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This study involved cerebroprotective potential of aloe emodin (AE) by in silico molecular docking anal-
ysis against various cerebrotoxic proteins followed by in vivo activity on multiple occlusions and reper-
fusion of bilateral carotid arteries (MO/RCA) induced cerebral injury in experimental rats. Molecular
docking studies were carried out to evaluate the binding affinity (or binding interaction) between AE
and various proteins involved in apoptosis such as caspase-3 (CASP3) and Bcl-2-associated X protein
(BAX), and proteins involved in inflammation such as interleukin-6 (IL-6), tumor necrosis factor a (TNF
a), nitric oxide synthase (NOS), acid-sensing ion channel (ASIC) and glutamate receptor (GR) involved
in cerebral stroke, and results were compared with that of standard drugs, minocycline, quercetin, and
memantine. Cerebral ischemic reperfusion induced by MO/RCA was assessed for 10 mins reperfusion per-
iod as one cycle, and the experiment was conducted for up to 3 cycles in rats. After completion of 3 cycles,
the rats were subjected to ethically acceptable animal euthanasia followed by isolation of the brains
which were studied for the size of cerebral infarction, and biochemical parameters such as glutathione
(GSH), malondialdehyde (MDA), catalase (CAT) were estimated from the brain homogenate. Further, his-
tological studies were done to study neuronal contact. Results of molecular docking indicated that the AE
exhibited interaction with active sites of cerebrotoxic proteins usually involved in protein functions or
cerebrotoxicity. Biochemical results showed that in the untreated brain, MDA levels increased signifi-
cantly, and decreased GSH and CAT levels were observed when compared to MO/RCA group, while trea-
ted rats showed a decrease in the levels of MDA and an increase in GSH and CAT levels as compared to
MO/RCA rats. In comparison with sham rats and normal rats, histopathological analysis revealed neu-
ronal damage in MO/RCA surgery rats which manifested as decreased intact neurons. However, treatment
with AE 50 mg/kg b.wt. restored contact between neuronal cells. It can be concluded that AE showed
cerebroprotective effect on RO/RCA with promising inhibition of cerebrotoxic proteins (apoptotic and
idarous),
cutm.ac.
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neuroinflammatory) as evident from molecular docking studies. The cerebroprotective potential of AE
could be due to its anti-inflammatory, antioxidant, and antiapoptotic principles.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ischemic stroke is a common cerebrovascular disorder, and it
commonly renders patients disabled or dead (Agarwal et al.,
2000; Claibome, 1985). It is among the commonest causes of dis-
ability, dementia, and death in the developed world. Among the
different types of stroke, 87 % of them were found to be a cerebral
ischemic stroke. Acute brain injury or brain dysfunction is a result
of cerebral ischemia which occurred due to impaired blood flow
towards the brain. Despite advances in recent years with effective
therapeutic techniques such as intravenous thrombolysis, anti-
inflammatory, and neuroprotective medications, the majority of
ischemic stroke patients still have a poor prognosis with severe
neurological disability due to rapid neuronal destruction
(Barnham et al. 2004; Bederson et al. 1986). An important role is
played by mitochondria to regulate oxidative stress at the cellular
level. Oxidative stress is the primary cause of ischemia/reperfusion
(I/R) damage, according to various studies. As a result, decreasing
cerebral I/R damage requires limiting mitochondrial malfunction
produced by oxidative stress (Peter et al. 2005).

