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Estimation of Ground PM2.5 
Concentrations using a DEM-
assisted Information Diffusion 
Algorithm: A Case Study in China
Lei Ma1,2,3, Yu Gao1,2,3, Tengyu Fu1,2,3, Liang Cheng1,2,3, Zhenjie Chen1,2,3 & Manchun Li1,2,3

When estimating national PM2.5 concentrations, the results of traditional interpolation algorithms 
are unreliable due to a lack of monitoring sites and heterogeneous spatial distributions. PM2.5 spatial 
distribution is strongly correlated to elevation, and the information diffusion algorithm has been shown 
to be highly reliable when dealing with sparse data interpolation issues. Therefore, to overcome the 
disadvantages of traditional algorithms, we proposed a method combining elevation data with the 
information diffusion algorithm. Firstly, a digital elevation model (DEM) was used to segment the 
study area into multiple scales. Then, the information diffusion algorithm was applied in each region 
to estimate the ground PM2.5 concentration, which was compared with estimation results using the 
Ordinary Kriging and Inverse Distance Weighted algorithms. The results showed that: (1) reliable 
estimate at local area was obtained using the DEM-assisted information diffusion algorithm; (2) the 
information diffusion algorithm was more applicable for estimating daily average PM2.5 concentrations 
due to the advantage in noise data; (3) the information diffusion algorithm required less supplementary 
data and was suitable for simulating the diffusion of air pollutants. We still expect a new comprehensive 
model integrating more factors would be developed in the future to optimize the interpretation 
accuracy of short time observation data.

Aerosols are solid particles or liquid droplets suspended in the atmosphere1. Studies suggest that long-time expo-
sure to environments with high PM2.5 (particulate matter with an aerodynamic diameter of <2.5 μm) concen-
trations leads to a higher prevalence of cardiovascular and respiratory diseases2,3, with the highest incidence rate 
in developing countries. The acceleration of urbanization in China has led to increasingly severe environmental 
issues caused by excessive emission of inhalable particles4–6. In recent years, an increasing number of studies 
have been performed to estimate ground PM2.5 concentrations based on remote-sensing aerosol optical thickness 
(AOD)7–12. Such models usually require abundant and accurate supplementary data (such as weather, terrain, and 
land cover data) to improve estimation accuracy. However, this data is often difficult to obtain, and variations usu-
ally exist in spatial and temporal resolutions, thus affecting the accuracy of the models. In addition, most models 
are region specific13,14, which restricts their applications.

The spatial interpolation algorithm can be used to overcome the issues relating to data acquisition and model 
development when estimating ground PM2.5 concentrations. In recent years, the air quality monitoring network 
has been gradually improved4, leading to a continued increase in estimates of PM2.5 concentration and risk assess-
ments based on site monitoring data15,16. To our knowledge, several studies have estimated PM2.5 concentrations 
on different scales using interpolation algorithms17–19. However, there is still a lack of PM2.5 monitoring sites, and 
their spatial distribution is heterogeneous20, making it hard to obtain reliable results using traditional interpo-
lation algorithms (such as Inverse Distance Weighted and Ordinary Kriging). Furthermore, PM2.5 spatial distri-
bution is strongly correlated to various factors such as the terrain, vegetation, population density, and economic 
development level1,21,22, yet traditional interpolation algorithms are relatively fixed, and typically only consider 
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one factor for calculation23. Therefore, it is difficult to combine the factors affecting PM2.5 spatial distribution with 
the algorithms. These shortcomings restrict the accuracy of traditional interpolation algorithms in ground PM2.5 
concentration estimation.

In recent years, the information diffusion algorithm, a normal diffusion interpolation model based on the 
fuzzy mapping philosophy, has shown a certain advantage in its application to small-sample and nonlinear inter-
polation24,25. The information diffusion algorithm transforms the original information to value samples of the 
fuzzy set, and then assigns information of single-value samples to different discrete points based on the diffu-
sion functions26,27. In this way, reliable results can be produced even if the underlying physical processes are not 
fully understood28. This algorithm has been widely applied to various fields such as risk assessment29,30 and sea 
depth estimation31. However, the heterogeneous spatial distribution of monitoring data still affects the estimation 
accuracy of the information diffusion algorithm. Wang et al.32 improved this by calculating the optimal window 
width in inhomogeneous samples (that is, using the monitoring data of areas adjacent to points for estimation, 
instead of all monitoring data, for interpolation calculation). The work of Dong et al.33 indicated that PM2.5 spatial 
distribution is correlated with elevation, and that collinearity exists between elevation and multiple factors char-
acterized by human activities1. Hence, this study used the information diffusion algorithm to estimate ground 
PM2.5 concentrations by assuming the segmentation results of a digital elevation model (DEM) as the interpola-
tion window widths. We exploited the advantages of the information diffusion algorithm to combine elevations 
affecting PM2.5 spatial distribution with the algorithm. As a result, the problem of a lack of data samples was 
removed, supplementary data acquisition was simplified, and model improvement was simpler than when using 
traditional algorithms.

