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Impact of basic network motifs on the
collective response to perturbations

Xiaoge Bao 1,2,3,12, Qitong Hu1,4,12, Peng Ji 1,2,3 , Wei Lin 2,3,5,6,7,
Jürgen Kurths 3,8,9 & Jan Nagler 10,11

Many collective phenomena such as epidemic spreading and cascading fail-
ures in socioeconomic systemsonnetworks are causedbyperturbations of the
dynamics. How perturbations propagate through networks, impact and dis-
rupt their functions may depend on the network, the type and location of the
perturbation as well as the spreading dynamics. Previous work has analyzed
the retardation effects of the nodes along the propagation paths, suggesting a
few transient propagation "scaling” regimes as a function of the nodes’ degree,
but regardless of motifs such as triangles. Yet, empirical networks consist of
motifs enabling the proper functioning of the system.Here, we show that basic
motifs along the propagation path jointly determine the previously proposed
scaling regimes of distance-limited propagation and degree-limited propaga-
tion, or even cease their existence. Our results suggest a radical departure
from these scaling regimes and provide a deeper understanding of the inter-
play of self-dynamics, interaction dynamics, and topological properties.

Signal propagation enables the proper functioning of complex sys-
tems on all natural and technological scales. Biochemical reaction
networks underly signaling in cellular processes1. Other examples of
collective phenomena include neural spike dynamics2, gene regulatory
dynamics3–7, and epidemic spreading of infectious diseases, opinions
or information8–11. Networked dynamical systems have proven suitable
models for analyzing spatiotemporal signal spreading12,13. Yet, disen-
tangling the effects resulting from the underlying structure and the
collective dynamics on the networks remained conceptually difficult14.

Thus, it came as a surprise when Hens and colleagues recently
proposed universal features in signal propagation on networks15,
arising from studying the consequences from small irreversible per-
turbations of single units. They proposed a fewmarkedly distinct types
of propagation patterns that are determined topologically by the
combination of the average number of nodes and their average degree

along the propagation paths, resulting in a few fundamental asymp-
totic “scaling” regimes based on the nodes’ degree but irrespective of
features of motifs such as triangles. The majority of empirical net-
works, however, consist of motifs16.

Network motifs are subgraphs, which can be acyclic or cyclic,
directed or undirected, and play an important role in the design and
evolution of complex networks16. Different n-node subgraphs account
for elementary computational circuits and play various functional
roles in information procession17, including 13 types of directed three-
node subgraphs16,17. Three-nodes motifs in particular may enhance the
resilience to perturbations in power grids18,19, and play a central role in
the emergence and maintenance of social networks20,21. A number of
candidate motifs may serve as basic but functionally important
building blocks of regulatory and transcription networks22–25. Research
on the extent and function of motifs has provided a better
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understanding of the complex operational dependencies between
nodes23–28.

Here, we study how basic undirected motifs, in particular edges
and triangles, determine the response times to perturbations – as a
function of the network structure and its dynamics. This allows us to
identify genuine scaling regimes jointly arising fromnodes’degree and
motifs. Our framework of response dynamics to perturbations on
networks conceptually links the small and large scale topology of a
network with the spatiotemporal spreading induced by a single small
perturbation. In particular, we identify and predict the impact and
interplay of propagation paths, degree and motif distributions, and
interaction dynamics.

Results
Model
We characterize the network dynamics by pairwise interacting nodes,

_xiðtÞ= F xiðtÞ
� �

+ ∑
N

j = 1
AijH1 xiðtÞ

� �
H2 xjðtÞ
� �

, ð1Þ

which describes the evolution of the state variables xi of node i, where
throughout the manuscript i = 1…N. Different dynamics on networks
are captured by the triplet {F(xi),H1(xi),H2(xj)} comprising of (possibly)
nonlinear functions, where F(xi) specifies the self-dynamics governing
influx, leaking dynamics, degradation or reproduction29–34. The terms
H1(xi) andH2(xj) determine the the adjacent interactions of node iwith
its neighbors, such as infection, mutualism and competition29–34. The
connectivity matrix A accounts for the connections.

