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Abstract

To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote
sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of
maize in three counties in North China. Through Pearson’s correlation analysis, leaf area index (LAI), canopy chlorophyll
content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the
factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation
modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected
Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an
environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with
LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was
obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data
were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs

during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on
independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the
spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69
and root-mean-square error of 0.51 mmol CO2 m22 s21. The conclusions from this study provide valuable information for
estimates of Rs during the peak growing season of maize in three counties in North China.

Citation: Huang N, Wang L, Guo Y, Hao P, Niu Z (2014) Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors
with the Use of Remote Sensing and Geographical Information System. PLoS ONE 9(8): e105150. doi:10.1371/journal.pone.0105150

Editor: Ben Bond-Lamberty, DOE Pacific Northwest National Laboratory, United States of America

Received March 13, 2014; Accepted July 7, 2014; Published August 26, 2014

Copyright: � 2014 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data have been deposited to Dryad with the
DOI: doi:10.5061/dryad.12528.

Funding: This work was supported by the National Natural Science Foundation of China (41301498), the Public Service Sectors (Ministry of Land and Resources)
Special Fund Research (201311127), the Special Foundation for Young Scientists of the State Laboratory of Remote Sensing Science (13RC-07), and the Major State
Basic Research Development Program of China (2013CB733405). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: wangli@radi.ac.cn

Introduction

Soil CO2 efflux from terrestrial ecosystems to the atmosphere

has been considered the second largest global carbon flux and is a

vital component of ecosystem respiration [1]. In recent decades,

significant progress has been made in identifying the biophysical

factors that influence soil respiration (Rs) to predict soil CO2

emission accurately in time and space [2–4].

The majority of Rs arises from root and microbial tissue.

Therefore, understanding the spatial and temporal changes of

these sources will facilitate the modeling of Rs. However, the large

spatial and temporal heterogeneity of root and microbial activity

within the landscape and the covariation of potentially important

factors (i.e., temperature and water content) pose great challenges

to the development of mechanistically based models that account

for spatial and temporal variability in Rs [2]. Thus, many different

statistical models of Rs have been developed on the basis of data

collected from different ecosystems [5]. Numerous studies have

established Rs models based on soil temperature, soil moisture, or

both [6,7]. Aside from soil temperature and moisture, plant

productivity proxies [e.g., leaf area index (LAI), canopy chloro-

phyll content (Chlcanopy), and plant biomass] [8–10] and soil

properties [e.g., soil organic carbon (SOC) content, soil total

nitrogen (STN) content, and soil C and N ratio (soil C/N)] [11,12]

also potentially influence Rs and are often included in models of

Rs. However, most of the factors that affect variations in Rs tend to

be derived through field measurements [13]. Furthermore, direct

observation of these variables across long time spans or large

spatial scales is expensive because of the required manpower and

material resources. A simple method to derive data related to

variations in Rs is necessary to facilitate the determination of the

spatial and temporal distribution of Rs.
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Remote sensing and geographical information system (GIS)

provide powerful tools for data acquisition, spatial analysis, and

graphical display [14–16]. In the field of global change research,

significant advances have been made in the development and

application of remote sensing and GIS. These advances include

land cover and land-use changes [17,18], environmental vulner-

ability and risk assessment [19,20], ecological restoration and

management [21–23], and terrestrial ecosystem carbon cycle [24–

26]. However, applying the data derived from remote sensing and

GIS into Rs modeling remains controversial, especially for remote

sensing data, because remotely sensed data in principle are

independent measurements of site properties, not functionally

important variables (e.g., soil temperature, soil moisture, and plant

growth variables) that control Rs [3,27,28]. On the basis of

statistical analysis of field experiments, previous studies found that

remotely sensed vegetation indices (VIs) correlate with Rs in crop

sites that lack drought stress [10] and can be used to model the

spatial patterns of Rs during the peak growing season of alpine

grasslands in the Tibetan Plateau [26]. However, few studies

explore the potential of remote sensing and GIS data for

estimating the spatial patterns of Rs in agricultural land, which

may be affected by more complex factors than natural grasslands

because of the influence of human activity. Although modern

agriculture has successfully increased food production, the

processes involved have profoundly affected the global carbon

cycle through tillage, drainage and conversion of natural to

agricultural ecosystems [29,30]. Therefore, a simple method

should be identified to study the spatial characteristics of Rs in

agricultural ecosystems.