This study estimated ground PM2.5 concentrations in a study area in China based on both ground-measured 
PM2.5 data and DEM data using the information diffusion algorithm to address the data incompleteness issue. 
The purpose of this study was to overcome the shortcomings of traditional interpolation algorithms, and provide 
a reliable method for rapidly monitoring ground PM2.5 concentrations on a large scale. The main goals were to: 
(1) verify the effectiveness of the DEM-assisted information diffusion algorithm for estimating ground PM2.5 
concentrations; (2) compare estimation accuracy between the DEM-assisted information diffusion algorithm, the 
Inverse Distance Weighted method, and the Ordinary Kriging method to verify the reliability of the information 
diffusion algorithm; and (3) analyze the applicability of the DEM-assisted information diffusion algorithm for 
monitoring data on different time scales.

Study area and data
Study area.  The study area lies between 19.98° N and 44.78° N, and 99.53° E and 129.33° E in mainland 
China. It covers a land area of 4,870,000 km2, 51% of China’s total area (Fig. 1). The study area contains the eastern 
coastal area, which boasts the most rapidly developing economy, the highest levels of industrialization and urban-
ization, and the densest cluster of urban agglomerations in the country. In the past few years, the air quality has 

Figure 1.  Elevation and spatial distribution of PM2.5 monitoring sites in the study area. (Created by ArcMap, 
version 10.2, http://www.esri.com/).

http://www.esri.com/
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severely deteriorated in all provinces and municipalities of the study area, greatly affecting the lives of residents34. 
This phenomenon is caused by anthropogenic emission sources from urban expansion, industrial emissions, and 
excessive use of vehicles3,35. Therefore, this area is an important site for studying ground PM2.5 concentrations, 
aided by the gradual implementation of a ground PM2.5 concentration monitoring network since 2013. According 
to segmentation result, the study site was divided into seven geographical subareas with different range of eleva-
tion (Table 1). High altitude areas with plateau and mountain are mainly concentrated in three regions, followed 
by Tibetan Plateau area (average altitude 3300 m), Yunnan-Guizhou Plateau area (average altitude 1712m), Inner 
Mongolia-Loess Plateau area (average altitude 1279 m). There are some hills in Northeastern area (average alti-
tude 499 m), Southeastern coastal area (average altitude 311 m) and Central area (average altitude 743 m), while 
the plain mainly distributed in Eastern coastal area (average altitude 63 m). Therefore, you may find the study area 
has a large altitude range and diverse landscape types, making it suitable for analyzing the relationship between 
ground PM2.5 concentration and elevation.

PM2.5 monitoring site data.  We used hourly PM2.5 monitoring data provided by the China Environment 
Monitoring Center (http://106.37.208.233:20035). Data was collected from 763 monitoring sites from January 
to December 2015 (Fig. 1), and PM2.5 concentrations were measured using the Tapered Element Oscillating 
Microbalance (TEOM) method36. Based on hourly PM2.5 monitoring data, daily, monthly, and quarterly average 
data was obtained to test the applicability of the information diffusion algorithm on different time scales.

DEM data.  To consider the impact of elevation on PM2.5 spatial distribution, we obtained the DEM prod-
uct generated during the Shuttle Radar Topography Mission (SRTM) from the United States Geological Survey 
(USGS) (ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3). This product was used by the National Aeronautics 
and Space Administration (NASA) to measure PM2.5 concentrations in over 80% of the land area between lati-
tudes 56° S and 60° N, with a spatial resolution of 90 m. Here, we used ArcGIS10.2 to bridge single-frame product 
data and obtain DEM data for the whole study area.

Methodology.  The multi-scale segmentation algorithm was combined with the information diffusion algo-
rithm to estimate ground PM2.5 concentrations in the study area using ground-measured PM2.5 data, based on the 
assumption that ground PM2.5 spatial distribution is highly correlated with elevation. The main methods were as 
follows: (1) 10-fold cross-validation was used to assess the accuracy of models, and the monitoring data set was 
randomly split into ten equal-sized data sets, with one group as the validation set and the remaining nine groups 
together forming the training set; (2) multi-scale segmentation based on the DEM, where the study area was 
segmented into multiple regions of homogeneous elevation, generating interpolation windows for the informa-
tion diffusion algorithm; (3) in each segmented region, the information diffusion algorithm was used to estimate 
ground PM2.5 concentrations based on daily, monthly, and quarterly average PM2.5 data from ground monitoring 
sites; (4) the Ordinary Kriging and Inverse Distance Weighted algorithms were used to estimate ground PM2.5 
concentrations based on the same training set; (5) the experiments were performed ten times, and accuracy 
assessment indexes of different algorithms were calculated using the validation set in each experiment; and (6) 
the mean values of the accuracy assessment indexes were calculated, and the differences between the information 
diffusion algorithm and traditional interpolation algorithms were explained. The flowchart of the full analysis 
procedure is illustrated in Fig. 2.