The unperturbed system is considered in a stationary collective
state, which we characterize by the set of N stable equilibria,
x*i = xi t =0ð Þ. We examine the signal propagation by studying the
transient dynamics induced by a permanent perturbation Δxm on the
steady state x*

m of the source nodem. Theperturbation forces nodes to

transition to the shifted states xið1Þ= x*i +Δxið1Þ. For each node i, we
characterize this transition period in terms of the response time τim,
defined as the time the response ratio

δiðtÞ=
ΔxiðtÞ
Δxið1Þ ð2Þ

takes the fixed value δi(τim) = η.
The evolution of the collective dynamics of all states may

exhibit a variety of intricate spatiotemporal patterns, which we
quantify by the relationship between the response time τim and the
node degree di, the number of node i’s edges. In contrast to pre-
vious work, our framework accounts for multipath connections
between source and target, which are salient features of empirical
networks. Figure 1 illustrates the main mechanisms underlying the
impact of motifs on response times in a protein-protein network35, a
small-world network, and an Erdös-Rényi network11. Basic motifs,
defined as convex regular n-gons such as edges (n = 2), triangles
(n = 3), squares (n = 4), and pentagons (n = 5) are ubiquitous units of
random networks, as shown in Fig. 1b, c. However, as detailed in
Fig. 1c, single edges disjoint from motifs are comparably rare,
leading triangles to dominate networks.

To demonstrate the dynamical role of triangles we study popu-
lation dynamics on networks and quantify the relative response to a
perturbation ΔxiðtÞ

Δxið1Þ with respect to different number of triangles. As
shown in Fig. 1d, target nodes i as part of edges respond faster than
target nodes as part of triangles, hence impacting the response time
qualitatively. As shown in Fig. 1e, not only the response time may
depend on the number of triangles along a path, but also the response
timemay vary, depending on the local network structure, even for the
same number of triangles along the path. This demonstrates the
impact basic motifs may have on local response dynamics on
networks.

Fig. 1 | Prevalence and dy5gnamical impact of motifs in random networks.
a From left to right: Schematic plot of protein-protein network (shown for N = 100
nodes from total N = 2035)35, small-world network, and Erdös-Rényi (ER) network
with network size N = 100 and average degree 10. b Share of motifs (edges, trian-
gles, squares, pentagons) for a network. Triangles play important roles, no matter
for the networks with dense or random connections, or highly clustered networks.
c Share of edges as part of basicmotifs (triangles, squares, pentagons). The share is
calculated by the number of edges as part of corresponding motif divided by the
network size. Most edges form triangles, and for the small-world networkwith high
clustering more and more edges form larger number of triangles, demonstrating
the dominance of triangles. d Target nodes i as part of the (independent) edges
(brown) respond faster than other target nodes i as part of triangles (blue), as

shown by Δxi ðtÞ
Δxi ð1Þ. e Histogram of average propagation time from randomly chosen

sources to their randomly chosen adjacent target nodes, as a function of the
number of triangles (1–5). Error bars indicate standard deviation. d and e are based
on single ER network realizations with the linking probability p =0.10 and the
network size N = 100 (rightmost network in (a)). f Perturbation response ΔxðtÞ

Δxð1Þ of
nodes i, j and h of the four-node network model as shown inside the panel, with
target node i and its neighbors j and h, to a perturbation on the source m.
Responses of j and h differ,mainly due to their different positions relative tom, but
all nodes respond non-instantaneously on the same time scale, whichmotivated us
to derive the framework, see main text. Node j responds the slowest because it is
two edges apart from source m. For (d), (e) and (f), the system is governed by
populationdynamics _xiðtÞ= � Bxi

a +α∑N
j = 1 Aijxj

b, whereB = α =0.01,a = 1.2, b = 1.1.
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Local propagation
To systematically quantify the impact of basic motifs on response
dynamics on networks, we formulate a general theoretical framework
based on Eq. (1). This requires the determination of the responses
Δxi(t) to the perturbation Δxm. We are first concerned with the quan-
tification of the local propagation from node m to its neighbor i. For
small perturbations, employment of linear response theory allows us
to formulate the response dynamics,