This study aims to examine a potential new approach for

estimating the spatial patterns of Rs during the peak growing

season of maize by using remote sensing and GIS technology in

Baixiang, Longyao and Julu Counties, which are typical agricul-

tural areas in the north plain of China. Studying the spatial

characteristics of soil CO2 efflux in maize fields will contribute to

eco-agricultural development.

Materials and Methods

Ethics Statement
No specific permissions were required for the 53 sample plots in

this study. We confirmed that the field studies did not involve

endangered or protected species, and the specific location of the

sample plots was provided in the manuscript (Fig. 1).

Study Site
The study site is situated within three counties (Baixiang,

Longyao and Julu) in Southern Hebei Province of North China

(Fig. 1). The total area of the study site is 1.646103 km2. This area

is located in the North China Plain with a flat open terrain, single

landform type, and a mean elevation of 30 m above sea level.

Calcareous alluvial soil with high capacity to retain water and

fertilizer is the main soil type in the study area. The study site is

suitable for farming, and maize is the main crop. The climate is

continental monsoon with four distinct seasons and adequate light

and heat resources. Long records of meteorological data near the

study site (http://cdc.cma.gov.cn) indicate that the mean annual

temperature is 13.5uC with the coldest temperatures in January

and the hottest in July. The mean annual precipitation is

502.8 mm, but precipitation is distributed unevenly in the four

seasons with the greatest precipitation occurring in summer

(362.5 mm). Therefore, drought influences agricultural develop-

ment, and agriculture mainly involves irrigation in this study site.

Fifty-three sample plots located in the maize fields were

identified within the study site (Fig. 1). The distance between

any two sample plots was larger than 2 km. Each sample plot

Figure 1. Spatial location of the sample plots for field experiments in three counties in North China. The box in the bottom left corner of
Figure 1 shows the South China Sea islands.
doi:10.1371/journal.pone.0105150.g001
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(greater than 100 m6100 m) has a large maize area, flat terrain,

and maize under uniform growing conditions. All measurements

were performed from August 11, 2013 to August 20, 2013, which

corresponded to the tassel stage and peak growing period of maize.

During the 10 days of field measurements, continuous measure-

ments were performed, except on August 12 because of a minor

precipitation event. Therefore, all field measurements required 9

days.

Field measurements
Soil respiration measurements. In each sample plot, Rs

was measured by using a soil respiration chamber (LI-6400-09;

LiCor, Lincoln, Nebraska, USA) connected to a portable

photosynthesis system (LI-6400; LiCor, Lincoln, Nebraska,

USA). The soil respiration chamber was mounted on a PVC soil

collar that was sharpened at the bottom. Each PVC collar (5 cm

long, 11 cm inside diameter) was inserted 2 cm to 3 cm into the

ground and was installed at least 24 h prior to performing any

measurements. To reduce the difference in root biomass, soil

collars were placed in three locations on the basis of their distance

to the maize plant: near a maize plant, inter-plant, and inter-row.

Two collars were placed in each of the three positions for each Rs

measurement. At least three to four consecutive measurements on

each collar were performed to prevent any systematic error in the

Rs estimates. An average Rs value was used for each collar, and the

average value from six collars was used to represent the Rs value at

plot level. Each Rs measurement was conducted between 09:00 h

and 15:00 h (local time) because fluxes measured during this time

interval are usually representative of the daily mean flux.

Soil temperature and soil moisture

measurements. After the soil respiration measurement on a

PVC soil collar in each plot, soil temperature and soil moisture

were measured in this collar to minimize sample difference. Soil

temperature was measured at a 10 cm depth (Ts10) by using a

ground thermometer. Volumetric soil moisture at a depth of 0 cm

to 20 cm (SM20) was determined by using a portable time domain

reflectometry probe (HydroSense, Campbell, USA). Thus, six soil

temperature and moisture measurements were performed in each

plot. The average value was used to represent soil temperature or

soil moisture at the plot level.