Multi-scale segmentation.  A recent study showed that the different spatial scale of characteristic variables 
could be affecting the PM2.5 concentration estimation performance of the interpolation algorithm37. Thus, it is 
necessary to find the optimized spatial scale. Because DEM data was included to consider the impact of elevation 
on PM2.5 spatial distribution, remote-sensing image segmentation was used to determine the optimized spatial 
scale and ensure the degree of automation of the entire procedure. Multi-scale segmentation is one of the most 
popular remote-sensing image segmentation algorithms38,39. It is a bottom-up region integration process starting 
from the pixel layer. Image objects are integrated into larger image objects layer by layer, producing segmentation 
results of different segmentation scales. Based on this approach, this study used the eCognition 9.0 multi-scale 

No. Geographical Subarea Provinces and Municipalities

Altitude (m)

Average Range

1 Northeastern area Liaoning province, south Jilin province, and north Hebei province 499 −203–2322

2 Eastern coastal area Beijing city, Shanghai city, Tianjin city, Hebei province, Shandong 
province, Anhui province, and east Henan province 63 −4–1289

3 Southeastern coastal area
Zhejiang province, Fujian province, Jiangxi province, Hunan province, 
Guangdong province, Guangxi Zhuang Autonomous Region, and east 
Hubei province

311 −8–2122

4 Central area Chongqing city, west Henan province, south Shaanxi province, east 
Hubei province, and east Sichuan province 743 63–2795

5 Inner Mongolia-Loess Plateau area Inner Mongolia Autonomous Region, Ningxia Hui Autonomous Region, 
Shanxi province, and north Shaanxi province 1279 376–3069

6 Yunnan-Guizhou Plateau area Yunnan province, Guizhou province, and south Sichuan province 1712 132–4638

7 Tibetan Plateau area Gansu province, northeast Sichuan province, and east Qinghai province 3300 630–6241

Table 1.  Seven geographical subareas of the study area divided by segmenting the elevation.
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segmentation algorithm to perform data segmentation based on the obtained DEM data. Segmentation divided 
the study area into multiple segments with small changes in internal elevation. During interpolation, the seg-
ments were used as windows to select sample points and integrate elevation data with the information diffusion 
algorithm.

Information diffusion.  Information diffusion is a mathematical model proposed to address the informa-
tion incompleteness issue during assessment of small-sample events such as natural disasters27. Based on this 
approach, this study regarded PM2.5 monitoring data as incomplete sample data, used the diffusion function to 
binarize the fuzzy sets of PM2.5 data, and performed interpolation to obtain homogeneously distributed grid point 
data. Data of ground PM2.5 concentration variability was then obtained for the whole study area. The following 
elaborates on the information diffusion algorithm procedure.

	(1)	 Constructing the monitoring spaces
To effectively construct the monitoring space, the minimum step is calculated for each variable in the 
information diffusion model, and the range of monitoring values is discretized to an equal-interval discrete 
space, namely, the monitoring space.

∆ = | − || = …
≠

x x x i j nmin{ , 1, 2, , }
(1)x x

i j
i j

∆ = | − || = …
≠

y y y i j nmin{ , 1, 2, , }
(2)y y i j

i j

∆ = | − || = …
≠

z z z i j nmin{ , 1, 2, , }
(3)z z

i j
i j

where xi, yi, and zi are coordinates of Sample Point i, and xj, yj, and zj are coordinates of Sample Point j. 
According to the minimum steps given by the above equations, the monitoring space can be constructed as 

× ×U V W( ), in which = | = …U u i m{ 1, 2, , }i , = | = …V v j t{ 1, 2, , }j , and = | = …W w k t{ 1, 2, , }k . 
In these variables, ∆= +u u i xi 0 , ∆= +v v j yj 0 , and ∆= +w w k wk 0 . The default values of u0, v0, and w0 
are 0.
We assumed that the minimum steps of the monitoring space in three dimensions are ∆ ∆=u x, 
∆ ∆=v y, and ∆ ∆=w z, respectively. The extreme values monitored in each dimension are: 