Δ _xiðtÞ= � 1
Ji
ΔxiðtÞ+H1ðx*i Þ ∑

N

j≠m
AijH

0
2ðx*j ÞΔxjðtÞ+AimH1ðx*

i ÞH0
2ðx*mÞΔxm,

ð3Þ
whereH0

2ðxÞ represents the derivative dH2(x)/dx, which is evaluated at
the initial states x*

j and x*m, while Ji represents the self-dynamics of the
form

Ji = � 1 H1ðx*
i Þ

Fðx*i Þ
H1ðx*

i Þ

" #0 !,
: ð4Þ

The right-hand side of Eq. (3) holds three contributions to the
response: self-dynamics, a sum specifying the adjacent interaction
dynamics j ≠m, and the response of node i directly induced by source
m. The perturbed system converges for t→∞ to the system’s new
collective stationary state, with responses Δxi(∞). We quantify the
responses in finite time by the ratio δi(t), Eq. (2), whose solutions are
obtained by reformulating the linear response equation (3),

ln 1� δiðtÞ
� �

= � 1
Ji

Z t

0
1� EimðτÞ
� �

dτ, ð5Þ

where EimðtÞ represents the contribution from the neighbors’ (adja-
cent) dynamics and is defined as

EimðtÞ= JiH1ðx*i Þ ∑
N

j≠m
AijH

0
2ðx*j Þ

ΔxjðtÞ � Δxjð1Þ
ΔxiðtÞ � Δxið1Þ ð6Þ

and the response times are determined by the solutions δi(t = τim) = η.
If we assumed that the states of adjacent nodes jump instantly to

their new stationary state, Δxj(τim) ≈Δxj(∞), the term EimðtÞ would
vanish, EimðtÞ ≈ 0. Previous work15,36 that has hypothesized three dis-
tinct spatiotemporal scaling regimes has implicitly assumed this pre-
mise. However, it is important to emphasize that the premise is not
always valid, especially for networks with prevalent motifs, and not
even for the four-node network in Fig. 1f. To recognize this, we focus
on this four-node network and its responses to a perturbation on node
m, Δxi(t), Δxh(t) and Δxj(t), where nodesm, i and h form a triangle, and
node j is adjacent to node i. Note that edge (i–j) is referred to as an
independent edge as it is not directly connected to the source m. The
convergence behaviors of the responses Δxh(t) and Δxj(t) are com-
parable with Δxi(t), which is conflicting to a small EimðtÞ. We also
observe thatΔxh(t) andΔxj(t) exhibit qualitatively different asymptotic
behaviors. Also note that the response of node j is slower than those of
nodes h or i because j is two edges apart from source m, which has a
stronger effect than the overall faster responses of nodes as part of
independent edges compared to triangles.

Apart from triangles, other motifs may also occupy a large pro-
portion of the networks, as shown in Fig. 1b, c. To further analyze the
impact of triangles and other basic motifs, we compare the response
times in small synthetic networks with and without localized signal
flow disruptions (see Supplementary Material, Tables S1 & S2). We
study n-gons, from triangles (n = 3) to pentagons (n = 5) finding that
differences of the response time are larger for the smaller n. This
means that the most significant impact on the response time can be
attributed to independent edges and triangles, which prompt us to

decompose networks into independent edges, that is, 2-gons such as
the (i–j)-edge in the example in Fig. 1f, and triangles (3-gons).