Maize biophysical parameter measurements. LAI was

measured by using an LAI-2000 (LI-COR Inc., Lincoln,

Nebraska). In each plot, six representative positions were selected

for LAI measurement, and in every position, two repeated

measurements were performed. Leaf chlorophyll content (Chlleaf)

was determined by using a portable chlorophyll meter (SPAD-502,

New Jersey, USA). Fully expanded leaves, which depended on the

height of the maize plant, were randomly selected from three

locations that corresponded to the upper, middle, and lower parts

of the maize plant. For each leaf location, 10 SPAD values were

randomly collected. The vertical leaf area distribution in maize

canopy was analyzed by measuring the area of each green leaf

from the bottom to the top of eight randomly distributed maize

plants with the use of an area meter (LI-3100, LI-COR, Lincoln,

Nebraska). The area-weighted mean SPAD reading was used to

derive Chlleaf. However, the SPAD reading was in arbitrary units

rather than in actual amounts of chlorophyll per unit area of the

leaf tissue. A transform relationship exists between the SPAD

readings and the actual chlorophyll content in maize [31]. To

convert the SPAD readings to chlorophyll content per unit leaf

area (mg cm22), this study used the transform relationship

(Chlleaf~0:95|SPAD reading{3:25) derived by Wu et al.

[32] in maize plots, and the same SPAD meter was employed in

this study. Chlcanopy was then determined by using the following

equation:

Chlcanopy~Chlleaf|GLAI ð1Þ

where Chlcanopy is the canopy chlorophyll content (g m22), Chlleaf

is the leaf chlorophyll content of maize (g m22), and GLAI

represents the green leaf area per unit ground area.

In each sample plot, three representative maize plants were

harvested for aboveground biomass (AGB) measurement. These

fresh maize plants were sealed in a plastic bag and immediately

transported to a nearby laboratory for subsequent analysis.

Thereafter, fresh samples were oven dried at 65uC until the mass

of the sample reached a constant weight. The AGB in each plot

can be derived by multiplying the average dry weight per plant (g

plant21) and the average plant density of maize (plants m22).

Soil property measurements. Soil within the six PVC

collars in each plot was destructively sampled after measuring Rs,

soil temperature and soil moisture. Soil was sampled to a depth of

approximately 20 cm by a cylindrical soil driller (4 cm diameter,

20 cm height), in which fine root biomass and microbial activity

are the highest [33,34]. These collected soil samples were sealed in

plastic bags and stored at room temperature while being

transported to the laboratory. Six collected soil samples in each

plot were uniformly mixed to form a composite sample for

laboratory analysis. The composite sample was air-dried in the

laboratory to a constant weight for soil chemical analyses. The air-

dried soil samples were ground to pass through a 0.2 mm sieve

after any visible plant tissues and debris were manually removed.

The SOC content was estimated by using the standard Mebius

method [35]. The STN content was analyzed by using the

Kjeldahl digestion procedure [36]. In this study, soil C/N was

calculated by the ratio of SOC and STN contents.

Table 1. Calculation for vegetation indices a.

Vegetation index Formula Reference

Normalized difference vegetation index
NDVI~

RNir-RRed

RNirzRRed

Rouse et al. [47],
Gamon et al. [48]

Modified soil adjusted vegetation index

MSAVI~
2RNirz1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2RNirz1)2{8(RNir-RRed)

q

2

Qi et al. [49]

Enhanced vegetation index
EVI~2:5|

RNir-RRed

1zRNirz6|RRed{7:5|RBlue

Huete et al. [50]

aRBlue , RRed , and RNir are reflectance of blue, red, and NIR band in the HJ-1A CCD optical image, respectively.
doi:10.1371/journal.pone.0105150.t001
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Spatial data acquisition
Maize classification data. This study aimed to derive the

spatial distribution of Rs in maize fields based on the field

measurements at the plot scale. Maize classification data is

necessary to spatially extrapolate Rs at the plot scale to the whole

study area. Multi-temporal normalized difference vegetation index

(NDVI) data collected over the growing season were used to

classify maize at the study site [37–39]. Clouds are common

occurrences in the study area during the growing season. Thus,

obtaining a time sequence of cloud-free scenes is difficult. Two

types of satellite data were used to establish the time-series NDVI

data. One was the Operational Land Imager (OLI) image of

Landsat 8, and the other was the small constellation for

environmental and disaster mitigation (HJ-1A and B) charge

coupled device (CCD) image [40–42]. Five scenes of OLI images

acquired on May 3, 2013, May 19, 2013, July 6, 2013, October

10, 2013, and October 26, 2013 were downloaded from the U.S.

