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Abstract

Computer simulations are widely used to study molecular systems, especially in biology. As 

simulations have greatly increased in scale reaching cellular levels there are now significant 

challenges in managing, analyzing, and interpreting such data in comparison with experiments that 

are being discussed. Management challenges revolve around storing and sharing terabyte to 

petabyte scale data sets whereas the analysis of simulations of highly complex systems will 

increasingly require automated machine learning and artificial intelligence approaches. The 

comparison between simulations and experiments is furthermore complicated not just by the 

complexity of the data but also by difficulties in interpreting experiments for highly heterogeneous 

systems. As an example, the interpretation of NMR relaxation measurements and comparison with 

simulations for highly crowded systems is discussed.

1. Introduction

Computer simulations have become a central element in modern science as a bridge between 

experiments and theory [1]. Simulations are commonly applied to describe the evolution of 

complex systems in time and space based on theoretical models but in regimes where direct 

analytical or even numerical solutions are not feasible. The level of realism that is achieved 

by such simulations depends on the nature of the underlying models and may range from 

idealized conceptual views to physically highly 1accurate descriptions of the systems that are 

being studied. The most sophisticated simulations can, at least in principle, rival experiments 

and provide complete spatio-temporal information although the availability of computer 

resources limits the scales that can be accessed.
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A key advantage of simulations is that essentially any question can be interrogated 

irrespective of practical limitations that may hinder experiments, including hypothetical 

scenarios that could not even be realized experimentally under any circumstances; however, 

computer simulations remain a fundamentally theoretical approach that is most valuable 

when new hypotheses or predictions are generated that can subsequently be subjected to 

experimental validation. A common strategy is thus an iterative approach where simulations 

and experiments rely on each other in the development of new mechanistic insights. While 

computer simulations are widely used today in all fields of science, they are especially 

valuable in biology where a high degree of system complexity challenges both experiments 

and theory [2, 3]. In fact, molecular dynamics simulations of biological macromolecules 

such as proteins and nucleic acids have become a staple in modern biological science having 

contributed much to our detailed mechanistic understanding of biomolecular processes [4]. 

Very recently, such simulations have been extended to cellular scales and simulations of 

entire cells in molecular detail will soon become reality [5].

The main results of computer simulations are three-dimensional coordinate trajectories over 

time for a given system. Molecular systems are often described at an atomistic level of detail 

although higher (quantum-mechanical) or lower (coarse-grained) resolutions are possible. In 

addition to the system of immediate interest, the environment often also needs to be 

considered. For many molecular systems, especially in biology, this involves aqueous 

solvent so that water, ions, and co-solvents are part of the system, typically also in atomistic 

detail; therefore, system sizes between 50,000 and 1 M atoms are common nowadays for 

simulations of single macromolecules or macromolecular complexes [6], but much larger 

systems with as many as 100 M atoms have been reported for studies of many interacting 

molecules for the cytoplasm of a bacterial cell [7] (see figure 1). The time scales covered by 

such simulations are now routinely reaching 1 µs and in exceptional cases as much as 1 ms 

[8]. Depending on how often coordinates are saved, this means that a single simulation may 

generate data on terabyte to petabyte scales. The large amounts of data coupled with the high 

degree of complexity in many systems presents formidable data management and analysis 

challenges and it is also becoming increasingly difficult to compare with experiments. A 

further discussion of these challenges is the topic of this article.

2. Data size challenges

The large amount of data generated by computer simulations intrinsically presents big data 

challenges. At the logistical level, the storage, management, and dissemination of terabyte-

scale trajectory data is still not trivial even as the performance and capacity of storage 

resources continues to increase [9]. While it has become common at least in most areas of 

biological science that primary data is made publicly available when research findings are 

published, this is generally not the case for simulation studies [10]; furthermore, while there 

are public databases for essentially every kind of biological data generated by experiments 

or from computational analysis, there is no widely used resource for molecular dynamics 

simulations [11] despite many efforts to develop such databases [10, 12–16]. The main 

reason is that a database where the original trajectories are collected and simply made 

available for download is not practical because of network bandwidth limitations. This is 

especially true for the large cellular-scale simulations that are beginning to emerge, as it will 
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likely remain impossible in the foreseeable future to efficiently transfer petabyte-scale data 

sets over the Internet.

One way to overcome such limitations is to reduce the data. This can be done by using only 

snapshots at infrequent time points and/or by removing less important parts of the system 

such as solvent. It is also possible to store the system of interest at a coarse-grained level 

even though the original simulations were carried out in atomistic detail with the idea that an 

atomistic level of resolution could be reconstructed on the fly if needed [17]. A different 

strategy is to maintain the full data sets but develop tools that allow remote analysis so that 

only the results of such analysis have to be transmitted instead of the actual data [10, 12]; 

however, this requires significant software and hardware infrastructure and may limit the 

flexibility in terms of what analysis can be carried out. The same challenges also apply even 

within a computational laboratory when there is not enough storage space to maintain all of 

the generated simulations available for direct access so that re-analysis and comparative 

studies of large sets of simulations become difficult tasks although it would be prudent to do 

so given the high computational costs to generate the data in the first place.