We quantify the response times from three basic perspectives:
self-dynamics, independent edges and triangles. The unperturbed
system is considered in a steady state, characterized by N stable
equilibria x*

i . The relationship between the intrinsic dynamics of node i
and its adjacent dynamics in the steady state follows immediately from
Eq. (1) and _xi =0,

Fðx*i Þ
H1ðx*

i Þ
= � ∑

N

j = 1
AijH2ðx*j Þ: ð7Þ

Averaging allows us to compute the contribution of adjacent
dynamics in the mean-field

H : =
1
N

∑
N

i = 1

1
di

∑
N

j = 1
AijH2ðx*j Þ, ð8Þ

which is then used to simplify the relationship (7) as
Rðx*

i Þ : = � Fðx*i Þ
H1ðx*i Þ

≈ di ×H, in which the degree serves as a coupling
constant of the intrinsic dynamics of node i and its adjacent connec-
tions. In the unperturbed steady system, the equilibria x*i can be
expressed as the inverse functionofRðx*

i Þwith respect to the degree di,

x*i =R
�1 diH
� �

: ð9Þ

Combining Eqs. (5) and (9), we derive the response time τim of
node i as a function of its degree di, as

τim =
�Ji lnð1� ηÞ

1 + 1
lnð1�ηÞ

η
1�η Eim

, ð10Þ

where Eim ≈ diQiQim results from the node i’s intrinsic dynamics,
throughQi = Jiðx*

i ÞH1ðx*
i ÞH0

2ðx*i Þ and its adjacent nodes’mean dynamics,
through Qim, see the Supplementary Material. Since x*

i =R
�1 diH
� �

, the
quantityQi is a function of degree di, while themean-field quantityQim

is independent of the degree. In the SupplementaryMaterial, the Hahn
expansion of Qi leads to its leading power, Qi ~d

ΠQð1Þ
i , with the

constant ΠQ(∞). In the large-degree limit, di→∞, we obtain

Eim ~d
θQ

i , ð11Þ

with the scaling exponent θQ =ΠQ(∞) + 1. The exponent θQ is deter-
mined by the intrinsic dynamics but is independent of di.

In the large-degree limit, for θQ < 0 the contributions to τim from
adjacent nodes vanish such that the response time becomes inde-
pendent of m and is well approximated by

τi = � Ji lnð1� ηÞ: ð12Þ

This result coincides with existing literature and mechanistically
explains the validity of previous theoretical results for a number of
dynamics in the large-degree limit15,36 – although the adjacent inter-
actions as quantified by Eim are not considered.

The self-dynamics term Ji can be expanded as a function of the
degree di, as Ji ~d

θJ

i , where the scaling exponent θJ is the leading power
of the Hahn expansion. In doing so, we find that the response time τi
exhibits the scaling relation

τi ~d
θJ
i , ð13Þ

where the scaling exponent θJ is determined by the intrinsic dynamics
but independent of adjacent connections. The scaling relationship (13)
highlights the contribution of both the structural features and system
dynamics on the response time, yet it is a disentanglement of self-
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dynamics Ji and degree di. In that way, this finding is in agreement with
previous work on three distinctive dynamic regimes15.

In contrast, for θQ > 0, the contributions from adjacent nodesmay
be substantial, even for large degree. In this case, both the self-

dynamics and the adjacent dynamics contribute to the response time,
remarkably exhibiting a scaling relation

τi ~d
θJ�θQ
i , ð14Þ

where the scaling is affected by the adjacent dynamics, through the
exponent θQ.