=a xmin{ }x i , =b xmax{ }x i ; =a ymin{ }y i , =b ymax{ }y i ; =a zmin{ }z i , =b zmax{ }z i , respectively. The 

Figure 2.  Flowchart of the proposed approach.
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simple coefficient h can be given by the averaging model24, as follows:
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where =a a a a, ,x y z , =b b b b, ,x y z; n is the total number of samples; and h is the diffusion factor.
	(2)	 Calculating the information diffusion of sample points

Assuming that the diffusion information of the PM2.5 monitoring point x y z( , , )l l l  in the monitoring space 
Q u v w( , , ) is q u v w( , , )l i j k , it can be given by:
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where hx, hy, and hz can be given by Equation (4); l represents the number of sample points; and u v w, ,i j k 
represents the monitoring space ( = …i m1, 2, , , = …j t1, 2, , , and = …k s1, 2, , ).

	(3)	 Calculating the original information matrix
The original information matrix Q can be given by calculating the information diffusion of all monitoring 
points in the monitoring space:
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where q u v w( , , )l i j k  can be obtained by Equation (5) and l represents the number of sample points. The 
original information matrix × ×Q{ }ijk m t s can be calculated using Equation (6).

	(4)	 Calculating the fuzzy relationship matrix
A causal fuzzy relationship matrix can be obtained from the original information matrix Q. In this study, 
we transformed the original information matrix × ×Q{ }ijk m t s into the fuzzy matrix × ×r{ }ijk m t s based on the Rf  
model24.
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	(5)	 Interpolation calculation

The fuzzy set centroid can be calculated to obtain the estimated ground PM2.5 concentration:
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where = | = …W w k s{ 1, 2, }k  and rijk can be given by Equation (7), in which = …i m1, 2,  and = …j t1, 2, .
To smooth PM2.5 concentration variations in the information diffusion algorithm results, we constructed a 

buffer up to 100 km long (this was verified as the maximum distance over which the interpolation method could 
generate a better result than remote-sensing based methods18) in each segmented region to increase the number 
of sample points in each region.

Inverse Distance Weighted algorithm.  The Inverse Distance Weighted algorithm is based on the 
proximity-similarity principle, i.e., the closer two objects are to one another, the more similar their properties, 
and the further they are from one another, the more different their properties. The algorithm assumes that the 
impact of unknown points on to-be-estimated points diminishes as the distance increases. The general formula 
of the interpolation algorithm is as follows:
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where Ẑ S( )0  is the estimated value of the to-be-estimated point S0; N  is the number of sample points around the 
to-be-estimated points that are required in the estimation process;λ i is the weight of all sample points in the cal-
culation process; and Z S( )i  is the sample value of Si. The weight can be given by:
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where p is a parameter. The optimal value can be determined by acquiring the minimum value of the 
root-mean-square error (RMSE). In addition, the Inverse Distance Weighted algorithm was implemented by the 
land statistic module of ArcGIS10.2.

Ordinary Kriging interpolation.  The Ordinary Kriging algorithm is the best linear unbiased prediction 
(BLUP) for to-be-estimated points based on the structured characteristics of sample points40. If the structured 
variable Z is not constant and the mathematical expectation is unknown, the Ordinary Kriging algorithm can be 
used for interpolation calculation. It is implemented as follows:

∑ω=
=

⁎Z x Z x( ) ( )
(11)i

n

i i0
1

where Z x( )i  represents the sample points of interpolated values around the to-be-estimated points; ⁎Z x( )0  is the 
unbiased prediction (with a constant mathematical expectation) of Z x( )i ; ωi is the weight of the ith sample point, 
and ω∑ == 1i

n
i1 . When the Ordinary Kriging algorithm is used for calculation, data should first be verified by 

normal distribution verification and transformation, abnormal value verification and removal, and trend verifi-
cation and removal, in order to improve the estimation accuracy. The Ordinary Kriging was also conducted in the 
land statistic module of ArcGIS10.2.

Accuracy assessment.  This study used the accuracy verification method based on ground monitoring sites 
to assess the validity of spatial interpolation. We extracted the estimation results of validation points and then 
compared monitoring values with estimation results. The main indicators used for accuracy assessment included 
the absolute error (AE), root mean squared error (RMSE), and range of absolute error (RAE). AE represents the 
absolute deviation between the estimation result and the monitoring data. RMSE represents the mean deviation 
between estimated and monitored values, which indicates the reliability of the interpolation model. Because the 
experiments were performed ten times, the mean values of the accuracy assessment indicators were assessed for 
the different algorithms. The above three indicators are calculated as follows:

= | − |AE O S (12)
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where O represents the monitoring data and S represents the estimation data; Emax and Emin represent the maxi-
mum and minimum AEs, respectively; and n represents the total number of samples. Because the number of val-
idation points in each experiment was more than one, the mean value of AE (called MAE below) was calculated 
for each experiment.