Aloe-emodin (AE) is an anthraquinone derivative that is natu-
rally derived and is also an active ingredient of various medicinal
plants like Rheum palmatum L., Cassia occidentalis, Aloe vera L.,
and Polygonummultiflorum Thunb. It has potential pharmacological
activities including anticancer (George, 1959), antioxidant (George,
1959), anti-inflammatory (Farbiszewski et al. 1996), cardioprotec-
tive (Ginsberg et al. 1999; Guo et al. 2017), antifungal (Kang et al.
2021), antiviral (Vadivel et al. 2018), antibacterial (Hitoshi et al.
2020), antiplasmodial (Yasuhisa, 1978), immunosuppressive
(Kumar et al. 2017), neuroprotective (Lin andWang, 2016), hepato-
protective effects (Li-Hua et al. 2005) and dementia (Wen et al.
2008). Thus, AE has the potential to either be used for prophylaxis
or for the treatment of cancers, malaria, viral infections, inflamma-
tory disorders, type 2 diabetes, Alzheimer’s disease and so on. In
our current investigation, the cerebroprotective potential of AE
was predicted by in silico molecular docking studies against pro-
teins involved in apoptosis such as CASP3 and BAX and proteins
involved in inflammation such as TNF a, IL-6, NOS, ASIC and GR.
The cerebroprotective activity of AE was evaluated in vivo against
MO/RCA induced cerebral injury in rats.

2. Materials and methods

2.1. Drugs, chemicals and reagents

Aloe emodin (Bimal Life Sciences, India), 2,3,5-Triphenyl tetra-
zolium chloride (TTC) (Sisco Research Laboratories Pvt. ltd., India),
Thiobarbituric acid (Loba Chem. Pvt. ltd., India), n-butanol, (Merck
Life Science Pvt. ltd., India) were procured and used without fur-
ther purification.

2.2. Molecular docking simulation studies

The protein databank (PDB) (http://www.rcsb.org/) was used to
retrieve the crystal structures of proteins, viz., BAX (PDB ID:
5 W60), TNF a (PDB ID: 5UUI), CASP3 (PDB ID: 2DKO), IL-6 (PDB
ID: 1ALU), NOS (PDB ID: 6CIC), ASIC (PDB ID: 3S3X) and GR (PDB
ID: 5ZG2). Preparation of the proteins was carried out with the
Biovia Discovery Studio Visualizer (DSV) 2017 (Prepare protein
999
protocol) at a physiological pH of 7.4. After downloading the 3D
structures of protein molecules from the PDB database, water
molecules, heteroatoms, and inhibitors were removed from the
structures and the force field was applied to the protein molecule
using DSV. The PubChem database was used to retrieve the Struc-
ture Data Format (SDF) of AE, minocycline (PubChem Id:
54675783), quercetin (PubChem Id: 5280343), and memantine
(PubChem Id: 4054) (www.pubchem.ncbi.nlm.nih.gov/). The DSV
was used to prepare and protonate ligands at a physiological pH
of 7.4, and minimization of their geometry was also carried out.

The proteins were energetically minimized and active sites
were predicted with the selection of maximized GRID parameters
using DSV. Protein-ligand docking studies were performed
between AE and target proteins (as depicted above) with standard
docking protocol using the AutoDock Vina of the PyRx virtual
screening platform (Oleg and Olson, 2010). Docking results of AE
were compared with that of standard molecules, minocycline,
quercetin, and memantine (Stefan and Gudrun, 1974). The DSV
2017 R2 software was used to visualize the proteins and the pro-
tein–ligand complexes, and the PyRx tool was used for the calcula-
tion of binding energies (kcal/mol) for the docked complexes (Oleg
and Olson, 2010). Higher negative binding energy indicates higher
binding affinity. Higher docked scored complexes were evaluated
for the analysis of binding interactions using DSV.

2.3. Cerebroprotective activity

The Institutional Animal Ethics Committee (IAEC/CESCOP/2019-
OCT-06) approved the animal study protocol and animals were
maintained as per CPCSEA guidelines. Wistar albino adult rats of
either sex were categorized into groups of five wherein six rats
were allocated to all the groups such as group I (normal control),
group II (sham control), and group III (disease control). Group IV
and Group V served as pre-treatment groups of AE for 10 days at
a dose of 25 and 50 mg/kg b.wt. i.p., respectively which was fol-
lowed by MO/RCA surgery. After 3 cycles were completed, the rats
were subjected to ethically acceptable animal euthanasia followed
by isolation of the brains for the measurement of cerebral infarc-
tion size. The estimation of GSH (Inan and Ozyurt, 2012), SOD
(Dong-Ju et al. 2020; Hait et al. 2013), MDA (Hait et al. 2013),
and CAT (Cristina et al. 2002) were carried out with the brain
homogenate.