It is important to relate the exponent θQ to prototypical network
dynamics. As derived in the Supplementary Material, we find that
regulatory, human, mutualistic, biochemical and epidemics dynamics
are characterized by θQ <0, whereas population and inhibitory neu-
ronal dynamics show θQ > 0, as shown in Table 1. As the model para-
meters are assumed to be non-negative but otherwise arbitrary, Table 1
characterizes a substantial range of dynamical systems.The theoretical
derivation, Eq. (10), exactly predicts the response time τi. The scaling
relationships, Eqs. (13) and (14), characterize the interplay between
network topology, the self-dynamics and its adjacent dynamics in the
asymptotic regime di→∞. We find that both the theoretical derivation
and the scaling predictions are in good agreementwith simulations for
regulatory and population dynamics, as supported by Fig. 2a–e. For
regulatory dynamics, characterized by θQ <0, the response time τi is

Table 1 | Scaling exponents θJ and θQ for prototypical
dynamical models

Model Dynamical Equation θJ θQ

Regulatory (R) _xiðtÞ= � Bxai ðtÞ+α∑N
j= 1 Aji

xbj ðtÞ
1+ xb

j
ðtÞ

1
a � 1 � b

a

Human (H) _xiðtÞ= � Bxa+bi ðtÞ+αxbi ðtÞ∑N
j= 1 Aji y0 � x�c

j ðtÞ
� � 1�b

a � 1 � c
a

Epidemics (E) _xiðtÞ= � BxiðtÞ+α 1� xiðtÞ
� �

∑N
j= 1 AjixjðtÞ − 1 − 1

Mutualistic (M) _xiðtÞ=BxiðtÞ 1� xai ðtÞ
C

� �
+αxiðtÞ∑N

j= 1 Aji
xj ðtÞ

1 + xj ðtÞ
− 1 � 1

a

Population (P) _xiðtÞ= � Bxai ðtÞ+α∑N
j= 1 Ajix

b
j ðtÞ

1
a � 1 b

a

Biochemical
(B)

_xiðtÞ=B� CxiðtÞ � αxiðtÞ∑N
j= 1 AjixjðtÞ − 1 − 1

Inhibitory (I)
_xiðtÞ= � BxiðtÞ 1� xi ðtÞ

C

� �2
+αxiðtÞ∑N

j= 1 AjixjðtÞ
− 1 1

2

Fig. 2 | Response time scaling for localpropagation. aNetworkwith perturbation
atm with target node i having di edges (referred to as independent edges).
b Propagation time τi (time from source m to i) as a function of degree di for
network (a) with regulatory dynamics (θJ =

1
a � 1 and θQ = � b

a<0) and scaling
exponent θ = θJ. c Propagation time τi for network (a) with population dynamics
(θJ =

1
a � 1 and θQ = b

a>0) and θ = θJ >0. d Propagation time τi for network (a) for
population dynamics (θ = θJ =0). e Propagation time τi for network (a) (θ = θJ −

θQ <0). Theory, Eq. (10), and scaling relationship, Eqs. (13) and (14), in comparison
with simulation. According to Eq. (10), we predict τi ~d

θJ�θQ
i , (14), which is in good

agreement with the simulated response time but disagrees with the prediction
from existing literature τi ~d

~θ
i =d

θJ
i (gray). fNetwork with perturbation at sourcem

and target at node i having di triangles attached. g Propagation time τi for network
(f) with population dynamics (θJ =

1
a � 1 and f < 1) and the scaling exponent θ = θJ.

The scaling prediction according to Eq. (15), τi ~d
θJ
i , is in agreement with numerics.

h Propagation time τi versus di for network (f) with regulatory dynamics (θJ =
1
a � 1

and f ≈ 1) and θ = θJ + 1. According to Eq. (16), scaling is predicted as τi ~d
θJ + 1
i , which

is close to the simulation response time scaling but in disagreement with the pre-
diction from existing literature, τi ~d

~θ
i =d

θJ
i . b and h, regulatory dynamics,

_xiðtÞ= � Bxi
a +α∑N

j = 1 Aij
xj

b

1 + xj b
, where a = 1.2,b = 2.0 for (b), and a = 10.0,b = 2.0 for

(h), and B = α =0.01. c, d, e and g, population dynamics
_xiðtÞ= � Bxi

a +α∑N
j = 1 Aijxj

b, with a = 1.2,b = 1.0 for (c), and a = 1.0, b =0.2 for (d),
and a = 1.2,b =0.6 for (e), and a = 1.2,b =0.5 for (g), and B = α =0.01.