Geological Survey (http://earthexplorer.usgs.gov/). Three HJ-1A

and B CCD optical images acquired on June 6, 2013, August 17,

2013, and September 15, 2013 were downloaded from the China

Center for Resource Satellite Data and Applications (http://www.

cresda.com). The two types of remote sensing images exhibit same

spatial resolution (30 m). The 30 m spatial resolution is appropri-

ate for classifying maize patterns in the study area given the

relatively large field in the region, which could spatially

corresponded to five or more 30 m pixels. The strong relationship

of the NDVI with biophysical vegetation characteristics, such as

LAI and green biomass [43,44], enables the discrimination of land

cover types on the basis of their unique phenological responses.

Before land-use classification, pre-processing (i.e., radiometric

calibration, atmospheric correction and geometric correction) of

OLI images and HJ-1A and B CCD optical images was

accomplished by using the Environment for Visualizing Images

(ENVI) software (Version 4.7, Research Systems Inc., Boulder,

Colorado, USA) [45,46]. This process ensured the consistency

between the two types of remote sensing data and the seasonality

of the NDVI time series. The maximum likelihood classification

method, integrated in the ENVI software, was applied to the eight-

date NDVI time series that spanned one maize growing season of

the study site.

Spectral vegetation index for vegetation biophysical

parameter estimation. Three greenness indices, namely,

NDVI, enhanced vegetation index (EVI), and modified soil

adjusted vegetation index (MSAVI), were derived from the HJ-

1A CCD optical image acquired on August 17, 2013 (Table 1) for

vegetation biophysical parameter estimation. Previous studies

reported that greenness VIs offer important and convenient

measures for vegetation biophysical parameters, such as LAI and

Chlcanopy [51–54]. Meanwhile, LAI and Chlcanopy are also found

to be good indicators of plant canopy photosynthesis [55–57] and

are used in the modeling of Rs [58]. To obtain the spatial patterns

of vegetation biophysical parameters in maize fields, the spatial

distribution of vegetation biophysical parameters over the whole

study area was overlapped with the maize classification data.

Quantifying the spatial pattern of SOC content. Statistics

and geostatistics have been widely applied to quantify the spatial

distribution patterns of SOC at a regional scale [59–61]. Based on

the theory of regionalized variables, geostatistics provides

advanced tools to quantify the spatial features of soil parameters

and to conduct spatial interpolation [62,63]. In this study,

geostatistical analyses were performed by using the geostatistical

analyst module of ArcGIS software (Version 9.3, 2008) to quantify

the spatial pattern of SOC content. To obtain the spatial pattern

of the SOC content in the maize fields, the spatial distribution of
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Table 3. Spatial characteristics of soil respiration (Rs, mmol CO2 m22 s21), soil temperature at 10 cm depth (Ts10, uC), soil water content
at 0 cm to 20 cm depth (SWC20, m3 m23), canopy chlorophyll content (Chlcanopy, g m22), leaf area index (LAI), aboveground biomass
(AGB, kg m22), soil organic carbon content (SOC content, g kg21), soil total nitrogen content (STN content, g kg21) and soil C: N ratio
(soil C/N) in maize fields during the peak growing season in three counties in North China.

Variables Mean Maximum Minimum CV (%)

Rs 5.43 7.33 2.64 15.45

Ts10 28.32 30.93 25.78 4.73

SWC20 27.54 33.27 19.54 12.48

Chlcanopy 0.18 0.21 0.16 6.54

LAI 3.75 4.53 2.81 8.64

AGB 0.94 1.89 0.44 31.93

SOC content 11.86 17.26 6.40 16.71

STN content 1.25 1.78 0.53 24.47

Soil C/N 9.82 14.38 7.07 18.53

doi:10.1371/journal.pone.0105150.t003

Figure 2. Final structural equation modeling (SEM) for soil respiration. Non-significant paths are shown in dashed line. The thickness of the
solid arrows reflects the magnitude of the standardized SEM coefficients. Standardized coefficients are listed on each significant path. * represents
error terms for observed variables, among them, E1, E2, E3, and E4 represent measurement errors for soil respiration, canopy chlorophyll content, leaf
area index, and aboveground biomass, respectively.
doi:10.1371/journal.pone.0105150.g002
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the SOC content over the whole study area was overlapped with

the maize classification data.