Following the above steps, this study used the information diffusion, Ordinary Kriging, and Inverse Distance 
Weighted algorithms to estimate ground PM2.5 concentrations. Then, a comparative analysis was performed 
between the estimates and the monitoring results of the validation points. To study the applicability of different 
algorithms for different time scales, calculations were based on the daily average data of January 2, 2015, monthly 
average data of December 2015, and average data of the winter (January to February) of 2015.

Results
Segmentation of homogeneous-elevation regions.  Using the multi-scale segmentation technique, 
segmentation scales were continuously optimized to obtain segmentation results at different scales. Figure 3 
shows that the number of segments in the study area diminished as the segmentation scale increased. When a 
small segmentation scale was selected, there were many small segments, and segment homogeneity was high. As 
the segmentation scale increased, the number of segments decreased, segments with a large variation in elevation 
characteristics remained approximately the same, and small segments were combined. When the segmentation 
scale was less than 400 (dimensionless unit), some segments did not have sample points (Fig. 3). When the 
segmentation scale was between 400 and 800, correlations between the PM2.5 concentration estimates increased 
(from 0.77 to 0.79). When the segmentation scale reached 800, the correlation was 0.83. When the segmentation 
scale exceeded 800, the correlations of results decreased. To ensure sufficient sample points for calculation in each 
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segment, and to achieve high accuracy, we selected 800 as the optimal segmentation scale based on the above 
analysis and the calculation requirements. According to Fig. 3, the study area was divided into seven regions of 
homogeneous elevation (Table 1). The elevations varied slightly in each segmented region and their elevation 
characteristics were similar, providing appropriate calculation windows for an analysis of ground PM2.5 concen-
tration estimates.

Ground PM2.5 concentration estimation.  Accuracy analysis.  Table 2 shows that the correlations of esti-
mates derived from the information diffusion algorithm were more accurate than those of the Ordinary Kriging 
and Inverse Distance Weighted algorithms based on daily, monthly, and quarterly average data. The information 
diffusion algorithm showed a slight advantage for global correlation between estimation results (daily average: 
0.80; monthly average: 0.83; quarterly average: 0.82), followed by the Ordinary Kriging algorithm (0.79, 0.82, and 
0.82, respectively), and finally the Inverse Distance Weighted algorithm (0.78, 0.81, and 0.80, respectively).

Estimates using the information diffusion algorithm showed RMSE (mean value of RMSE) values that were 
0.73 µg/m3 to 1.17 µg/m3 smaller than those of the Inverse Distance Weighted algorithm (Table 2). The RMSE 
values of daily average and quarterly average results of information diffusion algorithm were larger than those of 
Ordinary Kriging, but the differences were relatively small. According to the MAE and RAE analysis results, all 
results except daily average data showed that information diffusion algorithm results were more reliable. 
Specifically, information diffusion results based on monthly average data showed higher accuracy.

Due to the impacts of algorithm principles, the estimation results of the three algorithms varied in some 
details. In general, using the information diffusion algorithm, estimated values beyond a PM2.5 concentration 
interval of 35–115 µg/m3 were smaller than monitoring values, while estimates within the interval of 35–115 µg/
m3 were larger than monitoring values (Table 3). Moreover, the distribution of estimation results in each interval 
varied with time scale for the other two algorithms (Table 3). Estimation errors of the information diffusion algo-
rithm typically fluctuated within a smaller range, showing higher stability than the other two methods (Tables 2 
and 3).

Analysis of PM2.5 spatial distribution.  Ground PM2.5 concentrations estimated by the above three algorithms are 
illustrated in Fig. 4. The daily, monthly, and quarterly average PM2.5 concentrations obtained by different algo-
rithms showed similar spatial distributions. In the daily average results, PM2.5 concentrations were higher than 
145 µg/m3 in central Hebei, southeast Shandong, north Ningxia, Chongqing, and east Sichuan. In the monthly 
average results, PM2.5 concentrations were high in central and south Hebei, west Shandong, north Henan, south 
Shaanxi, and central Liaoning. The spatial distribution of high PM2.5 concentrations using the quarterly average 
results was similar to that using the monthly average results. In the estimation results for all time scales, high 
PM2.5 concentrations were similarly spatially distributed, occurring in northeastern and eastern coastal areas 
of China. In addition, PM2.5 concentrations were high in densely populated and urban built-up regions such as 
Sichuan Basin and Guanzhong Plain, and were relatively low in high-altitude regions such as the Tibetan Plateau 
and the Yunnan-Guizhou Plateau. PM2.5 concentrations were also relatively low in southeastern coastal areas with 
abundant average annual precipitation, despite this including the densely populated and built-up urban region 
of the Pearl River Delta.