Article https://doi.org/10.1038/s41467-022-32913-w

Nature Communications |         (2022) 13:5301 4



determined solely by the self-dynamics, governed by the scaling rela-
tionship Eq. (13), as shown in Fig. 2b. For population dynamics, char-
acterized by θQ >0, we find three distinctive dynamic regimes. In the
degree-limited regime with θJ >0 in Fig. 2c and the distance-limited
regimewithθJ = 0 in Fig. 2d, the term Eim is negligible due to thedegree
limitation, and scaling is only determined by the self-dynamics Eq. (13).
However, in the composite dynamic regime (θJ <0), τi is determined by
both the self-dynamics and the adjacent dynamics as predicted by Eq.
(14) and supported by Fig. 2e. While existing literature disregarded the
effects from adjacent dynamics and predicts only ~θ= θJ

15, leading to
inaccurate scaling as shown in Fig. 2e, our prediction, θ = θJ − θQ, is
asymptotically exact. Taken together, we observe scaling of the
response time that depend on both the self-dynamics and the adjacent
dynamics, even for local tree-like networks. But how relevant is this
composite dynamic regime?

For a triangle-dominated topology as shown in Fig. 2f, we derive
the response time τi from Eqs. (5) and (9) as

τi = � lnð1� ηÞJi 1 + Cim
1 + ð1�f ÞCim , ð15Þ

where Cim can be approximated by the product of the degree-
independent mean-field term Qim and di, Cim≈diQim. Note that f is a
constant that depends on the systemdynamics, but not on di. Now, for
f≪ 1 and a large degree, Cim drops out in Eq. (15). In this case, triangles
have a negligible impact on the scaling and the scaling relation is well
approximated by τi ~d

θJ
i , as shown in Fig. 2g. For f ≈ 1, the presence of

triangles, as shown in Fig. 2h, results in the extra factor di resulting
from Cim such that

τi ~d
θJ + 1
i : ð16Þ

As shown in Fig. 2f–h for regulatory and population dynamics,
both predictions, Eqs. (15) and (16) arewell confirmedbyour computer
simulations. This establishes that basicmotifs may crucially determine
scaling, even in simple networks.

In the Supplementary Material, we derive the respective explicit
solutions of the response time, not only for the asymptotic scaling
regimebut also for the regimeof small degrees,which allowsus to fully
characterize the scaling regimes. In addition to regulatory and popu-
lation dynamics, we develop the system dynamics framework for
human29, epidemic30, mutualistic31, biochemical and inhibitory
dynamics32–34,37,38 (see Table 1). Our results consistently quantify the
impact of basic motifs on local response dynamics on networks.

Global propagation
Thus far, we have established a versatile theoretical framework for
local signal propagation. To formulate a framework for global signal
propagation, it is helpful to examine a source-centric representation,
which allows to theoretically track all possible propagation paths from
theperturbed central node to all distant nodes. Specifically, we impose
a layer-to-layer topology with the source node in the center and study
the interplay of the intrinsic and adjacent dynamics, employing our
developed framework for the local propagation as a building block.
Denote by T(m→ ik) the propagation time from node m to the ik-th
node through a pathway, specifying when the signal response ratio
Δxik ðtÞ
Δxik ð1Þ attains the threshold η. The signal propagation is expressed
layer-wise in terms of T(m→ ik), which we compute recursively,

Tðm ! ikÞ=Tðm ! ik�1Þ �
Δxik

Tðm ! ik�1Þ
� �� ηΔxik

ð1Þ
Δ _xik

Tðm ! ik�1Þ
� �� ηΔ _xik

ð1Þ ð17Þ

where the subscript kof index ik stands for the distance (the number of
edges along the path) to the perturbed node m.