Modeling spatial patterns of soil respiration
Identifying factors affecting spatial variability of soil

respiration. The variables that explain the spatial variability of

Rs are as follows: (1) soil properties, measured by SOC content,

STN content and soil C/N; (2) environmental factors, encom-

passing Ts10 and SM20, and (3) plant photosynthesis proxy factors,

including AGB, LAI and Chlcanopy. Pearson’s correlation requires

variables to be normally distributed and mutually independent.

Each variable was tested for normal distribution by using the

Shapiro–Wilk normality test and for randomness by the runs test

of the Statistical Package for the Social Sciences (SPSS, Chicago,

Illinois, USA). The results of the statistical analysis showed that

each of these measured variables followed a normal distribution

(Shapiro-Wilk, p.0.05) and showed randomness (runs test, p.

0.05). Thus, Pearson’s correlation analysis, as implemented in the

SPSS software, was used to screen important variables that

influence Rs. Five variables with statistically significant correlation

(p,0.05) with Rs, namely, SOC content, STN content, LAI, AGB,

and Chlcanopy, were screened out (Table 2). However, these

variables were cross-correlated [64–66] and included both direct

and indirect effects. To solve this problem, structural equation

modeling (SEM) was used to evaluate explicitly the causal

relationships among these interacting variables [67–69] and to

divide the total effects of variables on Rs into direct and indirect

effects. On the basis of the theoretical knowledge on the major

factors that influence spatial patterns of Rs at regional scales

[8,13,26], we developed an SEM model to relate Rs to SOC

content, STN content, LAI, AGB, and Chlcanopy. This SEM model

was used to identify the direct effect factors for Rs estimation. The

SEM model was fitted by using AMOS 18.0 for Windows [70].

After using the SEM, the fit indices, namely, comparative fit

index = 0.984 and goodness-of-fit index = 0.946. Thus, the theo-

retical model showed a good fit with the sample data.
Quantifying the spatial patterns of soil respiration in

maize fields. In this study, the direct effect factors of Rs

identified by SEM were used to estimate Rs. The spatial

distribution data of these direct effect factors were first obtained

on the basis of remote sensing or GIS to quantify the spatial

patterns of Rs in maize fields. A simple exponential model that

used the proxy data was then employed to estimate the spatial

pattern of Rs during the peak growing season of maize. The

accuracy of this method was examined by separating the observed

data into two datasets through a random generator. One dataset

consisted of 38 sample plots for analysis, whereas the other

consisted of 15 for testing the accuracy of the Rs estimation.

Result

Spatial characteristics of soil respiration
Based on field-measured data at 38 plots, the daily mean Rs of

maize during the peak growing season was 5.43 mmol CO2

m22 s21 with a range of 2.64 mmol CO2 m22 s21 to 7.33 mmol

CO2 m22 s21 and a coefficient of variation (CV) of 15.45%

(Table 3). The spatial variability of soil temperature at 10 cm

depth (Ts10) was relatively small at the study site with a CV of

4.73% and was far less than the spatial variation in soil water

content at 0 cm to 20 cm depth (SWC20). The AGB of maize

showed greater spatial variability (CV = 31.93%) than LAI

(CV = 8.64%) and Chlcanopy (CV = 6.54%).

Mean SOC content, STN content, and soil C/N at 0 cm to

20 cm depth in maize fields of the study site were 11.86 g kg21

(ranged from 6.40 g kg21 to 17.26 g kg21), 1.25 g kg21 (ranged

from 0.53 g kg21 to 1.78 g kg21), and 9.82 (ranged from 7.07 to

14.38), respectively. Their CVs were not similar with the STN

content which showed greater spatial variability than the SOC

content and soil C/N.

Table 4. Total, direct, and indirect effects in the structural equation modeling.