Whilst similar, the spatial distribution results of the three algorithms showed certain differences. Due to the 
impacts of algorithm principles, the results obtained by the Inverse Distance Weighted algorithm indicated lami-
nar diffusion from the monitoring sites in the center to their surroundings. The estimation results of the Ordinary 

Figure 3.  Multi-scale segmentation results of homogeneous-elevation regions, and PM2.5 estimate correlations 
for different segmentation scales. (Created by ArcMap, version 10.2, http://www.esri.com/).

http://www.esri.com/
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Kriging algorithm showed this phenomenon to a lesser extent; however, this algorithm considered that only one 
factor affected PM2.5 spatial distribution, i.e. the relationships between monitoring data, thus leading to a con-
centric diffusion of estimation results. The information diffusion algorithm corrected such phenomena to some 
extent; therefore, variations in estimation results were smoother than the Inverse Distance Weighted algorithm, 
and did not show any clear concentric diffusion. In addition, the extreme values in the estimation results of the 
information diffusion algorithm were less than those of the other two algorithms, indicating that our proposed 
method had a smoothing effect on extreme values.

Features of the DEM-assisted information diffusion algorithm.  The results showed that PM2.5 concentrations in 
high-altitude regions (Tibetan Plateau, Yunnan-Guizhou Plateau, north Sichuan, northwest Hubei, and southwest 
Hubei) were lower than those of surrounding areas (Fig. 4), indicating a clear negative correlation between PM2.5 
concentration and elevation.

Using the information diffusion algorithm, this study considered the impact of elevation on PM2.5 spatial 
distribution, and segmented the study area based on elevation variations. Based on estimation results, this algo-
rithm revealed a greater impact of elevation than the other two algorithms. We performed a comparative analysis 
on south Shaanxi and peripheral areas of the Qinling Mountains, shown in Fig. 5 as the rectangular area called 
Qinling area. The highest altitude in this area exceeds 3400 m (the red area in Fig. 5a, called Qinling Mountain). 
The northern area is Guanzhong Plain (Guanzhong urban agglomeration, where cities and people are clustered) 
and the southern area is Ankang Basin, which have different altitudes. The blue line is the segmentation bound-
ary. Monitoring values in Qinling Mountain were relatively low, and were higher in Guanzhong Plain. Estimates 
based on the three methods showed similar patterns generally in global area (Fig. 4), but spatial distributions 
of ground PM2.5 concentrations varied greatly in local area of complex terrain (Fig. 5). Estimates were relatively 
high in Guanzhong Plain but in high-altitude regions (Qinling Mountain), the information diffusion algorithm 
estimated significantly lower PM2.5 estimates, while other methods that did not consider the effect of terrain still 
estimated relatively high PM2.5 concentrations. Qinling Mountains play an important role in preventing PM2.5 
diffusion, resulting in no high PM2.5 concentration areas. This suggests that the information diffusion algorithm 
estimates based on DEM segmentation more accurately reflect the real spatial distribution of PM2.5 than tradi-
tional interpolation algorithms.

Daily 
Average

Information Diffusion Inverse Distance Weighted Ordinary Kriging

R2
MAE 
(µg/m3)

RMSE 
(µg/m3)

RAE 
(µg/m3) R2

MAE 
(µg/m3)

RMSE 
(µg/m3)

RAE 
(µg/m3) R2

MAE 
(µg/m3)

RMSE 
(µg/m3)

RAE 
(µg/m3)

Mean 0.80 13.81 19.05 68.05 0.78 14.40 20.22 74.31 0.79 13.56 18.90 67.71

Var — 1.05 2.55 153.78 — 1.99 4.66 526.54 — 1.05 2.33 265.66

Monthly Average

Mean 0.83 11.01 15.64 57.80 0.81 11.50 16.69 63.52 0.82 11.55 16.18 58.74

Var — 1.15 2.84 247.79 — 1.31 2.64 527.98 — 2.03 5.59 370.70

Quarterly Average

Mean 0.82 8.78 11.97 39.61 0.80 9.21 12.70 44.03 0.82 8.79 11.95 39.56

Var — 0.82 1.31 16.82 — 1.72 4.14 89.17 — 1.37 2.76 69.43

Table 2.  Comparison of interpolated results derived from Information Diffusion, Inverse Distance Weighted, 
Ordinary Kriging respectively.