MO/RCA surgery was performed under anesthetized condition
using Ketamine and xylazine (60 and 10 mg/kg b.wt., respectively).
Separation of common carotid arteries from all muscles, ligaments,
their adventitial sheath, and vagus nerves was carried out. They
were then occluded for 10 mins followed by reperfusion for 10
mins. This entire process was considered as one cycle. The experi-
ment was continued for up to 3 cycles. After 3 cycles were com-
pleted, parameters such as pupil dilation, locking of cornea
reflex, limb reflexes, and temperature of rectal were observed
(Emine et al. 2018). A heating lamp was used to prevent the devel-
opment of hypothermia.

2.4. Histopathological study

A freshly prepared 10 % neutral buffered formalin was used to
fix the sagittal brain sections and these were fixed in paraffin.
For histopathological examinations, paraffin sections with a
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Table 1
Binding energies and interaction details of AE-proteins complexes.

Ligand Target protein Binding
energyPyRx
(-kcal/mol)

Hydrogen bond pi-pi
bond

pi-alkyl bond pi-
sigma
bond

pi-anion
bond

Amide-
pi bond

Alkyl
bond

AE BAX (Chain A) 6.5 ARG89 (2.50 Å) PHE93
(3.56 Å)

TNF a (Chain A) 7.6 VAL150 (1.74 Å), ALA33 (1.90 Å) ALA18 (3.38 Å),
PRO20 (4.18 Å),
VAL17 (4.05 Å),
ARG32 (4.35 Å)

CASP3 6.7 HIS A:121 (1.85 Å), ARG B:207
(2.23 Å), GLN A:161 (2.62 Å)

PHE
B:256
(4.22 Å)

IL-6(Chain A) 6.8 ASN63 (1.80 Å) LEU147
(4.23 Å)

TYR97
(4.12 Å)

NOS (Chain A) 9.1 GLN162 (1.96 Å) TRP414
(3.68 Å),
PHE589
(4.10 Å)

CYS420 (1.55 Å)

ASIC 8.0 ARG B: 270 (1.63 Å), GLU A: 417
(1.75 Å), GLU B: 374 (1.85 Å), LYS
C: 373 (2.22 Å), GLY B: 279
(2.65 Å), ARG C: 370 (2.69 Å)

GR(Chain A) 8.4 THR501 (1.56 Å), TYR753 (2.36 Å) TYR471
(4.15 Å)

MET279 (4.35 Å) GLU726
(3.16 Å),
GLU423
(4.32 Å)

Minocycline BAX(Chain A) 6.2 ASP98 (1.90 Å) ASP102 (2.03 Å) VAL180 (4.05 Å) GLY179
(3.89 Å)

TNF a (Chain A) 7.1 ASP140 (1.93 Å), LYS65 (1.95 Å),
PHE144 (2.19 Å), PRO20 (2.35 Å)

CASP3 7.4 HIS A: 121 (1.55 Å), ARG B: 207
(2.22 Å), CYS A: 163 (2.52 Å)

IL-6 (Chain B) 6.6 TRP592 (1.85 Å), GLU597 (2.85 Å) VAL B: 572
3.98 Å), MET575
4.25 Å),

PHE589
(4.32 Å),
CYS420
(4.52 Å)

NOS (Chain A) 8.8 ARG104 (1.95 Å), GLN156 (2.55 Å),
GLU106 (3.98 Å)

PHE105
(4.58 Å)