Variable Direct effect Indirect effect Total

Soil respiration

Aboveground biomass 20.10ns 0.46 0.36

Soil organic carbon content 0.63 0.16 0.79

Soil total nitrogen content 20.09ns 0.30 0. 21

Leaf area index 0.64 - 0.64

Canopy chlorophyll content 20.04ns 0.39 0.35

Aboveground biomass

Soil organic carbon content 0.46 - 0.46

Soil total nitrogen content 20.01ns - 20.01ns

Leaf area index

Aboveground biomass 0.27 0.50 0.77

Soil organic carbon content - 0.35 0.35

Soil total nitrogen content - 20.01ns 20.01ns

Canopy chlorophyll content 0.61 - 0.61

Canopy chlorophyll content

Aboveground biomass 0.81 - 0.81

Soil organic carbon content - 0.37 0.37

Soil total nitrogen content - 20.01ns 20.01ns

These effects were calculated using standardized path coefficients. Non-significant effects are indicated by ‘‘ns’’.
doi:10.1371/journal.pone.0105150.t004
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Factors driving spatial variability of soil respiration
Based on Pearson’s correlation analysis, five variables with

significant correlation with Rs, namely, Chlcanopy, LAI, AGB, SOC

content, and STN content, were selected (Table 2). However, the

five selected variables were intercorrelated (Table 2), and their

relationships with Rs combined both direct and indirect correla-

tions. Thus, an SEM model was further used to evaluate the causal

relationships among these interacting variables. The final SEM

explained 79% of the variation in Rs (Fig. 2). The direct, indirect,

and total effects of the variables are shown in Table 4. Among the

five selected variables, LAI and SOC content directly affected Rs

and can be used to predict Rs with relatively high accuracy

(R2 = 0.79). The other three variables (i.e., Chlcanopy, ABG, and

STN content), despite having a significant correlation with Rs,

only affected Rs indirectly through their direct relationship with

SOC content and LAI. Thus, the two direct effect factors were

used to estimate Rs, and the spatially distributed data proxies of

these two factors were used to quantify the spatial patterns of Rs in

maize fields during the peak growing season.

Spatial data used for soil respiration estimation
Maize classification. The maize classification map of the

study area is shown in Figure 3. The classification accuracy for

maize at the study site could not be quantitatively assessed because

of the limitation of the sample data. However, 53 sample plots

were all located in the maize classification map, and the county-

level maize patterns classified in the map were consistent with the

general maize patterns across the three counties. In addition, the

classified maize area was close to the maize area reported by the

China County Statistical Yearbook [71]. Thus, the classification

accuracy of maize was believed to be reasonable, and the maize

classification map was then used to predict the spatial pattern of Rs

during the peak growing season of maize.

Figure 3. Maize classification map in three counties in North China.
doi:10.1371/journal.pone.0105150.g003
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LAI estimation from spectral vegetation index. Among

the three greenness indices calculated from the optical image of

HJ-1A satellite, EVI showed the best linear relationship with LAI,

with a determination coefficient (R2) of 0.72, followed by MSAVI

and NDVI (Fig. 4). The explanation of LAI variance increased

from 66% to 72% when EVI was used instead of NDVI for LAI

estimation, and this increase was statistically significant (p,0.05).

However, EVI and MSAVI did not exhibit a significant difference

in explaining the variation in LAI, despite EVI having a slightly

better relationship with LAI than MSAVI. Thus, EVI was used as

a proxy for LAI to estimate Rs during the peak growing season of

maize for simplicity. The spatially distributed EVI during the peak

growing season of maize exhibited relatively small variability

(Fig. 5). Overall, the EVI in the north and southwest parts of the

study site (i.e., Baixiang and Longyao Counties) showed a high

value. Relatively low EVI values mainly occurred in the southeast

parts of the study site (i.e., Julu County), especially the northwest

Julu County (Fig. 5).

Spatial distribution of SOC content. Kriging interpolation

was performed by using ArcGIS 9.3 software to produce the

spatial distribution map of the SOC content in maize fields of the

study area. A cell size of 30 m630 m was selected for the spatial

interpolation to match the spatial resolution of images from OLI

and HJ-1A/B. The final result of this spatial interpolation process

is shown in Figure 6. Based on the spatial distribution map of the

SOC content in maize fields, SOC content values were higher in

the northwest and southwest parts of the study area than in the

southeastern part.