Based on the Gauss Iterative Method combined with the gen-
eralization of Taylor expansion39, we solve Eq. (17), yielding

Tðm ! ikÞ ~gTD, ð18Þ

with vectorgT = gð1Þ gð2Þ . . . gðkÞð Þ, whose components aremonotonic
decreasing functions that approach 1 as k→∞. The components g(h) of

Fig. 3 | Impactofdegree sequencesonglobal propagation. a,bPropagation time
as a function of average degree and degree variance for a chain of 8 nodes with
random degree sequence and the first node set as a perturbation source. Propa-
gation time is averaged across different realizations. c, d Average propagation time
versusmeandegree, for sequencesoffixed variance3 and 5, respectively. Response
time and mean degree in (c) show positive correlation, while (d) shows a negative
correlation. Response time versus maxðdθJ

i Þ for θJ =0.25 > 0 (e) and minðdθJ
i Þ for

θJ = −0.17 < 0 (f). The linear relationship (redfitting line) indicate that the simulated
response time is well described by maxðdθJ

i Þ or minðdθJ
i Þ. a–f Regulatory dynamics,

_xiðtÞ= � Bxi
a +α∑N

j = 1 Aij
xj

b

1 + xj b
, where a =0.8; b =0.5 (a, c, e), a = 1.2; b = 2.0 (b, d, f),

and B =α =0.01. a–d node degrees are sampled randomly. e–f the fifths node's
degree, d5, is varied from 5 to 30, while all other node degrees are kept
fixed, di≠5 = 2.
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g are approximately proportional to a product,

gðhÞ ~
Yk

j =h+ 1

1
1� Eij ij�1

 !
, ð19Þ

accounting for the accumulated dynamical effects from independent
edges of layers higher than h. Note that the components may vary
across different systemdynamics, but are of the same order for a given
dynamics (see Supplementary Material). The vector D depends on the
degree sequence dik

and the parameters characterizing the adjacent
dynamics,

D=D di1
� � �dik

� �
= � lnð1� ηÞ

d
θJ

i1

1� C1C2d
θQ
i1

d
θJ
i2

1� C2d
θQ
i2

. . .
d
θJ
ik

1� C2d
θQ

ik

0
@

1
A

T

,

ð20Þ

where C1 and C2 are constants, and the exponent θJ characterizes the
self-dynamics, while θQ depends also on the adjacent dynamics, see
Table 1. The scalar product (18) is the summation of the propagation
times through the layers, where the vector g weights the degree
sequencealong thepathwayas held inD. Because the components ofg
are given as product (19), degree fluctuations do not average out as it
would for an additive structure. This is why and how the degree
sequence affects the global propagation time, T(m→ ik).

Taken together, equation (18) predicts that not only the average
degree, as assumed in previous literature15, but also the variance and
even the degree sequence along the propagation path may crucially
determine the response times to a perturbation. To further illustrate
this, we study how signal propagation is impacted by the average
degree and degree variance of the nodes forming a chain. Figure 3a, c
show for regulatory dynamics with θJ >0 that the propagation time
increases with increasing mean degree, and decreases with increasing
standard variation of the randomly chosen degree sequence. In con-
trast, for θJ <0, the propagation time decreases with the mean degree
and the standard variation, as shown in Fig. 3b, d.

As we expect the global signal propagation T(m→ ik) to be sensi-
tive to the degree sequence along the propagation path, in the Sup-
plementary Material, we systematically study degree sequences with
large standard variation, which leads us to two crucial observations.
First, for θJ >0, the propagation time is dominated by the largest
node degree maxðdθJ

i Þ along the chain, which is consistent with the
numerics as shown in Fig. 3e. Second, for regulatory dynamics with
θJ <0, the propagation time is dominated by the smallest degree
minðdθJ

i Þ, which is supported by Fig. 3f.
To study the impact basic motifs have on empirical networks, we