Quercetin ASIC 9.3 GLU C: 98 (1.62 Å), ARG C: 191
(1.85 Å), GLU C: 154 (2.32 Å), ARG
F: 28 (2.62 Å), SER C: 241 (2.74 Å),
GLU C: 243 (2.82 Å)

Memantine GR (Chain B) 5.6 GLN663 (2.25 Å), SER661 (2.56 Å) TYR694 (3.62 Å,
LYS690 (4.22 Å)
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thickness of 4 lmwere prepared and hematoxylin and eosin (H&E)
were used to stain these sections which were examined under 40
times magnification with a light microscope (Wen-yi et al. 2013).

2.5. Statistical analyses

Data were given as mean ± SEM for triplicate studies. A signifi-
cant difference between groups was calculated by t-test and one-
way analysis of variance (ANOVA) followed by the Dunnet compar-
ison test. Mean values with p < 0.05 were considered statistically
significant.

3. Results

3.1. Docking analysis

In the docking study, AE showed favorable binding affinities
against BAX, TNF a, NOS, IL-6, and NOS as compared to the stan-
dard compound, minocycline, and against chain A of ASIC and GR
compared to quercetin and memantine (Table 1).

For BAX, AE interacted with chain A of the protein. AE formed
hydrogen bonds (H bonds) with ARG89 (bond distance = 2.50 Å)
and pi-pi stacked with PHE93 (bond distance = 3.56 Å). AE has a
binding affinity of �6.5 kcal/mol towards BAX. Minocycline formed
1000
H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and
2.03 Å, respectively), amide-pi stacked with GLY179 (bond
distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance
of 4.05 Å). Minocycline has a binding affinity of �6.2 kcal/mol
towards BAX.

For TNF a, AE interacted with chain A of the protein. AE formed
H bonds with VAL150 and ALA33 (bond distances = 1.74 Å and
1.90 Å, respectively), pi-alkyl with ALA18, PRO20, VAL17, ARG32
(bond distances = 3.38 Å, 4.18 Å, 4.05 Å, and 4.35 Å, respectively).
AE has a binding affinity of �7.6 kcal/mol towards TNF a. Minocy-
cline formed H bonds with ASP140, LYS65, PHE144, PRO20 (bond
distances = 1.93 Å, 1.95 Å, 2.19 Å, and 2.35 Å, respectively).
Minocycline has a binding affinity of �7.1 kcal/mol towards TNF a.

For CASP3, AE formed H bonds with HIS A:121, ARG B:207, and
GLN A:161 (bond distances = 1.85 Å, 2.23 Å and, 2.62 Å, respec-
tively), and pi-pi bond with PHE B:256 (bond distance = 4.22 Å).
AE has a binding affinity of �6.7 kcal/mol towards CASP3. Minocy-
cline formed H bonds with HIS121, ARG207, CYS163 (bond
distances = 1.55 Å, 2.22 Å and, 2.52 Å, respectively). Minocycline
has a binding affinity of �7.4 kcal/mol towards CASP3.

For IL-6, AE interacted with chain A of the protein. AE formed H
bonds with ASN63 (bond distances = 1.80 Å), pi-sigma bond with
TYR97 (bond distance of 4.12 Å), and pi-pi bond with LEU147
(bond distances = 4.23 Å). AE has a binding affinity of�6.8 kcal/mol



Fig. 1. 2D diagrams of AE-protein complexes: (a) AE-BAX (left), Minocycline-BAX (right); (b): AE-TNF a (left), Minocycline-TNF a (right); (c): AE-CASP (left), Minocycline-
CASP (right); (d): AE-IL-6 (left), Minocycline-IL-6 (right); (e): AE-NOS (left), Minocycline-NOS (right); (f): AE-ASIC (left), Quercetin-ASIC (right); (g): AE-ASIC (left), Quercetin-
ASIC (right); (h): AE-GR (left), Memantine-GR (right).
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towards IL-6. Minocycline formed H bonds with ARG104, GLN156,
and GLU106 (bond distance = 1.95 Å, 2.55 Å, and 3.98 Å,
respectively), pi-sigma bond with PHE105 (bond distance = 4.58 Å
). Minocycline has a binding affinity of �6.6 Kcal/mol towards
IL-6.