Daily Average (µg/m3) 0–35 35–75 75–115 115–150 150–250 250–350

Ground-measured PM2.5 concentration 10.00% 47.00% 29.00% 4.00% 9.00% 1.00%

Information Diffusion 9.00% 44.00% 34.00% 5.00% 8.00% 0.00%

Inverse Distance Weighted 10.00% 42.00% 34.00% 7.00% 6.00% 1.00%

Ordinary Kriging 6.00% 45.00% 35.00% 8.00% 5.00% 1.00%

Monthly Average (µg/m3)

Ground-measured PM2.5 concentration 13.00% 36.00% 42.00% 6.00% 3.00% 0.00%

Information Diffusion 14.00% 28.00% 52.00% 4.00% 2.00% 0.00%

Inverse Distance Weighted 15.00% 34.00% 42.00% 6.00% 3.00% 0.00%

Ordinary Kriging 14.00% 30.00% 47.00% 6.00% 3.00% 0.00%

Quarterly Average (µg/m3)

Ground-measured PM2.5 concentration 6.00% 36.00% 50.00% 8.00% 0.00% 0.00%

Information Diffusion 1.00% 37.00% 56.00% 6.00% 0.00% 0.00%

Inverse Distance Weighted 2.00% 32.00% 61.00% 5.00% 0.00% 0.00%

Ordinary Kriging 3.00% 40.00% 50.00% 7.00% 0.00% 0.00%

Table 3.  Variations in different grades of PM2.5 concentrations estimated by different methods.
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Discussion
By combining the advantages of DEM data and the information diffusion algorithm, this study developed a 
DEM-assisted information diffusion algorithm, which we have proved is a powerful tool for estimating ground 
PM2.5 concentrations. The DEM-assisted information diffusion algorithm reduced the algorithm dependence on 
the distribution characteristics of monitoring sites, and improved the performance of the estimation algorithm. 
According to our results, estimates obtained by the information diffusion algorithm were more accurate than 
those obtained by traditional interpolation algorithms.

Comparison between the information diffusion algorithm and traditional algorithms.  Although 
the ground PM2.5 monitoring network has become increasingly sophisticated, the inhomogeneous spatial distri-
bution of monitoring sites and lack of data affect the estimation accuracy of traditional interpolation algorithms23. 
As traditional interpolation algorithms only consider the relationships between sample data, the estimates 
obtained by such algorithms have obvious defects and usually display concentric spatial distributions, which do 
not comply with PM2.5 diffusion rules26. This phenomenon shows that traditional algorithms are dependent on 
the distribution (site density and mutual distance) of monitoring sites15. Thus, the information diffusion algo-
rithm is more reliable when processing small-sample data24. In addition, DEM multi-scale segmentation divides 
the study area into different segments, and a buffer is built for each segment, reducing abnormal phenomena such 
as abrupt variations and defects in PM2.5 concentrations. Thus, the method proposed in this study reduces the 
dependence of the algorithm on the distribution characteristics of monitoring sites. Subsequently, an accurate 
estimation and mapping of PM2.5 concentrations could benefit more from the proposed method, which is able to 
delineate the distribution pattern of PM2.5 concentrations finely by high resolution interpolation at local region 
(e.g., 1 km resolution in this study).

The information diffusion algorithm was slightly superior to traditional interpolation algorithms based on 
the accuracy assessment of whole monitoring sites (Table 2 and Fig. 4). The information diffusion algorithm 
error was relatively small, the correlation was 0.01–0.02 higher than other algorithms slightly, and the R2 of the 
estimated monthly average ground PM2.5 concentrations reached 0.83. Furthermore, the proposed method con-
sidering the DEM has a big advantage at local region of complex terrain, while the R2 for the proposed method is 
significantly better than that of other both methods, respectively 0.81 for the proposed method, 0.73 for Ordinary 
Kriging method and 0.68 for inverse Distance Weighted method (Fig. 5). This is mainly attributed the subareas 
divided by segmenting the DEM that they pay more attention to the monitoring points within themselves, while 
it has been proved that PM2.5 distribution is related to landscape and is region-dependence41. Thus, PM2.5 con-
centrations estimated by the DEM-assisted information diffusion algorithm are highly reliable.

Figure 4.  Spatial distribution of PM2.5 concentration in the study area using Ordinary Kriging, Information 
Diffusion, and Inverse Distance Weighted algorithms for different time scales. (Created by ArcMap, version 
10.2, http://www.esri.com/).

http://www.esri.com/
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Previous studies have suggested that ground PM2.5 concentrations are linked to multiple factors, and the 
impact factor varies with location22. However, in most studies, ground PM2.5 concentrations are highly correlated 
to elevation22,42, while elevation is evidently collinear with economic development level1. This study used DEM 
segmentation results to represent the economic development level of each segmented region, and regarded the 
edges of these regions as hard break lines during calculation, overcoming the difficulty in spatial quantification 
of economic and social data. Compared with traditional interpolation algorithms, the DEM-assisted information 
diffusion algorithm proposed in this study only requires commonly available DEM data, to obtain the high res-
olution interpolation PM2.5 concentrations, especially for local area. This algorithm can obtain more accurate 
estimation results without acquiring optimal parameter values or transforming the normal distribution of data, 
making it more applicable than the other two algorithms compared in this study.