analyzed a protein-protein network35, where we control the clustering
coefficient by edge rewiring. The central node is the source node
inducing a perturbation. Nodes in the same layer (with the same radial
distance) have the same shortest path length to the source, as shown in
Fig. 4a. Brown nodes indicate the arrival of the perturbation in (an
arbitrarily) fixed time, for fixed η. For this dynamics, triangles inhibit
propagation. The average propagation time increases as a function of
number of triangles and layers, as shown in Fig. 4b. Similarly, we find
that signal propagation is increasingly inhibited with increasing clus-
tering coefficient, as shown in Fig. 4c. For an extensive analysis of this
empirical network, together with a detailed investigation for a number
of prototypical networked systems, whose arbitrary parameter ranges
are expected to characterize a wide range of empirical networked
dynamical systems, we refer to the Supplementary Material.

Discussion
Triangles andother loops have always limited the understanding of the
interplay of function and structure in networks. We have developed

analytical tools that allow to capture the impact of simple undirected
motifs on the system dynamics. Our developed framework not only
helps disentangle joint effects but provides a deeper understanding of
the interplay of self-dynamics, interaction dynamics, and topological
properties. Our analysis suggests a radical departure from the pre-
viously proposed concepts of distance-limited propagation and
degree-limited propagation. In distance-limited propagation the
response time scaling is said to be dominated by the propagation path
length but not by the edge density along the path. Vice versa, for
degree-limited propagation the response time scaling is said to be
dominated by the mean degree, but not the propagation path length.
We have demonstrated here by independent methods that when the
propagation is drastically slowed, or accelerated, that may not neces-
sarily result from edges or hubs but from cycles, in particular triangles.
Our analysis is based on a network decomposition into independent
edges and edges as part of motifs. The developed framework predicts
genuine scaling exponents, no matter if the propagation dynamics is
dominated by hubs, by the path length, or by basic motifs. For paths
with large average degree, as abundant in social and other empirical
networks, the prediction of propagation time using asymptotic scaling
as proposed by existing literature may be orders of magnitude off, as
the scaling exponent may fall in an unrelated universality class. We
have overcome this inconsistency by introducing two topology-
independent exponents that quantify the universality class of the
local response dynamics on networks.

Networkmotifs are abundant in synthetic and empirical networks
and systematically impact the response dynamics to perturbations.We
have provided a versatile toolbox that may not only help under-
standing response dynamics on networks but also provide the math-
ematical building blocks for extensions such as genuine universality
classes for dynamics on directed multiplex networks. Yet, it is

Fig. 4 | Impact of triangles on global propagation in protein-protein networks.
a Signal propagation snapshots of protein-protein networks35. Central node is the
source node inducing a perturbation. Nodes in the same layer (same radial dis-
tance) have same shortest path length to the source. Brown nodes indicate the
arrival of the perturbation in (an arbitrarily) fixed time.bAverage propagation time
as a function of number of triangles and layers in (a). For a given layer, triangles
slow propagation. Average propagation time increases with both number of tri-
angles and layers. c Signal propagation in rewired networks with varying the clus-
tering coefficient by edge rewiring. For all three networks, high clustering and
triangle density slows the spreading of the perturbation across layers. Panels for
regulatory dynamics, _xiðtÞ= � Bxi

a +α∑N
j = 1 Aij

xj
b

1 + xj b
, with B = α = 1, a =0.8, b =0.5,

and N = 2035.
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important to note that the developed analytical tools arebuilt on linear
response theory to quantify the dynamics in the steady state as a linear
response to a small permanent perturbation of a single unit. Large
dynamic perturbations, for instance, may force the system to transi-
tion into steady states not predicted by linear response theory. The-
oretical extensions covering this subject remain challenging but
deserve future attention.

Data availability
The data in this study is freely accessible at https://github.com/
QitongHu2000/Impact-of-motifs-data.

Code availability
Code for replicating this study is freely accessible at https://github.
com/QitongHu2000/Impact-of-motifs-main.
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