3. Information wealth challenges

A different challenge is how to fully capitalize on the wealth of information that is provided 

by simulations where every molecule is represented in atomistic detail. Early molecular 

dynamics simulations of biological macromolecules, where a single small protein or piece of 

DNA was studied over pico-to nanosecond time scales, could often be understood 

qualitatively by inspecting molecular movies generated from the trajectories but nowadays 

this is rarely a productive approach for analyzing simulation trajectories. In fact, in the 

largest cellular-scale simulations published recently that contain thousands of proteins [7, 

18] it would take days just to look at every molecule for a minute each. Simulations are 

often carried out with a specific scientific question in mind and one way to navigate the large 

amount of information is to only focus on that question during the analysis in a strictly 

hypothesis-driven fashion; however, large-scale simulations of complex biological systems 

allow scientific discovery beyond the motivating question(s) that led to the simulations to be 

carried out initially.

One approach to attempt such discovery in a system where one cannot simply ‘look’ at what 

is happening is to carry out a battery of standard analyses to characterize structural and 

dynamic features followed by automated feature analysis to identify, for example, if the 

secondary structure in a given protein is lost compared to an experimental reference 

structure. It is more difficult, however, to recognize causal relationships whereby the loss of 

secondary structure in this example may be related to interactions with other molecules or 

locally altered solvent properties. Not knowing what to focus on a priori and being faced 

with too many possibilities when considering first correlations and then causal connections 

between different components in a system with as many as 100 M atoms presents a classical 

data science challenge. There is an ideal opportunity for the application of machine learning 

and artificial intelligence techniques to interpret the increasingly rich information that is 

being generated nowadays via simulation. While machine learning has seen some 

applications in the analysis of molecular dynamics data [19, 20], the unsupervised analysis 
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of complex biomolecular simulations remains a key challenge that needs to be addressed. 

Molecular dynamics simulations of entire cells with billions of atoms and tens of thousands 

of macromolecules are on the horizon and the traditional manual analyses will become 

entirely inadequate for such data sets.

4. Connections between simulation and experiment

As computer simulations are based on theoretical models, the connection with experiments 

is crucial. At the onset, experiments are needed to define the composition of a given system 

and resolve molecular structures to provide initial coordinates from which simulations can 

be started. Experimental findings also usually generate the initial motivation to carry out 

simulations with the goal of developing a deeper understanding based on details extracted 

from the simulations that are not accessible experimentally. Once simulations have been 

carried out, comparisons with experiment are needed for validation and to follow up on 

predictions to further advance knowledge. As important as the connection between 

simulations and experiments is, there are many challenges: experimental conditions and 

scales are often quite different from what is being simulated and experiments cannot 

typically provide full atomistic resolution and picosecond time resolution at the same time as 

in the simulations.

Atomistic resolution in experiments is often obtained via extensive time-and ensemble 

averaging, as in X-ray crystallography, nuclear magnetic resonance spectroscopy, or cryo-

electron microscopy. Simulations often rely on the ergodic hypothesis that states that the 

long-time average of a single system is equivalent to the ensemble average of the same 

system [21]; however, since the accessible time scales in the simulations are still relatively 

short, a single simulation of a single system rarely provides fully-converged conformational 

space averages. The situation can be improved by running multiple replicates of a given 

system, or by employing enhanced sampling strategies to accelerate the exploration of the 

conformational energy landscape with given computational resources [22–24]. Simulations 

of multiple components such as in simulations of cellular environments, on the other hand, 

do allow ensemble averaging if there are multiple copies of the same molecule present [7]. 

Because different copies in such systems experience different local environments and sample 

different regions of phase space, extensive conformational averaging may be achieved with 

such simulations even if the overall simulation lengths for such large systems are much more 

limited than for smaller, single-molecule systems.

Different copies of the same molecule experiencing different environments may also 

increase the complexity of the conformational energy landscape when interactions with the 

environment modulate biomolecular structure. There is increasing evidence that non-specific 

protein-protein interactions modulate biomolecular structure [25], but simulations suggest 

that such effects may be limited to only a small subset of molecules [7, 26]; for example, in 

a simulation of a bacterial cytoplasm, a few copies of the molecule pyruvate dehydrogenase, 

subunit A, were seen to unfold due to protein-protein interactions, whereas the majority of 

copies remained stably folded in their native state [7]. While such rare events can be easily 

discerned in simulations, experiments that rely on averages often cannot detect events that 
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occur for only a small percentage of molecules making it difficult to compare simulations 

and experiments in such cases.