Analysis of estimation results based on different time scales.  The estimation accuracy obtained by 
three methods differed significantly with time scale. The accuracy of estimates using quarterly average data was 
better than that of estimates using daily and monthly average data (Table 2). It could be attributed to the data qual-
ity improvement due to the average of long time series monitoring data. On the other hand, it seemed that informa-
tion diffusion algorithm perform better for daily average data, even though the accuracies of three methods using 
daily data are all low. The main reason for this might be the smoothing effect of the information diffusion algorithm 
on extreme values, while the variation of RAE for the information diffusion method is superior obviously to other 
both methods (Table 2). Furthermore, monthly average data not only reduced the influence of extreme values on 
estimation results, but also kept the data from being over-average. With extending the time scale, the advantages 
of the proposed method become unapparent, especially for quarterly average data. Thus, this study suggests that 
the information diffusion algorithm is more applicable for estimating daily/monthly average monitoring data. 
Subsequently, our method could contribute more to the mapping of high temporal resolution monitoring data.

Analysis of PM2.5 spatial distribution patterns.  PM2.5 concentrations showed significant spatial heterogene-
ity (Fig. 4), which might be related to emission factors and dispersal conditions41. In winter, regions with high ground 
PM2.5 concentrations are the northeastern area, eastern coastal area, and Guanzhong urban aggolmeration22. In the 
densely populated and built-up urban area of Sichuan Basin, the ground PM2.5 concentration is much higher than in 
peripheral areas. Low precipitation, heavy pollution due to coal burning, developed industries, high urbanization, 
and excessive use of motor vehicles could explain the poor air conditions4,43,44. In the middle of Inner Mongolia and 
Shanxi province, despite relatively high altitudes, dust originating from the Loess plateau and the mixed barren soil 
often degrades air quality17,45. Coal burning could also be a dominant cause of air pollution in these areas, especially 
during winter. Additionally, dispersal conditions related to the topography could affect the distribution of cold and 
hot points1. Meanwhile, in the southeastern coastal area with abundant precipitation, and high-altitude regions such 
as the Tibetan Plateau and the Yunnan-Guizhou Plateau, ground PM2.5 concentrations are low.

Figure 5.  Map showing (a) the terrain of Qinling, and (b–d) the spatial distribution and correlations of 
monthly average PM2.5 concentration in Qinling produced by (b) Ordinary Kriging, (c) Inverse Distance 
Weighted, and (d) Information Diffusion algorithms. (Created by ArcMap, version 10.2, http://www.esri.com/).

http://www.esri.com/
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In summary, due to the imperfect ground PM2.5 monitoring network, common ground PM2.5 concentration 
inversion models require significant supplementary data to obtain higher inversion accuracy (for example, ter-
rain, weather, and economic development data)4,13. The high spatial heterogeneity of supplementary data makes it 
very difficult to apply and develop these models13. The information diffusion algorithm only requires DEM data; 
therefore, its maturity and wide application reduces difficulties relating to algorithm development. Nevertheless, 
we still expect that the new models would be developed to integrate all relevant factors (e.g., land use, land-
scape pattern, population, meteorological variables), while it is already proved further that PM2.5 concentration is 
related to land use and the corresponding landscape, especially for high resolution mapping at regional scale44,46.

Conclusions
To address the common spatial heterogeneity issue of monitoring data used in atmospheric science studies, this 
research applied the information diffusion algorithm to ground PM2.5 concentration estimation. The results 
showed that, compared with traditional interpolation algorithms, the DEM-assisted information diffusion algo-
rithm focuses on the impact of elevation factors on PM2.5 spatial distribution, and is not restricted by the lack of 
monitoring sites and their inhomogeneous spatial distribution. Therefore, the estimation results of this algorithm 
are more accurate and more appropriately distributed than those of traditional interpolation algorithms, to con-
tribute to the high temporal resolution mapping. Using DEM segmentation results as supplementary informa-
tion, estimates using this algorithm are more compliant with the diffusion rules of air pollutants. However, the 
proposed method only considered the effect of topographic characteristic. In the future research, we expect that 
an advanced method is developed to consider more factors when conducting the interpretation based on the 
station-based PM2.5 monitoring data, since the spatial distribution of PM2.5 concentrations is strongly impacted 
by many factors, for example, landscape type, economic development level, and so on.
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