Against NOS, AE interacted with chain B of the protein. AE
formed H bonds with CYS420 (bond distance = 1.12 Å), pi-pi bond
with PHE589 (bond distance = 4.02 Å). AE has a binding affinity of
�9.1 kcal/mol towards NOS. Minocycline formed H bonds with TRP
B:592, GLU B:597 (bond distances = 1.85 Å and 2.85 Å respec-
tively), pi-alkyl bond with VAL B:572, MET B:575 (bond
distances = 3.98 Å and 4.25 Å, respectively), and alkyl bond with
PHE B:589 (bond distance of 4.32 Å). Minocycline has a binding
affinity of �8.8 kcal/mol towards NOS.

Against ASIC, AE formed H bonds with ARG B:270; GLU A: 417;
GLU B: 374, LYS C:373, GLY B:279, ARG C:370 (bond distance = 1.
1001
63 Å, 1.75 Å, 1.85 Å, 2.22 Å, 2.65 Å, and 2.69 Å, respectively). AE
has a binding affinity of �8.0 kcal/mol towards ASIC. Quercetin
formed H bonds with GLU C:98, ARG C:191, GLU C:154, ARG
F:28, SER C:241, GLU C:243 (bond distance of 1.62 Å, 1.85 Å,
2.32 Å, 2.62 Å, 2.74 Å and 2.82 Å, respectively). Quercetin has a
binding affinity of �9.3 kcal/mol towards ASIC.

For GR, AE interacted with chain A of the protein. AE formed H
bonds with TYR753 and THR501 (bond distances = 1.52 Å and
2.35 Å, respectively), pi-alkyl bond with TYR471, and MET279
(bond distances = 3.16 Å and 4.35 Å, respectively). AE has a binding
affinity of �8.4 kcal/mol towards GR. Memantine formed H bonds
with GLN B:663 and SER B:661 (bond distances = 2.25 Å and 2.56 Å,
respectively), pi-alkyl bond with TYR B:694 and LYS B:690 (bond
distances = 3.62 Å and 4.22 Å, respectively). Memantine has a bind-
ing affinity of �5.6 kcal/mol. Fig. 1 depicts detailed 2D interaction
diagrams of AE-proteins complexes.



Fig. 2. Statistical representation of the impact of AE on brain biochemical parameters: (a) MDA, (b) GSH, (c) CAT, and (d) percentage of infarction size in the cerebrum of MO/
RCA rats.
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3.2. Cerebroprotective activity

In comparison to normal and sham rats, biochemical
studies revealed that brain MDA levels increased significantly
(10.28 ± 0.20 nmol/mg) in MO/RCA rats. In AE treated rats
(25 and 50 mg/kg b.wt.), MDA levels decreased significantly
(p < 0.0001) (7.27 ± 0.20 nmol/mg, 6.48 ± 0.009 nmol/mg) in com-
parison to sham rats, respectively. In comparison to normal and
sham rats, brain GSH levels was significantly decreased (0.10 ± 0.
01 nmol/mg) in MO/RCA, while GSH levels significantly increased
(p < 0.1395 and p < 0.0004) in AE treated rats (25 mg/kg b.wt., 0.
11 ± 0.01 nmol/mg and 50 mg/kg b.wt. 0.16 ± 0.01 nmol/mg).
Brain CAT levels were significantly decreased (0.00022 ± 0.00005
nmol/mg) in MO/RCA rats, while CAT levels significantly increased
Table 2
Effect of AE on the biochemical parameters of the hippocampus of the brain in rats injure