Spatial distribution of soil respiration
The EVI and SOC content were used to estimate the spatial

pattern of Rs during the peak growing season of maize on the basis

of a simple exponential model. The geo-location information

(latitude and longitude) of the 38 sample plots was used in the

extraction of pixels. Pixels that contained these plots from the

spatial distribution maps of EVI and SOC content data (Figs. 5

and 6) were extracted. These data were used to determine the

model parameters by least-squares fitting. The resulting model was

as follows:

Rs~1:57|exp(0:44|EVIz0:05|SOC content) ð2Þ

n~38, R2~0:73
� �

where Rs refers to the daily mean soil respiration rate in mmol CO2

m22 s21; EVI refers to enhanced vegetation index, as a proxy for

LAI; and SOC content is the soil organic carbon content (g kg21)

in maize fields of the study area. Eq. (2) was employed to predict

the spatial pattern of Rs from spatially distributed EVI and SOC

content data during the peak growing season of maize (Figs. 5 and

6). The spatial variation in Rs showed a pattern similar to that in

SOC content (Figs. 6 and 7).

Figure 8 shows the accuracy assessment result of the Rs

prediction model. The field measured Rs was comparable with

the spatial data predicted Rs. Based on the independent test

dataset, EVI and SOC content accounted for 69% of the spatial

variation in ground-measured Rs, and the RMSE was 0.51 mmol

CO2 m22 s21. The result of the accuracy assessment suggests that

the prediction model, which used EVI and SOC content as the

dependent variables, was effective in estimating Rs in maize fields

during the peak growing season.

Discussion

Relationships between LAI and three VIs
In this study, in situ measured data were obtained during the

peak growing period of maize (corresponding to the tassel stage of

maize). The effect of soil background on the spectral reflectance of

remote sensing images was negligible during this period because

the maize cover was higher with LAI ranging from 2.81 to 4.53.

The difference in the capability of spectral vegetation index (VI)

responding to LAI variation mainly depended on the sensitivity of

VI to the canopy structural variation of maize. Thus, the VI

modified the effect of soil reflectance (i.e. MSAVI) did not exhibit

a significantly greater advantage than NDVI, which is strongly

affected by soil reflectance in sparsely vegetated areas [50]. EVI,

which is more sensitive to variation in dense vegetation than

Figure 4. Linear relationships between three vegetation indices (VIs) and leaf area index (LAI) during the peak growing season of
maize in three counties in North China (n = 38). The VIs are: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI),
and modified soil adjusted vegetation index (MSAVI).
doi:10.1371/journal.pone.0105150.g004
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NDVI [50], showed the best relationship with the LAI of maize.

This result was consistent with our previous study [58] that was

conducted in irrigated and rainfed maize fields located at the

University of Nebraska, Agricultural and Research Development

Center, Mead, Eastern Nebraska, USA.

Measurement accuracy of SOC content
Field measurement data revealed that the SOC content at 0 cm

to 20 cm depth in the maize fields ranged from 6.4 g kg21 to

17.3 g kg21, and the mean value was 12.01 g kg21. For the mean

dry land SOC content in North China, the value appeared to be

higher than the previous estimate (0.83 from the average of 268

sample points) [72]. This difference was partly attributed to the

fact that only the SOC content in maize fields, not in all dry land

types, was considered. Most maize fields in the study site were on a

winter wheat/maize rotation, and wheat straw was returned to the

soil. The high productivity of maize crops contributed to the

development of a thick A horizon and high SOC content [73,74].

Additionally, only the SOC content in maize fields at 0 cm to

20 cm depth was analyzed, whereas previous studies estimated the

SOC content on the basis of organic carbon content to a depth of

1 m [72,75,76]. In agricultural land, soil depth at 0 cm to 20 cm is

located in the cultivation layer and has a higher SOC content than

the SOC content at the deeper soil layers [34]. This condition

contributed to the higher SOC content from the measured soil

property data than the previous estimate.

Factors affecting spatial pattern of soil respiration
The spatial differences in Rs at the study site can be mainly

attributed to the differences in vegetation productivity and soil

property factors among the sample plots, whereas soil temperature

and soil moisture served a minor function in regulating the spatial

pattern of Rs. A previous study also demonstrated that site

variables that reflect site productivity (e.g., LAI or aboveground

Figure 5. Spatial distribution map of enhanced vegetation index in maize fields in three counties in North China.
doi:10.1371/journal.pone.0105150.g005
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net primary productivity) will provide a useful approach for large-

scale estimates of regional Rs in terrestrial ecosystems [8]. Soil

temperature evidently serves a predominant function in the spatial

variations of Rs across sites of climatically contrasting environ-

ments [4]. However, at a local scale or under similar climatic

conditions, other biological and biophysical factors, such as

vegetation productivity and the size of organic carbon pools,

may prevail as dominant drivers of Rs [4,77]. At a local scale, the

spatial variation in Ts10 in the study site was small (CV = 4.73%).

