles reporting
DICE similarity coefficient scores [16, 19, 46-63]. Table 1
lists the included articles with the population characteristics
and segmentation approaches. The reported CT threshold
and DICE coeflicients of these included studies ranged
between 0.93 and 0.98 (Table 2), indicating great promise
in the clinical application of Al-assisted imaging. However,
as shown in Tables 1 and 2, there is currently no standard-
ized methodology for assessment of sarcopenia. The slicing
regions, methods of segmentation, tissues of interest, and
ground truth applied varied between the studies. A total of
18 articles used deep learning methods to perform auto-
mated segmentation (16 applied fully convolutional net-
works (FCN) or U-Net, and 2 used ResNet-18). The region
of segmentation varied across different systems, but the L3-
level axial slice was analyzed most frequently due to its
strong correlation with whole-body composition [19]. As
reference for segmentation (ground truth), 10 studies
reported use of a combination of automated or semiauto-
mated commercial segmentation software or cloud-based
annotation tool with manual correction; 1 study specified
that expert-labeled annotation was used as ground truth;
details of the ground truth reference was not specified in
the remaining articles (Table 1). Thirteen studies reported
CT threshold HU values. However, the CT threshold is likely
affected by whether or not contrast medium was used for
imaging. Of the 20 articles reporting DICE scores, 10 articles
reported DICE coefficients for skeletal muscle only; in the
other 10 articles, tissues including visceral adipose tissue,
subcutaneous adipose tissue, and intermuscular adipose
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tissue were also analyzed. Most of the articles reported train-
ing and testing cohort results only; 7 studies performed
independent validations (internal or external) (Table 2).

In the evaluation of sarcopenia, abdominal musculature
segmentation is accomplished using deep learning with a
DICE similarity coefficient of 0.93-0.98 [46, 48]. Successful
individual segmentation of different muscle groups for SMI
are achieved using a DICE similarity coefficient of 0.82-
0.95, consisting of psoas major, quadratus lumborum, erec-
tor spinae (paraspinal muscle), and abdominal wall muscles
(transversus abdominis muscle, internal and external obli-
que muscle, and rectus abdominis) [47]. The highly accurate
segmentation of individual muscle groups provides an
opportunity to assess muscle mass and myosteatosis sepa-
rately. The area of muscular CSA could be reserved for mass
evaluation. Using the cut point of CT HU inside the seg-
mented CSA is aimed at assessing myosteatosis [64]. The
CT-derived measurement of myosteatosis is associated with
cut points of muscle attenuation less than 41 or less than 33
HU, which is consistent with the most common threshold
for low-density muscle (0-30 HU) [64]. Knowledge about
changes in body composition during cancer treatments and
the disease course is currently lacking. The lack of standard-
ized assessment method to determine muscle mass in cancer
patients is evident from the varied cut-off values used in dif-
ferent studies, even for the same cancer type (as reviewed by
Rier et al. [65] in 2016). The variations in cut-off value
between the same cancer types likely have resulted from
the different population characteristics between studies
including age, BMI, disease severity, and different methods
of evaluation [65]. Recent studies have focused on develop-
ing reference diagnostic cut-off values among the normal
population. For people under 60 years old, the cut-off SMI
value ranged between 40 and 45 in male and 30 and 35 in
female (Supplement Table 1) [66-72]. However, the
population characteristics were different between these
studies, and determination of normal reference cut-off
values for different population characteristics using larger
series of data via an Al-assisted approach may fasten the
development of standardized assessment. Al-assisted body
composition measurement would increase the accuracy
and efficiency of the sarcopenia evaluation and provides a
trend of standardization by which the serial changes in
cancer-related sarcopenia are explored [26].

3. Conclusion

In conclusion, the presence of sarcopenia is represented by
prognostic and predictive values in patients with cancer.
Al-assisted image analysis is a reliable automatic technique
for segmentation of abdominal adipose tissue with the
potential to improve diagnosis of sarcopenia and facilitates
identification of oncology patients at the greatest risk, sup-
porting individualized prevention planning and treatment
evaluation. The capability of AI approaches in analyzing
series of big data and extracting high-level abstractions
beyond manual skills would no doubt progressively provide
impactful information and greatly refine the standard for
assessing sarcopenia risk in patients with cancer.
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