Treatment Infarction size (%) Concentrat

GSH

Normal rats 0 0.2 ± 0.01**
Sham rats 0 0.13 ± 0.01*
MO/RCA 100 % 0.10 ± 0.01*
AE 25 mg/kg 47.75 % 0.11 ± 0.01*
AE 50 mg/kg 63.12 % 0.16 ± 0.01*

The data are expressed in the Mean ± Standard error of mean (SEM) of triplicate studies.
are considered to be statistically significant.
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(p < 0.0001, p < 0.0001, p < 0.0026) in AE treated rats (25 mg/kg b.
wt., 0.0024 ± 0.00011 and 50 mg/kg b.wt., 0.0028 ± 0.00014). In
comparison to the normal group and control group, the percent
cerebral infract was significantly increased in MO/RCA group.
Results are shown in Fig. 2 and Table 2.

In comparison to the MO/RCA group, cerebral infarction volume
was significantly decreased to 47.75 % and 63.12 % in AE (25 and
50 mg/kg b.wt., respectively) which indicated that AE treatment
exerts cerebroprotective activity (Fig. 3). In comparison to the rest
of the groups, the histopathological study revealed that MO/RCA
rats showed decreased neuronal cell intensity, increased form of
the shrunken and irregular shape of a neuronal cell in the hip-
pocampus region of the brain. Decreased intact of neurons and
neuronal in MO/RCA group was reverted in AE treated rats (Fig. 4).
d by MO/RCA surgery.

ion (nmol/mg)

MDA CAT

* 5.4 9 ± 0.10*** 0.0043 ± 0.00025***
* 7.41 ± 0.20*** 0.0020 ± 0.00068**
** 10.28 ± 0.20*** 0.00022 ± 0.00005***
* 7.27 ± 0.20*** 0.0024 ± 0.00011***
** 6.48 ± 0.09*** 0.0028 ± 0.00014***

Mean values of the difference between groups with p < 0.05*, p < 0.01**, p < 0.001***



Fig. 3. AE inhibits MO/RCA with an increase in the percentage of the volume of cerebral infarction of rats: (a) Normal group, (b) Sham group, (c) MO/RCA group, (d) MO/
RCA + 25 mg/kg b. wt. of AE treated group, (e) MO/RCA + 50 mg/kg b. wt. of AE treated group.

Fig. 4. Visualization of the hippocampus region of the brain of rats after MO/RCA surgery. 40 times magnification of the hippocampus region of the brain after cerebral stroke
was induced: (a) Normal group, normal neuronal cell (black arrow), (b) Sham group; (c) MO/RCA group, (d) MO/RCA + 25 mg/kg b. wt. of AE treated group, (e) MO/
RCA + 50 mg/kg b. wt. of AE treat group. The neuronal cells in the hippocampus region of the treated rats are less scattered (indicated by the black arrow). The thickness of the
pyramidal cell layer was found to be increased in the treated rats while a decrease in apoptotic neurons with dystrophic changes was observed as shrunken and irregular
(indicated by black arrows).
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4. Discussion