Thus, soil temperature did not affect the spatial pattern of Rs.

Although soil moisture in the maize fields showed a relatively large

spatial variation (CV = 12.48%), this variation did not reach a

degree that will affect the spatial dynamics of Rs. The soil C

quantity and substrate quality factors (i.e., SOC and STN

contents) were consistently and strongly correlated with one

another and significantly affected the variation in Rs [5,12,13].

However, SEM results showed that the STN content only affected

Rs indirectly through the direct effect on the SOC content at the

study site.

During the peak growing season of maize, biophysical

parameters, such as LAI, Chlcanopy, and AGB, were important

variables that determined the size of the photosynthetic capacity

[56,78]. However, these variables are not truly independent, and a

correlation between one of them and Rs may lead to a correlation

of the other with Rs. In this study, Rs was strongly correlated with

LAI, Chlcanopy and AGB of maize fields, whereas LAI was the only

variable directly related to Rs during the peak growing season of

maize on the basis of SEM analysis.

The direct effect factors of Rs were used to estimate the spatial

variability of Rs during the peak growing season of maize in three

counties in North China. A simple exponential model, which

included the corresponding spatial proxies from remote sensing

Figure 6. Spatial distribution map of soil organic carbon (SOC) content in the 0–20 cm depth in maize fields in three counties in
North China.
doi:10.1371/journal.pone.0105150.g006
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and GIS (i.e., EVI and spatially interpolated SOC content), was

employed. A similar method was applied to a deciduous broadleaf

forest site in the Midwest USA [79]. The independent test data

also demonstrated the rationality of this method at the study site to

a certain extent (Fig. 8). Regardless of the form of the Rs model,

the relationship between LAI and EVI, as well as the kriging

interpolation precision of the SOC content, affected the predictive

accuracy of the Rs model. A moderate correlation between EVI

and LAI (Fig. 4) affected the test accuracy of the exponential

model with an R2 value of 0.69 and an RMSE value of 0.51 mmol

CO2 m22 s21 (Fig. 8). The tendency of kriging to overestimate

small values is supported by previous studies [80–82]. This

tendency may help explain the bias toward overestimating Rs at

low values (Fig. 8). Therefore, improving the accuracy of input

parameters from remote sensing or GIS will increase the predictive

capability of the Rs model.

Notably, the Rs model developed in this study was applicable to

maize fields during the peak growth period in the three counties in

North China. However, the model employed in this study does not

consider temperature, a main driver of Rs that has high spatial

variability. This model may be not used anywhere else or in other

stages of the growing season. Furthermore, when spatially

distributed data were used in the Rs model, a simple alternative

method was employed to estimate the maize LAI by using the

remotely sensed EVI, which may be problematic. Verstraeten et

al. [83] highlighted that the assimilation of remotely sensed

geophysical products into a carbon model is a complex process,

and simply exchanging conventional input data for their remotely

sensed counterparts is insufficient. Therefore, future research

should focus on an integrating spatially distributed Rs datasets and

geophysical products from remote sensing and GIS by using the

data assimilation method, which has been extensively applied in

Figure 7. Spatial pattern of daily mean soil respiration rate during the peak growing season of maize in three counties in North
China.
doi:10.1371/journal.pone.0105150.g007
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terrestrial carbon cycle research [84–86]. However, this method

lack the integration of Rs and spatially distributed data.

Conclusions

This study investigated the potential of spatial data from remote

sensing and GIS for estimating the spatial patterns of Rs during the

peak growing season of maize in three counties in North China.

Based on in situ measurements, plant productivity (i.e., LAI) and

soil property (i.e. SOC content) factors were identified as the most

important determinants of spatial variability in Rs during the peak

growing season of maize, and Rs was weakly related to soil

temperature and soil moisture. Spectral VIs calculated from an

HJ-1A CCD optical image were used to estimate LAI and EVI

was found to be the best proxy for LAI. To derive the spatial

pattern of Rs during the peak growing season of maize, a simple

exponential model, which included remotely sensed EVI and GIS

spatially interpolated SOC content, was employed. This method

was tested by using an independent sample dataset and was shown

to be reasonable at the study site.
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