The comparison of kinetic and diffusive properties between simulation and experiments 

requires that both approaches cover the same time scales. Simulations are so far limited to 

millisecond time scales for single molecules and to the microsecond range for the largest 

cellular systems. Experiments may describe dynamics from femtoseconds to hours or longer 

depending on the method that is being used. NMR experiments are especially suitable to 

cover a wide range of time scales [27, 28]. NMR data is often compared with molecular 

dynamics simulations because processes occurring on different time scales can be isolated 

and matched to the simulation time scales [29–32]; however, the standard interpretation of 

NMR data usually depends on certain assumptions that can become problematic in highly 

crowded cellular systems. Using dynamic relaxation of protein backbone amide N-H vectors 

as an example (see figure 2), the resulting dynamics is a result of combining internal 

dynamics with rotational and translational diffusion. All three processes can be easily 

separated in the analysis of simulation data. NMR on the other hand measures the overall 

relaxation rates that combine fluctuations due to internal motions with rotational tumbling. 

In interpreting the experimental data, the usual assumption is that both the solvent 

environment and the rotational tumbling are isotropic; furthermore, a separation of time 

scales between internal and rotational motions is assumed. It is then possible to determine 

the extent of internal motions on short and long time scales as well as rotational diffusion 

times via so-called model-free analysis [33]; however, none of these assumptions may be 

true in highly crowded heterogeneous cellular systems because of anisotropy and coupling 

of internal and diffusional motions. Although one can formally carry through with the 

standard analysis of the experimental data, the results are likely going to become 

problematic in such a scenario. A better strategy would be the direct calculation of 

relaxation times from the simulation as it avoids the assumptions made in the experimental 

analysis [34]; however, this is also not without challenges, the simulations would then be 

required to not just reach sufficiently long time scales for convergence but also they also 

have to accurately capture the entire dynamic spectrum as a result of different processes, 

each with their respective time scales estimated correctly. Because of methodological 

limitations this is often not the case; for example, while the time scale of internal protein 

motions are perhaps accurate with current force fields, the diffusional motions that depend 

on the water model used in the simulations would be accelerated if the popular TIP3P model 

is used [35]. While a separate analysis of diffusion and internal dynamics could correct such 

artifacts, this is not easily done when calculating spectra for the overall dynamics. While this 

example focuses on NMR data, similar arguments can be made for comparisons with single-

molecule fluorescence data, electron paramagnetic (EPR) spectroscopy, or other types of 

spectroscopic measurements.

Beyond structural and dynamic information, simulations also allow the estimation of various 

energetic terms; for example, it is possible to calculate free energies of crowding, the free 

energy for transferring a given molecule from dilute solvent to a crowded environment, or 

interaction free energies within cellular environments [26, 36]. There are so far no good 

examples for experimental measurements of such quantities although this may not be 

impossible with innovative experimental setups.
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Finally, it goes almost without saying that meaningful comparisons between experiments 

and simulations require that the same systems are being studied in silico and in vitro or in 
vivo. For traditional studies of a single molecule under dilute conditions that is relatively 

easy to accomplish because the goal of both experiments and simulations would be to study 

pure systems with a minimum of contaminants; however, cellular-scale biological systems 

are highly complex and while the simulated systems are well-defined, corresponding 

experimental systems are less controlled which makes it difficult to follow up on predictions 

made in simulation studies for such systems. For example, it would be next to impossible to 

carry out experiments on the same exact model cytoplasm that is shown in figure 1. Even 

although it may be possible to match the same exact initial molecular composition, active 

metabolism, protein and nucleic acid synthesis and degradation, and molecular diffusion and 

osmotic effects would likely lead to significant fluctuations in concentrations and molecular 

composition. On the other hand, simulations of complete cells with all of the biological 

function intact are not going to be feasible in the foreseeable future, therefore, matching 

simulated and experimentally studied cellular systems is a major challenge that will remain 

difficult to overcome even as the scale and complexity further increase.

5. Conclusions

The extension of computer simulations to cellular-scale system is exciting but also presents 

significant challenges for fully taking advantage of the vast data generated in such efforts. 

Efficient management and mechanisms of public sharing of the resulting large data sets is 

the first issue that needs to be addressed but the bigger issues are how to analyze and 

interpret such data sets effectively. As traditional approaches to the analysis of simulations 

do not scale well to systems with thousands of macromolecules, a greater emphasis on 

machine learning and artificial intelligence will be required in the future. The comparison 

with experimental data, a vital component in any simulation study, is furthermore 

complicated by a variety of factors, even though time and spatial scales are increasingly 

overlapping between simulations and experiments. A major issue is the complexity of 

cellular-scale systems where the interpretation of experimental data becomes more difficult 

and the increasing importance of rare events that can be observed in simulations but are 

difficult to see experimentally. There are also challenges with exactly matching systems 

between simulations and experiments, which will make it increasingly difficult to follow-up 

experimentally on predictions made by simulations of cellular environments. Understanding 

and addressing these challenges will be essential in maintaining the synergy between 

simulations and experiments in studying biological systems at increasingly larger scales.
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Figure 1. 
Model of bacterial cytoplasm in atomistic detail.

Feig et al. Page 9

J Phys Conf Ser. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Dynamics of N-H vectors: internal motion (blue), rotational diffusion (green), translational 

diffusion (purple)
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