Among the different types of stroke, high morbidity and mortal-
ity in humans are attributed to ischemic stroke. Ischemic stroke is
marked by cerebral ischemia/reperfusion damage, which happens
when blood flow is restored after a brief brain artery obstruction
(Vesna et al. 2011). Stroke, ischemia, or inflammation can induce
the release of glutamate or ATP that can further trigger different sig-
naling cascades which can ultimately lead to neuronal injury and
apoptotic cell death (Sharanya et al. 2020; Fengge et al. 2020;
Marc et al. 2007; Tabassum et al. 2013; Li et al. 2014; Era and
Probert, 2008;Wei et al. 2018). After cerebral ischemia/reperfusion,
oxidative stress induced by increased production of ROS can result
in the death of neurons, and several studies had reported the abnor-
mality of oxidant enzymes, such as GSH, MDA, and CAT in ischemic
stroke (Turley et al. 2005; Palo et al. 1988; Hwang et al. 1998). Neu-
tralization of ROS (O2�-, OH�, H2O2, and lipoperoxides) occurs when
GSH (an endogenous non-enzymatic antioxidant) reacts with ROS
to be oxidized into GSSG (Song et al. 2020; Jingxian et al. 2013).
The ratio of GSH/GSSG is regarded as a reliable indicator for the
presence of ROS (Jingxian et al. 2013). The levels of GSH in MO/
RCA rats were decreased in this study, whereas GSH levels were
restored in AE-treated rats. Malondialdehyde (MDA) has long been
employed as a marker of lipoperoxidation, which is primarily
induced by hydroxyl free radical damage (OH�) (Xiong et al.
2008). After MO/RCA, an increase in the levels of MDA was
observed. However, AE treatment reducedMDA levels significantly.

Our results advocate that AE offers protection against MO/RCA-
induced oxidative stress by decreasing the levels of ROS and MDA
while it increases GSH and CAT levels. Several studies have demon-
strated that ischemia/reperfusion triggers a deleterious chain of
events that include inflammation, apoptosis, production of ROS,
and excitotoxicity which causes neuronal death including hip-
pocampal neurons (Tiansong et al. 2020). Loss of neuronal cell con-
tact resulted in morphological abnormalities in brain neurons in
MO/RCA rats, according to histopathological studies. In MO/RCA
rats, pre-treatment with AE enhanced neuronal cell contact, neu-
ronal morphological modification, and neuronal diseases in the
brain region, indicating that AE has a protective effect in the MO/
RCA design.

The study also involved molecular docking studies of AE on pro-
teins involved in apoptosis (BAX and CASP3), and proteins involved
in inflammation (TNF a, IL-6, ASIC, and GR) to assess the binding
affinity in terms of binding energy and interaction. These cerebro-
toxic proteins are over-expressed during neuroinflammation (Wei
et al. 2021; Yu et al. 2019), and ASIC leads to neuronal injury which
is mediated by acidosis (Mavdzhuda et al. 2013). Results of docking
showed that AE exhibited interactions with TNF a active sites of
VAL A:17, 150, ALA A:17, 18, 33, PRO A:20, ARG A:32; CASP3 active
sites of HIS A:121, ARG B:207, TRP A:414, CYC A:420; NOS active
sites of PHE A:589, and GR (chain A) active sites of THR501,
TYR753, GLU726, and TYR471. From molecular docking results, it
can be concluded that AE interferes with the function of TNF a,
CASP3, NOS, and GR through H Bonding and hydrophobic interac-
tions, which might suppress the disease progression. Minocycline
(standard compound) formed H bonding with CASP3 active sites
of HIS A:121, CYS A:163, and ARG B:207; with TNF a (chain B)
active sites of TRP592, GLU597, hydrophobic interactions on NOS
(chain B) active sites of VAL572, MET575, PHE589, VAL421, and
H bonding on IL-6 active sites of GLN A:156. Results revealed that
AE exhibited a strong inhibitory effect on TNF a, CASP3, NOS, and
GR, suggesting its strong protective effect against MO/RCA induced
cerebral injury (cerebral ischemia/reperfusion damage) in rats. The
cerebroprotective function of AE might be mediated through its
antioxidant, anti-inflammatory, and antiapoptotic actions.
1004
5. Conclusion

The findings of our present investigation suggest a potential
protective role of AE against MO/RCA assault, which might be
linked to the antioxidant capacity of AE. The inhibitory potential
of AE against cerebrotoxic (apoptotic and neuroinflammatory) pro-
teins was demonstrated by in silico docking analysis. Further in vivo
studies are required at the molecular level (identifying the exact
biological target / biochemical pathways) to explore the therapeu-
tic potential of AE as a neuroprotective in cerebral ischemic stroke.
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